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Abstract

School closures were used as strategies to mitigate transmission in the COVID-19
pandemic. Understanding the nature of SARS-CoV-2 outbreaks and the distribution of
infections in classrooms could help inform targeted or ‘precision’ preventive measures
and outbreak management in schools, in response to future pandemics. In this work, we
derive an analytical model of Probability Density Function (PDF) of SARS-CoV-2
secondary infections and compare the model with infection data from all public schools
in Ontario, Canada between September-December, 2021. The model accounts for major
sources of variability in airborne transmission like viral load and dose-response (i.e., the
human body’s response to pathogen exposure), air change rate, room dimension, and
classroom occupancy. Comparisons between reported cases and the modeled PDF
demonstrated the intrinsic overdispersed nature of the real-world and modeled
distributions, but uncovered deviations stemming from an assumption of homogeneous
spread within a classroom. The inclusion of near-field transmission effects resolved the
discrepancy with improved quantitative agreement between the data and modeled
distributions. This study provides a practical tool for predicting the size of outbreaks
from one index infection, in closed spaces such as schools, and could be applied to
inform more focused mitigation measures.

Author summary

At the start of the COVID-19 pandemic, there was huge uncertainty around the risks of
SARS-CoV-2 spread in classrooms. In the absence of early predictions surrounding
classroom risks, many jurisdictions across countries closed in-person education. There is
great interest in adopting a more ‘precision’ approach to better inform future
interventions in the context of airborne virus risks. For this purpose, we need tools that
can predict the probability of the size of outbreaks within classrooms along with the
impact of interventions including masks, better ventilation, and physical distancing by
limiting the number of students per classroom. To this end, we have developed a robust
but practical model that yields the probability of secondary infections stemming from
index cases occurring within schools on a given day. During model development, the
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major underlying physical and biological factors that dictate the disease transmission
process, both at long-range and close-range, have been accounted for. This enables our
model to modify its predictions for different scenarios - and possibly allows its use
beyond schools. Finally, the model’s predictive capability has been verified by
comparing its outputs with publicly available data on SARS-CoV-2 diagnoses in
Ontario public schools. To our knowledge, this is the first time an analytical model
derived from mostly first principles describes real-world infection distributions,
satisfactorily. The quantitative match between the theoretical prediction and real-world
data offers the proposed model as a possible powerful tool for better-informed precision
pandemic mitigation strategies in indoor environments like schools.

Introduction 1

The public health response to SARS-CoV-2 in 2019 demonstrated a critical and growing 2

need to anticipate the probability and size of outbreaks and the potential impact of 3

mitigation measures. Models that can, with reasonable fidelity, predict the secondary 4

infection distribution of cases in different scenarios, serve this critical need in pandemic 5

and outbreak preparedness. Such predictive models would need to capture 6

‘superspreading’, a fundamental property of respiratory virus transmission – particularly 7

in the context of aerosolized or airborne transmission. Superspreading events occur 8

when the presence of one index case leads to infection of several individuals in a very 9

short span of time. As a mean value description of outbreak size is incapable of 10

capturing such events, Lloyd-Smith et al. [1] demonstrated the effectiveness of 11

empirically fitted outbreak size distributions at modeling heterogeneity in disease spread 12

dynamics. But, to retain predictive capabilities, models cannot rely only on infection 13

data and instead would have to account for all the mechanistic parameters that 14

uniquely define each case of an outbreak. These input parameters and their effects are 15

rooted in physical, biological, and behavioral factors. 16

Recent studies detail the different aspects of SARS-CoV-2 transmission that need to 17

be accounted for. The need for modeling airborne transmission is emphasized by 18

Morawska et al. [2] and Allen et al. [3]. The review by Prather et al. [4] highlights the 19

ability of aerosols to remain airborne for an extended period of time. Chaudhuri et 20

al. [5, 6] showed that the viral load is a major contributor in determining the large 21

variations in the number of secondary infections. These were complemented by Chen et 22

al’s [7] observations of viral load heterogeneity being strongly tied to the overdispersed 23

nature of SARS-CoV-2 infections, along with Bhavnani et al’s [8] findings of a direct 24

correlation between higher index case viral loads and rising secondary infection counts. 25

The alleviating effect of increased ventilation, incorporated through the air change rate 26

parameter, on infection spread was thoroughly detailed by Thornton et al. [9], while 27

Ricolfi et al. [10] studied this effect in schools and found that the inclusion of 28

mechanical ventilation as opposed to natural ventilation drastically reduces the 29

likelihood of infection. The importance of occupancy in infection spread was pointed 30

out by Bazant and Bush [11]. Pioneering works by Haas [12–14] put forward the 31

dose-response model which connects the virus properties to the human physiology and 32

its response to the infectious dose. Schijven et al. [15] utilized the dose-response model 33

to derive a risk assessment model for various expiratory events. Consolidating these 34

findings, Chaudhuri et al. [5] proposed a model for the Probability Density Function 35

(PDF) of secondary infections due to long-range airborne transmission, which relied on 36

observations based on certain numerical results generated from cell-phone based 37

occupancy data [16]. In this study, we systematically develop a model for the PDF of 38

secondary infections from the equation governing the virion concentration at an indoor 39

location, and couple its solution to the dose-response model governing pathogen-host 40
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interactions. The formulation is extended to an ensemble of locations to obtain a PDF 41

for secondary infections due to long-range airborne transmission, ensuring an exclusively 42

theoretical foundation. Additionally, this model is coupled with the contributions of 43

short-range (or near-field) virus transmission to ensure that all the major sources of 44

virus spread are captured. The final result is intended to be an analytical model capable 45

of predicting outbreak sizes in real-world indoor locations while being able to adapt its 46

solution to applied mitigation measures owing to its underlying theoretical foundation 47

that captures the influence of such strategies. 48

One mitigation strategy applied during the pandemic has been widespread school 49

closures, wherein teaching was moved to virtual classrooms. Emerging data suggest the 50

move from in-person to virtual may have had a negative impact on students’ academic 51

performance [17]. Perhaps, opportunities exist for more focused mitigation measures 52

that include structural factors like enabling physical distancing with fewer students per 53

classroom, ventilation, and more proximal measures like access and use of masks to 54

offset the need to close schools in the event of a SARS-CoV-2 case in the classroom, or 55

