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Abstract19

Two different epidemiological models of vaccination are commonly used in20

dynamical modeling studies. The leaky vaccination model assumes that all21

vaccinated individuals experience a reduced force of infection by the same22

amount. The polarized vaccination model assumes that some fraction of vac-23

cinated individuals are completely protected, while the remaining fraction re-24

mains completely susceptible; this seemingly extreme assumption causes the25

polarized model to always predict lower final epidemic size than the leaky26

model under the same vaccine efficacy. However, the leaky model also makes27

an implicit, unrealistic assumption: vaccinated individuals who are exposed28

to infection but not infected remain just as susceptible as they were prior29

to exposures (i.e., independent of previous exposures). To resolve the inde-30

pendence assumption, we introduce an immune boosting mechanism, through31

which vaccinated, yet susceptible, individuals can gain protection without de-32

veloping a transmissible infection. The boosting model further predicts iden-33

tical epidemic dynamics as the polarized vaccination model, thereby bridging34
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the differences between two models. We further develop a generalized vac-35

cination model to explore how the assumptions of immunity affect epidemic36

dynamics and estimates of vaccine effectiveness.37

Significance statement38

Different assumptions about the long- and medium-term effects of protective39

vaccination can predict sharply different epidemiological dynamics. However,40

there has been limited discussion about which assumptions are more realistic41

and therefore more appropriate for making public health decisions. Here, we42

show that the differences between the two most common assumptions (the43

“leaky” and “polarized” vaccination models) are bridged by immune boost-44

ing, a mechanism by which individuals who resist infectious challenge due45

to partial immunity have their immunity increased. We demonstrate that46

this mechanism has important implications for measuring vaccine effective-47

ness. Our study challenges fundamental assumptions about commonly used48

vaccination models and provides a novel framework for understanding the49

epidemiological impact of vaccination.50
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Introduction51

Vaccination plays a critical role in controlling infectious disease outbreaks by52

protecting against new infections and associated disease (Iwasaki and Omer,53

2020). In particular, if a critical vaccination threshold is reached, the re-54

production number (defined as the average number of secondary infections55

caused by an infected individual) is reduced to below 1, and future epidemics56

can be prevented (Anderson and May, 1985). But reaching a critical vacci-57

nation threshold can be challenging, and vaccines often provide imperfect58

protections (Gandon et al., 2003; Anderson et al., 2020).59

There are two main ways of modeling vaccines with imperfect protec-60

tions: “leaky” and “all-or-nothing” vaccine (Smith et al., 1984). The leaky61

vaccination model assumes that vaccinated individuals experience a reduced62

force of infection (e.g., multiplied by a factor 1 − VEL < 1). The “all-or-63

nothing” vaccination model assumes that the proportion VEP of vaccinated64

individuals are completely protected and the remaining proportion 1−VEP65

of vaccinated individuals are completely susceptible. This model is analogous66

to the polarized immunity model, in which infection from one strain gives67

complete or no protection against other strains (Gog and Grenfell, 2002)—we68

thus refer to this model as the polarized vaccination model (Gomes et al.,69

2014). Here, both VEL and VEP represent vaccine efficacy, which we define70

as the proportion of people protected from their first challenge.71

When these two models are used with the same nominal vaccine efficacy72

VEL = VEP, they predict different epidemic dynamics, including the final73

size (Smith et al., 1984): for high force of infection, almost all individuals74

eventually get infected in the leaky model, whereas many individuals are75

permanently protected in the polarized model. Modelers tend to rely on the76

leaky assumption, including throughout the SARS-CoV-2 pandemic (Dyson77

et al., 2021; Gozzi et al., 2021; Marziano et al., 2021; Matrajt et al., 2021;78

Park et al., 2022) with some exceptions (Bubar et al., 2021; Buckner et al.,79

2021). Various reasons have been given, but most likely is a combination of80

convenience and tradition.81

Both models represent simplifications of reality. The leaky model in82

particular overlooks a potentially important mechanism: individuals in this83

model do not lose any susceptibility when (implicitly) exposed to a challenge84

that does not result in infection. In fact, vaccinated individuals who success-85

fully fight off exposures can experience immune boosting, thus becoming less86

susceptible to future infections without becoming infectious or developing87
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symptoms from the exposure (Lavine et al., 2011; Yang et al., 2020).88