prior to detection of a case even when community transmission is high. In other words, 56

with the ability to forecast the likelihood and magnitude of outbreaks in classrooms 57

ahead of time, along with understanding the impact of various mitigation measures, 58

making decisions about the advantages and disadvantages of school closures could be 59

more well-informed. This opens an avenue for us to apply our model to judge its 60

predictive capabilities in preparation for future outbreaks. 61

The primary objective of the present study is to derive an analytical model capable 62

of predicting the real-world distribution of the number of secondary infections generated 63

due to the spread of an airborne virus in schools and test its veracity through a 64

comparison with real-world data. For this purpose, we use publicly available data on 65

diagnosed SARS-CoV-2 cases from the public school system in Ontario, Canada, over 66

different epochs in time. The modeling parameters chosen are based on existing 67

literature, while also being guided by school data and mitigation strategies. 68

Methods 69

The model is designed to predict the probability density function of the number of 70

secondary airborne infections inside schools. The transmission process can be classified 71

into two broad regimes: the virus traveling from the active index case to a susceptible 72

individual; and the interaction between the virus and the human body. The former is 73

mostly determined by physics-based factors while the latter depends on biological 74

factors, primarily the dose-response of the human body. 75

First, we briefly review the dose-response model followed by the evolution equation 76

of virus concentration in well-mixed situations i.e., virus concentration is homogeneous 77

in space. Next, a discussion on the contribution of near-field virus concentration in 78

assessing the overall outbreak sizes is provided. Coupling these with the distribution of 79

the variables with the largest relative dispersions, the PDF of the number of secondary 80

infections is derived with and without near-field effects. 81

For the convenience of the reader, a list of all symbols and their associated 82

definitions are listed in Table 1 and Table 2 in S1 Text. 83

Dose-response model 84

Quantitative risk assessment of infections is primarily performed based on two 85

methods [18]. First among these is the well-known Wells-Riley [19,20] approach that 86

provided a relation connecting a quantum of infection to the probability of being 87

infected. The simplicity of this relation allowed for application in various scenarios but 88
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it is unable to capture the underlying mechanisms governing the transmission. On the 89

other hand, the second approach of dose-response models builds upon an analogous 90

framework, while not being restricted by a hypothetical description for infectious dose 91

i.e., quanta, therefore allowing these models to describe the infectious dose in terms of 92

various biological and physical parameters that influence it. These models were first 93

proposed by Haas [12] in the context of waterborne disease spread, but were also later 94

applied in the case of SARS-CoV-2 [13,21] as 95

P = 1− e−rNv (1)

where the probability of infection is described by P, and Nv is the number of virions 96

inhaled by a susceptible. The dose-response constant r was explained by Haas [13] as 97

the inverse of the probability of a single virus surviving till it can trigger illness. The 98

probability of infection P has two interpretations - (1) if Nv is the virion quantity 99

inhaled by a person at a given location and time, then P corresponds to that 100

individual’s probability of getting infected from the inhaled virions; (2) if Nv is the 101

average infectious dose inhaled by a group of susceptibles, then P represents the 102

proportion of susceptibles that will become infected. The latter interpretation will be 103

applied in the present model. 104

Secondary infection count from the dose-response model 105

For the probability of infection P, we need to compute Nv in terms of known or 106

computable quantities that can be obtained from existing school data and index case 107

data. To that end, consider a classroom with one index case and multiple susceptible 108

individuals. At any point in time, the susceptible individuals would be exposed to an 109

airborne virion concentration field c(x⃗, t). Here, a well-mixed room is assumed to invoke 110

c(x⃗, t) = c(t) i.e., the virion concentration is homogeneous in space. If the index case 111

possessing a viral load ρ continuously ejects mucosalivary fluid at a rate of Q(t) within 112

a room of volume V , then the virion concentration c is governed by 113

dc(t)

dt
=
ρQ(t)

V
− ac(t) (2)

where the effects of air change rate ACH, wall deposition parameter β0, and virus 114

half-life t1/2 appear through the loss parameter a = ACH/3600 + β0 + ln(2)/t1/2 [5]. 115

The ventilation effect is assumed to be uniform here, though it is recognized that 116

practically the aerosol flow can be anisotropic with a degree of directionality. The 117

jet-puff model introduced later will partially address this. The volume flow rate Q(t) is 118

assumed to have a constant value Ql for the duration of the ejection event T , followed 119

by a zero value for the remaining duration. The mucosalivary fluid ejection event under 120

consideration is speaking, while breathing is neglected due to its comparatively (several 121

orders of magnitude) lower contribution of ejected volume [22]. The solution of Eq. 2 122

takes the form 123

c(t) =


ρ Ql

V a

[
1− exp(−at)

]
if t ≤ T

ρ Ql

V a

[
exp{−a(t− T )} − exp(−at)

]
if t > T

(3)

For this piecewise description of concentration c(t), the regime bounded by t ≤ T marks 124

the speaking duration of the index case. Beyond that, when t > T , the virion 125

concentration decays. If the susceptible individuals are inhaling these virions at an 126
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average rate of V̇b for a mean exposure duration of τ , the average number of virions 127

inhaled by a single individual Nv can be written up to the leading order as 128

Nv(τ) =

∫ τ

0

c(t)V̇bdt ≈
ρQlV̇b
V a

T (4)

This leading order form was obtained through a series expansion of the result of the 129

integral in Eq. 4 along with the application of a long exposure duration condition 130

(aτ ≫ 1), which is easily satisfied in classroom scenarios. At this stage, Eq. 4 leaves us 131

with a computable form for Nv, which can now be substituted back in the dose-response 132

model in Eq. 1 to obtain the probability of infection as 133

P = 1− exp(−wα) (5)

where 134

w = ρr (6)

captures the primary sources of variability in P , while α is a constant that incorporates 135

all other factors that influence the transmission process, and takes the form 136

α =
QlV̇bT
V a

(7)

Observe that α admits mostly physics-based parameters within its description, whereas 137

w is composed exclusively of biological parameters. This means that if the aerosol 138

transmission physics changes it would be reflected through the constant α. 139

In Eq. 5, P represents the proportion of secondary infections in a classroom with 140

occupancy n and area A, from which the total number of secondary infections Z 141

occurring there, under well-mixed conditions, is 142

Z =

∫
A

χPdA (8)

where χ = n/A is the population density in the classroom. The number of secondary 143

infections Z can be expressed through a more generalized term which is independent of 144

occupancy – the secondary attack rate Z̃, defined as the ratio of the number of 145

secondary infections to the number of susceptibles at a location, such that Z̃ = Z/n. 146

Noting that an individual’s probability of infection is independent of their spatial 147

location due to the well-mixed room assumption, using Eq. 8, Z̃ takes the form 148

Z̃ =
1

n

∫
A

χPdA =
1

n
P
∫
A

χdA = P = 1− exp(−wα) (9)

The invariance with occupancy makes the secondary attack rate a measure for the 149

proportion of people infected, analogous to the probability P . The number of secondary 150

infections due to one index case in a classroom can now be represented in terms of 151

known or computable quantities as 152

Z = nZ̃ = n

{
1− exp

(
− wα

)}
= n

{
1− exp

(
− ρr

QlV̇bT
V a

)}
(10)

If the index case and the susceptible individuals are wearing masks with filtration 153

efficiency Fmask, it would modify the ejection and inhalation terms in Eq 10, now 154

represented by FmaskQl and FmaskV̇b respectively. 155

Note that this entire derivation for long-ranged transmission has been performed for 156

a classroom. But, the results we finally intend to obtain are for a school. How this 157

long-range analysis for classrooms can be extended to schools will be explained in the 158

Results section based on certain observations from real-world infection data. 159
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Modified secondary infection count through the inclusion of 160

near-field transmission effects 161

Up to this point, the model developed only captures long-range airborne transmission 162

within a classroom by invoking the well-mixed assumption. But in reality, there will be 163

instances where the susceptible individuals will come into contact with the highly 164

concentrated virion-laden cloud ejected by the index case before it diffuses. Even in 165

scenarios where there are almost no infections through long-range transmission by 166

virtue of the index case having a very low viral load, this cloud carrying a much higher 167

virion concentration compared to the well-mixed case might still be capable of infecting 168

those who come in contact with it. The concentration is higher since the ejected virions 169

are localized in a smaller volume. To capture this effect, an equation for a modified 170

secondary infection count Zm is written 171

Zm ≈ n

{
1− exp(−wα)

}
︸ ︷︷ ︸

Long-range transmission(Z)

+ nj

{
1− exp(−wαj)

}
︸ ︷︷ ︸
Near-field transmission(Zj)

= Z + Zj (11)

where n is the occupancy of the classroom that hosts the index case, and nj is the total 172

number of people in the school exposed to near-field transmission. Here, the total 173

number of secondary infections has been modified simply through the addition of a 174

near-field contribution Zj which mathematically varies from the existing Z by having a 175

modified occupancy nj and a modified constant αj that reflects the difference in the 176

underlying physics of near-field transmission compared to the long-range route. Note 177

that susceptibles counted in n that undergo long-range transmission may also get 178

counted again in nj , which would appear to occasionally overestimate the total infection 179

count. A detailed mathematical proof showcasing why such an overestimation will not 180

occur is provided in the S2 Text. 181

The question remains about how to obtain the modified constant αj that describes 182

the near-field transmission physics. This is introduced through a simple jet-puff model 183

for the ejected cloud that provides us with the cloud volume at any time t. An 184

analogous assumption to that of the long-range model is applied i.e., the virion 185

concentration within the cloud is spatially homogeneous. This enables us to use the 186

same approach as the long-range model and solve a concentration equation for virions 187

within the cloud up to its transition to a diffusion-dominated flow, assuming negligible 188

concentration losses due to the transitory nature of the cloud, and subsequently obtain 189

Zj = nj

{
1− exp(−wαj)

}
(12)

where the modified transmission physics is admitted through the constant αj as 190

αj =
QlV̇bttr
Vj

τj (13)

In Eq. 13, the transition time to diffusion dominated flow ttr, the volume of the cloud 191

Vj , and the average exposure duration to the cloud τj are new parameters unique to the 192

near-field model. Here, ttr and τj are input quantities whose values are discussed later, 193

whereas the cloud volume Vj is calculated using a simple jet/puff model in S3 Text. 194

Analytical PDF of total secondary infection count 195

At this stage, all the governing equations (Eq. 10, 11, and 12) required to describe the 196

transmission process within a single location have been derived, and hence we have a 197
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fw(wv)

fρ(ρv)

fr(rv)

ϕ1(Z̃)

ϕ2(Z̃j)

h1(N)

h2(Nj)

g1(Z)

g2(Zj)

g(Zm)

Input

Input

Z̃ = 1 − exp(−wvα)

Z̃j = 1− exp(−wvαj)

Long-range transmission

Z = Z̃N

Input

Input

Zj = Z̃jNj

Near-field transmission

Convolution

1

Fig 1. Algorithm for deriving the analytical PDF of total secondary infection count. The input distributions for
viral load ρv and dose-response constant rv are used to compute the PDF of wv : fw(wv). This is applied in both halves of
the transmission process – long-range and near-field, to find the PDF of the corresponding secondary attack rates, ϕ1(Z̃) and
ϕ2(Z̃j). These coupled with their respective input occupancy distributions, h1(N) and h2(Nj), gets us the PDF of secondary
infections for long-range transmission g1(Z) and near-field transmission g2(Zj). A final convolution operation on these
distributions outputs the total secondary infection count PDF, g(Zm)

closed system of equations. However, the goal is to model the variability of secondary 198

infection count across different locations. This can be captured through a probability 199

density function (PDF). The algorithm to obtain said PDF is shown in the flowchart 200

provided in Fig. 1. Before proceeding, let us define the following pairs of quantities and 201

their corresponding sample space variables: (ρ, ρv), (r, rv), (w,wv), (n,N), (nj , Nj) 202

(Z̃, Z̃), (Z̃j , Z̃j), (Z,Z), (Zj ,Zj), and (Zm,Zm). 203

As shown in Fig. 1, we start from the input distributions for the most dispersive 204

quantities – the viral load and dose-response constant, given by fρ(ρv) and fr(rv). 205

These are used to compute the PDF of wv, given by fw(wv), which attains a lognormal 206

form as derived later in the section detailing the inputs to our model. 207

fw(wv) =
1

wvσw
√
2π
e−(ln(wv)−µw)2/2σw

2

(14)