In this study, we compare different approaches to dynamical modeling of89

vaccination and immunity. First, we construct a model with leaky vaccina-90

tion and boosting, and show that the transmission dynamics of this model91

can bridge from the dynamics of the standard leaky model (with no boosting)92

to those of the polarized model (with perfect boosting). Then, we construct93

a generalized vaccination model, which includes all three mechanisms, and94

explore its dynamics. Finally, we use our framework to compare measures of95

vaccine efficacy.96

Mathematical models of vaccine-induced im-97

munity98

Throughout the paper, we assume that a population mixes homogeneously
and that there is no loss of immunity; the latter assumption essentially cor-
responds to focusing on a single outbreak. We begin with a standard SIR
model with a leaky vaccine, in which all vaccinated individuals experience a
reduced force of infection by a factor of 1− VEL:

dSu

dt
= −λ(t)Su − ρSu (1)

dIu
dt

= λ(t)Su − γuIu (2)

dRu

dt
= γuIu (3)

dSv

dt
= −(1− VEL)λ(t)Sv + ρSu (4)

dIv
dt

= (1− VEL)λ(t)Sv − γvIv (5)

dRv

dt
= γvIv (6)

where subscripts u and v indicate the unvaccinated and vaccinated individu-99

als; λ represents the baseline force of infection experienced by unvaccinated100

individuals; ρ represents vaccination rate; γ represents the recovery rate;101

and VEL represents the vaccine efficacy, which also captures the amount of102

reduction in the probability of infection. This kind of model is sometimes103

called “history-based”, since susceptibility of an individual depends only on104
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Figure 1: A schematic diagram of four different vaccination models.
S represents susceptible individuals. I represents infected individuals. R rep-
resents recovered individuals. λ represents force of infection. ρ represents the
rate of vaccination. p represents vaccine efficacy. γ represents recovery rate.
θ represents the proportion of individuals that remain partially susceptible
after vaccination. q represents the proportion of unsuccessful challenges that
result in immune boosting. Subscripts u and v represents unvaccinated and
vaccinated.

their history of infections (or vaccination) (Gog and Grenfell, 2002; Gog and105

Swinton, 2002; Kucharski et al., 2016).106

Conversely, the polarized vaccination model assumes that a proportion
VEP of vaccinated individuals become fully immune, whereas the remaining
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proportion 1− VEP remain susceptible:

dSu

dt
= −λ(t)Su − ρSu (7)

dIu
dt

= λ(t)Su − γuIu (8)

dRu

dt
= γuIu (9)

dSv

dt
= −λ(t)Sv + (1− VEP)ρSu (10)

dIv
dt

= λ(t)Sv − γvIv (11)

dRv

dt
= γvIv + VEPρSu (12)

This is the approach used in “status-based” models of cross immunity—such107

models keep track of immune statuses of individuals, rather than their in-108

fection histories (Gog and Grenfell, 2002; Gog and Swinton, 2002; Kucharski109

et al., 2016). For this model, the parameter VEP is the measure of vaccine110

efficacy.111

These two widely used models have important dynamical differences. For112

a given set of shared parameters, and the same value of vaccine efficacy, initial113

dynamics will be the same, but the permanent protection of individuals in114

the polarized model will always result in a lower final outbreak size than115

the leaky vaccination model. When both VE and the initial value of R are116

relatively high, this difference is large.117

To better understand this gap, we consider an immune-boosting model.
The leaky vaccination model assumes that vaccinated individuals are chal-
lenged with a lower force of infection (1− VEL)λ(t), but in general it is not
realistic to assume that challenges would completely disappear only because
of immune status. In a homogeneously mixing population, we expect both
vaccinated and unvaccinated individuals to be challenged with identical forces
of infection λ. Therefore, the leaky vaccination model implicitly assumes that
vaccinated individuals have an independent probability (1 − VEL) of infec-
tion for every challenge. Instead, the immune-boosting model assumes that
unsuccessful challenges elicit immune response, moving individuals from Sv

to Rv compartment at rate VELλ(t) and thereby breaking the independence
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assumption of the leaky vaccine model:

dSu

dt
= −λ(t)Su − ρSu (13)

dIu
dt

= λ(t)Su − γuIu (14)

dRu

dt
= γuIu (15)

dSv

dt
= −λ(t)Sv + ρSu (16)

dIv
dt

= (1− VEL)λ(t)Sv − γvIv (17)

dRv

dt
= VELλ(t)Sv + γvIv (18)

In this model, both unvaccinated and vaccinated individuals are subject to118

identical forces of infection, which represent the per capita rate of challenges,119

but the outcome of challenges differ.120

The epidemiological dynamics (i.e., trajectories of Iu and Iv) predicted121

by the immune-boosting model (based on leaky vaccination) and the polar-122

ized vaccination model are identical: both models assume that individuals123

become vaccinated at rate ρ and move out of the Sv compartment at rate124

λ and only differ in when individuals get sorted based on the result of their125

next challenge. This equivalence allows us to bridge the difference between126

the leaky and polarized vaccination models. The equivalence holds regard-127

less of infection characteristics of vaccinated individuals (i.e., the duration128

of their infection and their transmissibility). In Supplementary Materials,129

we further show that epidemic dynamics are independent of the shape of the130

susceptibility distribution under immune boosting (and instead only depends131

on the mean susceptibility); under a leaky vaccination model, however, epi-132

demic dynamics are sensitive to the susceptibility distribution (Gomes et al.,133

2014).134

Finally, we consider a generalized model that encompasses all three mech-
anisms above (dichotomous vaccine responses, partial protection, and im-
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mune boosting):

dSu

dt
= −λ(t)Su − ρSu (19)

dIu
dt

= λ(t)Su − γuIu (20)

dRu

dt
= γuIu (21)

dSv

dt
= −[1− (1− q)VEL]λ(t)Sv + (1− VEP)ρSu (22)

dIv
dt

= (1− VEL)λ(t)Sv − γvIv (23)

dRv

dt
= VEPρSu + qVELλ(t)Sv + γvIv (24)

This model includes one new parameter, q, which represents the proportion135

of unsuccessful challenges that result in immune boosting. When q = 0 (i.e.,136

in the absence of boosting), setting VEP = 0 gives us the leaky vaccination137

model. When q = 1 (i.e., in the presence of full boosting), setting VEP = 0138

gives us the immune-boosting model, whereas setting VEL = 0 gives us the139

polarized vaccination model. The relationship between these four models are140

summarized in Fig. 1. The generalized vaccination model has a combined141

vaccine efficacy of VE = 1 − (1 − VEL)(1 − VEP). We later analyze the142

dynamics of the generalized vaccination model while keeping VE fixed.143

Model simulations144

We begin by comparing the dynamics of three individual models: leaky vacci-145

nation, polarized vaccination, and immune-boosting models. As an example,146

we consider a homogeneously mixing population. In this case, the force of147

infection is given by:148

λ = βuIu + βvIv (25)

For simplicity, we assume that, once infected, both unvaccinated and vac-149

cinated individuals transmit at the same rate βu = βv = 0.5/day for an150

average of 1/γ = 5 days. We also assume that φ = 0.5 proportion of in-151

dividuals are vaccinated at the beginning of an epidemic with 60% efficacy152

(VEP or VEL = 0.6) and that vaccination does not continue during the out-153

break (ρ = 0). For the leaky vaccination model and the immune-boosting154
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model, we set Sv(0) = 1 − φ and Rv(0) = φ. For consistentency, we then155