Here, µw and σw are the mean and standard deviation of ln(wv), respectively. This 208

distribution is utilized in both long-range and near-field transmission routes without 209

change because as stated before, the transmission physics is embedded in the constants 210

α and αj . Mathematically, the PDF formulations for both routes are analogous, and 211

hence, in the remainder of the section, we will only describe the long-range PDF in 212

detail with the understanding that the same process can be followed for near-field 213

transmission. 214

First, for long-range transmission, the secondary attack rate described by Eq. 9 is 215

re-written as 216

Z̃ = 1− exp(−wvα) (15)

where α is a constant, and wv has a distribution fw(wv). The justification behind 217

assigning α an ensemble-averaged constant value instead of a distribution is discussed 218

later. In Eq. 15, we observe a functional dependency of Z̃ on wv. Therefore, the PDF 219

of Z̃, given by ϕ1(Z̃), depends on fw(wv) as 220

ϕ1(Z̃) = fw(wv)
dwv

dZ̃
(16)
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Rewriting wv = − 1
α ln(1− Z̃) based on a re-arrangement of Eq. 15, we get 221

ϕ1(Z̃) = fw

{
− 1

α
ln(1− Z̃)

}
d{− 1

α ln(1− Z̃)}
dZ̃

(17)

Substituting the lognormal form of fw(wv) in Eq. 17, ϕ1(Z̃) can be expressed as 222

ϕ1(Z̃) =
e−[ln{− 1

α ln(1−Z̃)}−µw]
2
/2σw

2{
−|1− Z̃| ln(1− Z̃)

}
σw

√
2π

(18)

Now, to find the PDF of long-range secondary infection count g1(Z), we need to 223

combine ϕ1(Z̃) with the input PDF of classroom occupancy h1(N). This is achieved by 224

employing the relation for finding the PDF of the product of two independent random 225

variables (Z = N Z̃) as 226

g1(Z) =

∫ ∞

0

h1(N)ϕ1(Z/N)
1

N
dN =

∫ ∞

0

h1(N)e−[ln{− 1
α ln(1−Z/N)}−µw]

2
/2σw

2

−σw
√
2π(N −Z) ln(1−Z/N)

dN

(19)
The exact procedure can now be repeated for near-field transmission to get an 227

analogous PDF of near-field secondary infection count g2(Zj). 228

Finally, a convolution operation is performed to obtain the PDF of the sum of two 229

random variables, Zm = Z + Zj ; the PDF of net secondary infection count Zm is 230

therefore computed as 231

g(Zm) =

∫
0

∞
g1(Z)g2(Zm −Z)dZ (20)

Inputs to the analytical model 232

With the disease transmission model being completely defined through Eq 10, 12 and 233

20, we turn our focus towards the inputs that are required to solve the model and 234

obtain the PDF of secondary infections. As observed before, the Z and Zj equations 235

(Eq. 10 and Eq. 12) require inputs to define three types of quantities: w, α (and αj), n 236

(and nj). The primary sources of variability are embedded within w = ρr and hence, ρ 237

and r will both admit individual distributions to account for this. On the contrary, α 238

and αj are composed of quantities that have comparatively negligible variation, and 239

therefore, these quantities will all be assigned ensemble averaged values. Finally, n and 240

nj bring in the effect of occupancy through distributions of their own and is a highly 241

relevant parameter since secondary infection count is linearly proportional to occupancy. 242

In the subsequent sections, we describe the input distributions for ρ, r, and w, 243

followed by a section on all the ensemble-averaged parameters that generate α and αj , 244

and end with a section describing occupancy distributions. 245

Probability density function for the viral load 246

Viral load ρ is a dominant factor that decides the shape of the Z distribution, and 247

hence its variability needs to be captured when providing it as an input parameter [5, 7]. 248

The study by Yang et al. [23] collected viral load data for both asymptomatic and 249

symptomatic individuals corresponding to the original variant of SARS-CoV-2, to 250

generate a viral load PDF which showed a lognormal distribution of the form 251

fρ(ρv;µy = 13.83, σy = 3.8) [5, 23], presented in Fig. 2(a) by a solid blue line. 252

For the current study, we focus on a period between Sep-Dec 2021 when δ-variant 253

was most dominant. Therefore, while retaining a similar lognormal form fρ(ρv;µρ, σρ), 254
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the distrtibution’s parameters need to be modified for the δ-variant. The δ-variant viral 255

load vs. time plot from Jüni et al. [24] was used to calculate a time-averaged median 256

viral load whose exponential gives µρ = 17.97, and σρ was assumed to be same as that 257

obtained from Yang et al. [23]. The final δ-variant viral load distribution is also shown 258

in Fig.2(a) by a solid red line. 259

Probability density function for the dose-response constant 260

The dose-response constant r, which has the units (RNA) ‘copies−1’, can be 261

decomposed as 262

r =
1

ψk
(21)

where k is an analogous dose-response constant parameter similar to r, and can be 263

computed from literature, but generally presented in ‘Focus-forming units (FFU)’. To 264

account for the difference in units between r and k, a quantity ψ is introduced whose 265

inverse is often referred to as infectivity. In other words, ψ is a measure of the 266

percentage of viral matter in droplets and aerosols that is capable of initiating 267

infections. To find the PDF of r (corresponding sample space variable rv), the 268

quantities k and ψ need to be determined. 269

For k, we refer to Killingley et al. [25], where they found that an infectious dose of 270

55 FFU of SARS-CoV-2 among volunteers showed 53% infection rate. Substituting 271

these values in the dose-response model of Eq. 1 gives us k = 73 FFU. The literature 272

regarding k values for SARS-CoV-2 are few and far between, and insufficient to obtain a 273

distribution. However, assigning a constant k suffices because the primary variability in 274

the dose-response constant appears from ψ which varies over several orders of 275

magnitude [26–28]. 276

For the PDF of ψ, we refer to a study by Lin et al. [28] that found ψ and therefore 277

the dose-response constant to have a lognormal distribution, but not for the δ-variant. 278

Therefore, using the dataset for δ-variant ψ from the study by Despres et al. [27], the 279

dose-response constant’s mean and standard deviation were computed to assign the 280

parameters of its lognormal distribution fr(rv;µr, σr) as 281

µr = µds = ln(mds)−
σ2
ds

2
= −14.32 and σr = σds =

√
ln

(
s2ds
m2

ds

+ 1

)
= 1.06 (22)