set Sv(0) = φ(1 − VEP) and Rv(0) = φVEP as our initial condition for the156

polarized vaccination model.157

Fig. 2 compares epidemiological (A–C) and immune-status (D–F) trajec-158

tories predicted by the three models. As explained earlier, the leaky vac-159

cination model predicts more infections among vaccinated individuals than160

the other two models, which predict identical incidence trajectories. The161

leaky vaccination model also predicts more among unvaccinated individuals162

because a larger outbreak among vaccinated individuals causes unvaccinated163

individuals to experience a greater forces of infection over time.164

We further find that all three models predict different immune-status tra-165

jectories. (Fig. 2D–F). Here, we do not distinguish the sources of antibodies166

(whether derived from natural infections or vaccinations) and assume that167

individuals in Ru, Sv, and Rv compartments are seropositive, except in the168

case of polarized vaccination: in such case, we assume individuals in the Sv169

compartment are seronegative because they have not retained any immunity170

from the vaccination. The leaky vaccination model predicts the largest out-171

break and therefore the highest levels of seroprevalence (89.7% by the end of172

the simulation). The immune-boosting model predicts lower seroprevalence173

(85.6%), reflecting the lower final size, while the polarized vaccination model174

predicts a still lower seroprevalence (79.9%) because of our assumption that175

people not protected by polarized vaccination do not are not seropositive.176

We next use the generalized vaccination model to further investigate177

how the final size of the an epidemic among vaccinated individuals depends178

on assumptions about vaccine-derived immunity across a wide range of as-179

sumptions about the basic reproduction number R0 and vaccine efficacy VE180

(Fig. 3). In particular, we factor vaccine efficacy VE in terms of leaky vaccine181

efficacy VEL and polarized vaccine efficacy VEP, and consider an interme-182

diate case, in which VEL = VEP = 1 −
√

1− VE, as well as the extreme183

cases, in which case VEL = VE or VEP = VE. First, when VEL = VE, all184

vaccinated individuals have identical susceptibility; in this case, increasing185

the amount of boosting q reduces the final size as expected (see first column186

of Fig. 3). We observe biggest effects of boosting at intermediate vaccine187

efficacy, VE, and high basic reproduction number, R0 (see bottom left panel188

of Fig. 3). When vaccine efficacy is too low (or too high), then boosting189

has negligible effects because virtually everyone (or virtually no one) gets190

infected. As we increase R0, the leaky vaccination model predicts that all191

vaccinated individuals will eventually get infected. On the other hand, the192

9
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Figure 2: Simulations of three different vaccination models. (A–C)
Incidence of infection among unvaccinated (blue solid) and vaccinated (red
dashed) individuals. (D–F) Immune status over time (compartments Ru, Sv,
and Rv). The Sv compartment is not included in the polarized vaccination
model because it represents a set of individuals who have not retained any
immunity from vaccination. Simulations are performed assuming βu = βv =
0.5/day for an average infectious periods of 1/γ = 5 days. We also assume
that φ = 0.5 proportion of individuals are vaccinated at the beginning of an
epidemic with 60% efficacy (VEP = VEL = 0.6) and that vaccination does
not continue during the outbreak (ρ = 0).

final size predicted by the immune-boosting model cannot be greater than193

1−VE. As we increase VEP (and decrease VEL accordingly), the generalized194

vaccination model collapses to the polarized vaccination model, and the final195

size becomes insensitive to the boosting parameter q.196

So far, we have limited our discussions to vaccine efficacy, which we de-197

fined as the proportion of people protected from their first challenge. We198

distinguish this from vaccine effectiveness, which is measured empirically199

(Halloran et al., 2009). Here, we compare two ways of estimating vaccine200

effectiveness: using cumulative incidence or instantaneous hazard. Several201

factors can cause vaccine effectiveness to systematically differ from vaccine202

efficacy—in our case, the main reason is the fact that some vaccinated indi-203

viduals may be challenged multiple times.204

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2023. ; https://doi.org/10.1101/2023.07.14.23292670doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292670
http://creativecommons.org/licenses/by-nc-nd/4.0/


VEL = VE,VEP = 0 VEL = VEP = 1−
√

1−VE VEL = 0,VEP = VE

R
0

=
2.5

R
0

=
4

R
0

=
8

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Vaccine efficacy, VE

P
ro

p
or

ti
on

in
fe

ct
ed

Proportion of unsuccessful challenges boosted, q 0 1/3 2/3 1

Figure 3: Sensitivity of the final size of an outbreak among vacci-
nated individuals to assumptions about vaccine-derived immunity
Final size of an outbreak was calculated by simulating the generalized vac-
cination model for 220 days. All other parameters are the same as in Fig. 2.