Here m is the mean of the data, and s is the corresponding standard deviation. The 282

subscript ‘ds’ refers to the values being obtained using the data from Despres et al. [27]. 283

The final PDF for rv is displayed in Fig. 2(b) as a dark red line, compared to an 284

approximate numerical distribution from Despres at al. [27] shown through blue circles. 285

The pre-δ-variant distribution from Lin et al. [28] is also showcased in pink circles. 286

Probability density function for the product of viral load and dose-response 287

constant 288

Since, ρv and rv are both lognormally distributed, their product wv = ρvrv also has a 289

lognormal distribution with parameters µw = µr + µρ = 3.64 and 290

σw =
√
σr2 + σρ2 = 3.94. The PDF of wv is shown in Fig. 2(c). 291

Description of the ensemble-averaged input parameters 292

All the ensemble-averaged parameters are embedded within α and αj , given by Eq. 7 293

and Eq. 13, and need to be properly defined as they introduce flow physics into the 294

transmission model. Table 1 describes every parameter that is used to generate α and 295
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Fig 2. Probability density functions of input parameters. (a) Viral load ρv PDF for asymptomatic (circular markers)
and symptomatic (square markers) population corresponding to the original SARS-CoV-2 variant [23] along with a lognormal
fit (µy = 13.83, σy = 3.8) (solid blue line) for the data, compared to the δ- variant viral load lognormal distribution
(µρ = 17.97 [24], σρ = 3.8 [23]) (solid red line), (b) Lognormal PDF of dose-response constant rv for SARS-CoV-2
(pre-δ-variant) [28] (pink circles), compared to the PDF computed from δ-variant dataset [27] (blue circles), and a lognormal
fit (dark red line) to this dataset ensuring equal mean and standard deviation (µr = µds = −14.32, σr = σds = 1.06), (c)
Lognormal distribution for product of viral load and dose-response constant, wv (µw = 3.64, σw = 3.94), (d) PDF of classroom
occupancy h1(N) (black line) and PDF of the number of people exposed to near-field transmission, h2(Nj) (grey line).

αj , along with their corresponding values, and how the values were computed. The 296

question remains as to how we justify the parameters with α and αj having 297

ensemble-averaged values, as opposed to distributions like ρ and r. This can be 298

answered if the dispersion for all these parameters across locations is calculated and 299

compared. The quartile coefficient of dispersion for the ith parameter 300

Qi =
(Q3 −Q1)

(Q1 +Q3)
(23)
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Table 1. Input Parameters for α and αj

Symbol Definition Value Reference

V Classroom volume 209 m3 Based on classroom size recommendation by a 2010 expert panel
report [29] along with the assumption of classroom height h = 3 m

V̇b Inhalation rate 105 cm3s−1 Inhalation rate is given as V̇b = TvWa/∆; Tv = 7 mL/kg is the
average tidal volume per unit weight for children [30]; Wa = 30 kg
is the assumed average weight of the susceptible individuals; ∆ = 2
s is the duration of inhalation based on the average breathing rate
of 12− 15 times per minute [31]

Ql Ejected volume flow rate 2.22 × 10−6

mL/s
The exhalation rate of air for the index case is taken as 700
Lh−1 or 194.4 cm3s−1 [22]. This is combined with the aerosol
size distribution for speaking [22] to obtain Ql as showcased by
Chaudhuri et al. [5]

Fmask Mask filtration efficiency 0.5 Morais et al. [32] reported that commonly used homemade masks
block 20% (Fmask = 0.8) to 60% (Fmask = 0.4) of all incoming
aerosols, while N95 masks have much higher efficiency. We take
an average value of 0.5 for our case

τ Room-wide homogeneous
virion field exposure dura-
tion

6 hrs Based on the total duration of classes in a school day [33]

ACH Air change rate 2 hr−1 Reported by Swyers and King, CBC news article, 2021 [34]
β0 Wall-deposition parameter 0.002 s−1 Refer to the calculations of Chaudhuri et al. [5] based on the study

by Lai and Nazaroff [35]
t1/2 Virus half-life 32.07 min Based on the experiments of Dabisch et al. [36] at ASHRAE

recommended indoor air conditions, using the DHS calculator [37]
ttr Transition time to diffu-

sion regime
39 s Defined as the time when cloud velocity is comparable to the

ambient velocity fluctuations [38]. The final secondary infection
PDF was found to be much less sensitive to ttr compared to most
other parameters, and hence, it was approximated as the time
when the cloud velocity becomes 1% of the cloud ejection velocity

τj Near-field cloud exposure
duration

60 s Assumed to be a short duration on average

is employed for this purpose. Here, Q1 is the first quartile and Q3 is the third quartile 301

of a given data set i.e., Qi essentially provides a normalized measure for the spread of 302

the data, while not being too sensitive to outliers in the dataset. 303

The quartile coefficient of dispersion Qi for the different parameters in w, α, and αj 304

were calculated. For the quantities in w = ρr, Qρ = 0.98 and Qr = 0.92 i.e., Qi ≈ 1 for 305

both, suggesting very high dispersion. In comparison, we have QQl
= 0.47 [5, 22, 39–42] 306

and QACH = 0.47 [5, 43], both much smaller than 1. Available values for the remaining 307

quantities such as wall-deposition parameter [35], volume inhalation rates [22], virus 308

half-life, classroom volumes, and others suggest significantly less variation. Therefore, ρ 309

and r having much higher Qi than every other quantity justifies assigning ensemble 310

averaged values to every parameter in α and αj . Note that some parameters like 311

ejection event duration, exposure duration to the ejected cloud, etc., do not have 312

sufficient data in the literature to calculate dispersion. Hence, in the Results section, we 313

have provided a range within which the PDF of secondary infections could lie to 314

account for a certain degree of variation in such quantities. 315
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Probabiliy density function of occupancy 316

The final step is to find an occupancy PDF that describes classroom populations. The 317

present study has been carried out for the entire Ontario public education system, 318

which as of 2020− 21 data has a total of 2, 025, 265 students enrolled in 4, 833 schools, 319

split into 1, 394, 040 elemendary students and 631, 225 secondary students [44]. This 320

results in the average number of students per school being 419. Based on available 321

data [45], the mean of the maximum classroom size is µ1 = 24 students with a standard 322

deviation of σ1 = 1.35. A Gaussian distribution was fit based on these parameters as a 323

first estimate for h1(N). But, this description neglects the effect of vaccination on the 324

susceptible population distribution. We assume that elementary school students have 325

not been vaccinated during the period of study. In contrast, secondary school students 326

have a vaccination coverage of ηcov = 0.8 and a vaccination efficacy of ηvac = 0.6 [46]. 327

The susceptible occupancy n is simply modified to n(1− ηvacηcov), and the modified 328

Gaussian distribution has a mean of µ2 = 12.48 and a standard deviation of σ2 = 0.7. 329

To incorporate both cases in a single model, a bimodal distribution h1(N) is chosen for 330

occupancy, with a weighting factor of p = 0.3 (for secondary school students) based on 331

the percentage of students in elementary and secondary schools. This results in a h1(N) 332

distribution of the form 333

h1(N) = (1− p)
1

σ1
√
2π
e−(N−µ1)

2/2σ1
2

+ p
1

σ2
√
2π
e−(N−µ2)

2/2σ2
2

(24)

shown in Fig. 2(d) with a black line. 334

For the distribution of susceptibles exposed to near-field transmission h2(Nj), we 335

assume a long-tailed distribution to account for the likely large variation in the number 336

of people interacting with the index case at close range. The simplest long-tailed 337

distribution is chosen i.e., the lognormal. Its parameters were taken as µj = 0.5 and 338

σj = 1 to ensure that the average number of near-field transmissions is low, which is 339

expected because close-range interactions would be limited during a pandemic. Fig. 340

2(d) also showcases h2(Nj) through a grey line. 341

Results 342

The results presented correspond to two sources: real-life school infection data and 343

modeled equations. Each source was used to obtain a probability density function for 344

the total number of secondary infections occurring at a school within one school day. 345

Analysis of reported school infection data 346

To generate the secondary infection PDF from actual cases, we draw on all reported 347

SARS-CoV-2 diagnoses in 4,833 schools within the Ontario public school system. Ten 348

distinct dates between 14 September 2021 and 13 December 2021 are chosen. The 349

Ontario government official website [47] hosts the infection data reported by each school 350

under its jurisdiction almost daily, which involves both student cases, and the grossly 351

outnumbered staff cases that we therefore neglected. This data is sufficient to plot the 352

PDF for secondary infections in schools within the province of Ontario for any date. 353

However, the generated PDF will be based on certain data points that correspond to 354

scenarios where a school had no index cases and thus reported no new cases. Recall that 355

our modeled PDF is only for scenarios where an index case is present. To exclude 356

scenarios with no active index cases in a school, the following operations are performed. 357

Based on existing literature [24], we assume that an average of four days separate a 358

susceptible getting infected in a school, and the school testing and reporting said 359
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Fig 3. Reported SARS-CoV-2 cases in Ontario province and Ontario public schools. Bar charts for cumulative
cases reported in Ontario in the two weeks before infection and cases reported in Ontario public schools for different dates are
displayed. The blue curve corresponds to the ratio between cases reported in Ontario public schools to those reported in the
entire province. Note that the total number of reported cases in Ontario corresponds to two weeks before the date of infection
(assumed to be 4 days before infection was caught through testing) and not the date of reporting that is shown in the plot.
All dates are for the year 2021.

infection. Fig. 3 shows the cumulative number of reported cases in Ontario in the two 360

weeks before the day of infection [48], compared to those reported in Ontario public 361

schools on the same dates. An immediate observation is that the number of school cases 362

and Ontario cases are directly proportional, shown through the school infection to 363

Ontario infection ratio in Fig. 3 being nearly constant over the three months under 364

consideration. This allows us to assume that on the day of infection, the active index 365

case proportion in the school population is equal to that in the Ontario population, 366

given by ϕi. Therefore, the average number of index cases per school Ii equals 367

Ii = ϕiS (25)

where S is the average student count in schools. Based on the data processed in this 368

study, we note that all values of Ii ≤ 1. Therefore, assuming that index cases are spread 369

evenly across Ns schools in Ontario, the total number of schools with at least one index 370

case Ni on the day of infection is 371

Ni = IiNs (26)

Next, we focus on the reported school infection data and note that they would comprise 372

infections acquired in schools and those from outside schools. Our model does not 373

account for the later contribution and hence it must be subtracted from the data. Thus, 374

if ϕj is the active index case proportion in Ontario (and its schools) on the day the 375

schools test and report for SARS-CoV-2, then the total number of outside contributions 376

per school Ij is 377

Ij = ϕjS (27)

Therefore, if Zdata is the total infection count reported by a school, then the corrected 378
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infection count Z ′
data accounting for only in-school infections becomes 379

Z ′
data = Zdata − Ij (28)

A histogram is then generated through proper binning of the Z ′
data data set and then 380

converted to a PDF using the relation 381

PDF =
Nbin

WbinΣNbin
(29)

where Nbin corresponds to the number of elements in a bin i.e., the number of schools 382

corresponding to a particular infection count, and Wbin = 1 is the bin width of the 383

histogram. Note that the total bin element count ΣNbin is not equal to the total 384

number of schools Ns, but instead equal to the total number of schools with at least one 385

active index case on the day of infection, Ni. 386

We further clarify the data analysis with the following example. Consider the data 387

reported in Ontario public schools on November 25, 2021. Based on usual SARS-CoV-2 388

incubation periods, the expected date of infection is taken as November 21, 2021. There 389

were 8, 460 cases reported in the two weeks prior to this date. With Ontario’s 390

population of 14 million, the index case percentage is ϕi = 0.06%. Superimposing this 391

percentage on the Ns = 4, 833 Ontario public schools with S = 419 average students, we 392

get Ii = 0.2532 index cases per school. This number would suggest that, on average, 393

there are schools with no index cases i.e., 1 index case in approximately 4 schools. The 394

modified school count would then become Ni = 0.2532× 4, 833 = 1, 224 schools. The 395

dates used for data analysis in this study are at least 8− 10 days apart to ensure that 396

the infection events are independent and there is no repeat counting of the same 397

infections. 398

Application of the analytical model in schools 399

As noted previously, our analytical model is derived for a single classroom scenario. But, 400

in this study, we instead apply it to model SARS-CoV-2 spread in an entire school. We 401

can justify this approach through the observation that, on average, a single classroom 402

with one index case coupled with their near-field transmission contributions is sufficient 403

to represent SARS-CoV-2 spread within a school. The chain of logic used to make this 404

justification is shown in Fig. 4 and is further discussed below. 405

Referring back to the example of November 25, 2021, in the previous section, we 406

focus on the population in Ontario – index cases and susceptibles, that go to school. For 407

this date, we observe that on average 1 in every 4 school has an active index case i.e., 3 408

of 4 such schools do not host an index case and are neglected from our analysis. Next, 409

we turn our attention to every such school that hosts an active index case. Here, the 410

index case spends their time inside a classroom or outside it. As a large portion of their 411

school day is spent within a classroom, this is where they become primarily a source for 412

long-range airborne transmission. Their outside-classroom time, however, would involve 413

small-duration interactions with others that are too short for long-range transmission, 414

but instead contribute to the SARS-CoV-2 spread within that school through near-field 415

transmissions. All other classrooms, which do not host active index cases, are 416

non-contributors to the disease spread dynamics within that school. 417

These sets of observations showcase how a classroom with an active index case, 418

coupled with that same index case’s near-field virus transmission contributions is 419

sufficient to represent the average virus spread scenario in an entire school. Hence, our 420

analytical model, which is able to account for these processes, can now be applied to 421

schools. 422
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Fig 4. Representation of SARS-CoV-2 spread in a school through a single classroom coupled with
outside-classroom effects. The schematic was built based on the example of SARS-CoV-2 infections in school on
November 25, 2021. At the population level, individuals are classified into – active index cases who may or may not go to
school, susceptibles that go to school, and susceptibles that do not go to school. Moving one level below, we have the entire
school system consisting of the susceptible and index case population that goes to school. Here, data tells us that on average
only one index case is active across multiple schools. Moving down another level, our focus is shifted to the school hosting
that one active index case. Here, the index case divides their time inside a classroom or outside it. At the lowest level, we
look at these individual sub-locations (classrooms, outside classrooms) where in one classroom the index case is the cause of
long-range and near-field SARS-CoV-2 transmission, whereas every other classroom is devoid of active index cases and thus
does not contribute to the disease spread within that school. Additionally, the index case spends time outside classrooms for a
shorter duration in closer proximity to some individuals and thus spreads the virus through near-field transmission. Hence,
the one classroom with the index case coupled with the index case’s outside classroom interactions can approximately
represent SARS-CoV-2 spread within an entire school.

Comparison between modeled results and reported school data 423

The PDFs for the number of secondary infections Z (sample space variable Z) at a 424

school within a single school day, generated from the reported data for the 10 dates 425

chosen, are shown in Fig. 5 using red symbols. All PDFs peak near zero, followed by a 426

strong gradient that smoothens out into a long tail that highlights the overdispersion in 427

SARS-CoV-2 transmission. This common behavior suggests that even though low 428

infection counts are the norm in the presence of an active index case within a school, 429

the existence of the occasional superspreading events described by the data points at 430

large Z, is a constant threat and a reminder for proactive mitigation measures. Most of 431

these PDFs attain small peaks near Z ≈ 10 and Z ≈ 20, possibly pointing towards 432

susceptible student populations being localized around that mark. The clustering of all 433

the PDFs reveals a shared underlying trend likely described by the properties of a 434

common virus strain (δ-variant) responsible for the infections during Sep-Dec 2021. 435

In the remainder of this section, we will aim to test whether our current model can 436

replicate such real-world data. To that end, we first employed the initial iteration of our 437

model that solves only for the analytical PDF of total number of secondary infections, 438

g1(Z) (Eq. 19), due to long-range transmission from an active index case. The input 439
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Fig 5. Model predictions for secondary infection distribution in schools compared with reported school
infection data. Analytical PDF of secondary infections through long-range transmission Z (Eq. 19) (thin dotted line) and
with added near field transmission contribution Zm (Eq. 20) (solid black line), compared to reported infection data in
Ontario public schools (red symbols). The shaded region provides an approximate measure for variation in g(Zm) with a
choice of different input values for certain parameters. The upper and lower bounds of the shaded region correspond to the
cases listed in Table 2

parameters used to generate g1(Z) account for both school-specific data and δ-variant 440

specific biological quantities. The computed g1(Z) PDF in Fig. 5 shown as a thin 441

dotted line is compared to the reported data, clearly showcasing qualitative similarities 442

while maintaining a degree of quantitative mismatch. In particular, the model notably 443

underpredicts the PDF values at small Z ≤ 10, described by the much higher probability 444

at zero, followed by a sharper gradient compared to the reported data. We hypothesized 445

that this could be a limitation that arises from the assumption of homogeneous aerosol 446

concentration, which cannot account for the increased number of infections in close 447

proximity to the index case. The analytical PDF does successfully capture the 448

long-tailed nature of the reported data, while also peaking twice in tandem with it, by 449

virtue of the bimodal Gaussian nature of the classroom occupancy distribution. 450

However, its tail diverges from the reported data and falls off at high Z (Z ≥ 25). This 451

is because the data sample size is limited, causing any unlikely high-valued samples to 452

skew the corresponding probability, somewhat artificially. Additionally, the reported 453

data PDFs have points that go beyond the maximum class size considered in the model, 454

reflecting infections incurred outside classrooms, and is a limitation of representing the 455

disease spread dynamics within a school exclusively through a classroom. 456

To ensure improved quantitative predictions from our model, a near-field effect was 457
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introduced – modeling the interactions of susceptibles with the localized, high virion 458

density cloud ejected by the index case. This included coupling the well-mixed virion 459

field with the ejected cloud represented by a simplified jet-puff model [6] to derive the 460

PDF of secondary infections due to both long-range and near-field transmission g(Zm) 461

(Eq. 20). The modified PDF g(Zm) is shown as a solid black line in Fig. 5 where an 462

excellent quantitative match is immediately observable as g(Zm) now passes through 463

the cluster of red curves, and retaining the overdispersed nature of the older model. The 464

magnitude of the gradient at low Z regime is smaller, while the probability of zero 465

infections has shifted to lower values, mimicking the reported data. These observations 466

support our near-field contribution hypothesis and suggest that several of the previously 467

zero infection scenarios now involve a non-zero near-field infection count. The near-field 468

model also includes outside-classroom infections and removes the previous limitation of 469

a classroom-specific description. The success of this updated model strongly emphasizes 470

the need for aerosolized transmission models to capture both near-field and far-field 471

mechanisms, while putting forward a practical tool that for the first time, to the best of 472

our knowledge, reproduces real-world infection spread dynamics in schools from an 473

exclusively theoretical foundation. 474

Finally, we revisit the fact that certain parameters used to compute the PDF of Zm 475

have no real-life data source and have been ascribed an intuitive approximate value i.e., 476

their assigned values likely have an error margin. To account for this possible variation, 477

two more cases have been run by modifying these particular parameters – (1) for an 478

approximate lower bound scenario corresponding to low virion concentration exposure 479

compared to the default case, and (2) for an approximate upper bound scenario 480

corresponding to high virion concentration exposure. Table 2 lists such input parameters 481

for all three cases that have been used in this study. Note that these bounding 482

parameters do not have extreme values (e.g. zero speaking duration for an index case in 483

one school day), as these cases are not meant to account for outlier situations; those are 484

already handled by the PDF and its long tail, but rather intended to highlight a 485

deviation in the approximate average values assigned. The g(Zm) curves for these cases 486

enclose the shaded region in Fig. 5, providing an approximate range within which the 487

secondary infection PDF could vary. The shaded region itself lies relatively close to the 488

band of real-life data curves. Even among the quantities varied to obtain the bounds, 489

not all influence g(Zm) equally; quantities like transition time to diffusion barely affect 490

the PDF, whereas others like µj and σj that govern the distribution of susceptibles 491

exposed to near-field transmission have a much stronger influence. This gives us a 492

glimpse into how mitigation measures, that influence other input parameters, and their 493

effectiveness at curbing disease transmission will present themselves through the g(Zm) 494

plot. Variation in the input parameters due to possible mitigation measures such as 495

better masks, higher ventilation, lowered occupancy, vaccination, etc., would either shift 496

g(Zm) to lower values or modify the shape of the PDF, and thus provide insight and 497

justification behind opting for certain mitigation strategies over others, such that they 498

allow for efficient school operations during future pandemics. 499

Discussion 500

The present study puts forward a robust yet practical tool capable of predicting 501

outbreak sizes of airborne diseases such as SARS-CoV-2 in schools or similar indoor 502

locations, allowing for rapid informed implementation of ‘precision’ mitigation measures. 503

This tool, in the form of an analytical model, was developed mostly from first principles 504

and then examined against publicly available school infection data which guided further 505

model improvements to boost its predictive capabilities. 506

Model development broadly involved coupling the dose-response function governing 507
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Table 2. Parameters defining the three cases computed in this study

Symbol Definition Default Lower bound Upper bound

T Total speaking duration of the index case in
one school day

2.4 hr 1.2 hr 3.6 hr

τj Near-filed cloud exposure duration per person 60 s 30 s 120 s
ttr Puff-to-diffusion regime transition time (based

on % of ejection velocity)
39 s (1%) 9 s (3%) 100 s (0.05%)

µj Mean of ln(Nj) – parameter governing the sus-
ceptible count that undergoes near-field trans-
mission

0.5 0.1 1.0

σj Standard deviation of ln(Nj) – parameter gov-
erning the susceptible count that undergoes
near-field transmission

1 0.75 1.25

the human body’s response to incoming pathogens, with the physics of airborne 508

transmission of said pathogens, to obtain the secondary infection count of an index case. 509

First, we modeled the long-range transmission dynamics of the virus through a 510

concentration equation in a well-mixed room, followed by expanding the model to an 511

ensemble of rooms/locations, such that an analytical probability density function (PDF) 512

of secondary infections could be derived. This stage saw the incorporation of several 513

input parameters, among which the most dispersive ones – viral load and dose-response 514

constant, were assigned distributions based on existing data. The choice of assigning an 515

appropriate distribution instead of a mean value provided our model the flexibility of 516

reacting to the biological processes that bring about such high dispersion in these 517

quantities in the first place. The modeled PDF was then employed to compute the 518

secondary infection distribution in Ontario public schools. The analytical nature of the 519

predictive tool made this computation reasonably fast. 520

Our first set of comparisons between the modeled PDF based on homogeneous 521

aerosol concentration and reported school data [47] displayed strong qualitative 522

similarities plagued by a degree of quantitative mismatch. The similarities served as 523

evidence of proper incorporation of the major governing factors of transmission, whereas 524

the differences provided insights that led to the introduction of near-field transmission 525

dynamics, modeled through a simple jet/puff model for the index case’s ejected virion 526

cloud. A convolution operation on the individual outputs of the long-range and 527

near-field models generated the net secondary infection PDF. Another set of 528

comparisons with reported school data showed an excellent quantitative match, 529

emphasizing the importance of the near-field model. At this stage, we have a model 530

that not only is practical to use due to its analytical tractability but can predict 531

real-world SARS-CoV-2 spread in schools. Apart from predicting future outbreak sizes 532

for SARS-CoV-2 variants in schools, this has potential application toward other 533

airborne disease outbreaks within a variety of indoor locations due to the mostly 534

generalized nature of its underlying description. 535

Furthermore, the model can also revise its prediction based on the mitigation 536

measure implemented. The final PDF generated, is sensitive to all its component 537

parameters to varying degrees, each of which brings in some form of mitigation strategy. 538

Reduction in inhaled or exhaled volume is affected by masks. Ventilation and ambient 539

effects influence the virion concentration loss term in the formulation. Occupancy and 540

room volume capture the role of population density in enclosed spaces. The 541

physiological properties, viral load, and dose-response, would be a possible avenue to 542

introduce the effects of developed immunity due to vaccinations and repeat infections. 543

A change in any of these parameters in the model would pre-emptively inform the user 544
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about the efficacy of a proposed strategy and allow for the implementation of focused 545

mitigation measures for future pandemics. This functionality allows our model to be a 546

proactive predictive tool applicable to future airborne disease spread in schools and 547

similar venues. 548
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