Cumulative incidence refers to the cumulative proportion of infections
among unvaccinated and vaccinated individuals; this is commonly used for
measuring the vaccine effectiveness in real outbreaks (Farrington, 1993).
Since we are modeling a single epidemic without a loss of immunity or multi-
ple infections, we consider the reduction in cumulative incidence throughout
the entire epidemic. To do so, we add two additional compartments, which
keep track of cumulative incidence among unvaccinated Cu and vaccinated
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Cv individuals:

dCu

dt
= λSu (26)

dCv

dt
= (1− VEL)λSv (27)

Since we are neglecting vaccinations that occur during the outbreak (ρ = 0,
the cumulative proportion of infections among vaccinated pv(t) and unvacci-
nated pu(t) individuals can be expressed as:

pu(t) = Cu(t)/Su(0) (28)

pv(t) = Cv(t)/Sv(0) (29)

Then, the estimated vaccine effectiveness at time t is:205

1− pv(t)

pu(t)
. (30)

On the other hand, instantaneous hazard refers to the per-capita rate at206

which unvaccinated hu(t) and vaccinated hv(t) individuals get infected if they207

have not yet been infected yet. These quantities can be calculated by dividing208

the incidence of new infection by the number of uninfected individuals. The209

per-capita rate of infection hv(t) among vaccinated individuals in then given210

by:211

hv(t) =
(1− VEL)λ(t)Sv(t)

Sv(0)− Cv(t)
, (31)

where Sv(0)−Cv(t) ≥ Sv(t) because vaccinated individuals can leave the Sv(t)212

compartment via boosting; in other words, we are assuming that boosting is213

not observed, and that boosted individuals are neither counted as infected,214

nor removed from the denominator. The per-capita rate of infection hu(t)215

among unvaccinated individuals is straightforward:216

hu(t) =
λ(t)Su(t)

Su(t)
= λ(t). (32)

Then, the estimated reduction in hazard at time t is:217

1− hv(t)

hu(t)
. (33)
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We compare two estimates of vaccine effectiveness across a wide range of218

assumptions about vaccine-derived immunity in Fig. 4. We assume 60% effi-219

cacy throughout (therefore VE = 0.6). Under polarized vaccination (VEP =220

VE, VEL = 0), the cumulative-incidence reduction always gives correct an-221

swers throughout the epidemic—since the susceptible pool among unvacci-222

nated and vaccinated individuals is depleted at the same rate λ, the ra-223

tios of their proportions of cumulative infections remain constant. Likewise,224

the cumulative-incidence reduction also gives correct answers under immune225

boosting (q = 1).226

Likewise, the cumulative-incidence reduction also give correct answers227

for the polarized vaccination model (VEL = 0, VEP = VE). However, when228

some challenges are not boosted (q < 1), using cumulative incidence under-229

estimates the vaccine efficacy beyond the exponential growth phase. This is230

because vaccinated individuals who have been exposed but are not boosted231

or infected still remain susceptible to future infections; larger final epidemic232

sizes predicted by these models (Fig. 3) then translate to a seemingly lower233

vaccine efficacy.234

The hazard reduction gives correct answers for the leaky vaccine model235

(when q = 0, VEL = VE, and VEP = 0) because the ratios of force of236

infection that unvaccinated and vaccinated individuals experience are always237

constant. However, the hazard reduction overestimates vaccine efficacy in the238

presence of immune boosting: since boosted individuals have not yet been239

infected, the susceptible pool in the vaccinated group appears to be bigger240

than it really is, causing the per-capita rate of infection to seem smaller.241

Vaccine efficacy is also overestimated for polarized vaccination for similar242

reasons.243

We note that both estimates give correct answers during the exponential244

growth phase, regardless of underlying assumptions about immunity. More245

generally, we expect both estimates to give unbiased estimates as long as246

the depletion of susceptible pool is negligible among both vaccinated and247

unvaccinated individuals; in trial settings, where incidence is relatively low,248

this assumption may hold. But estimating vaccine effectiveness from real249

outbreaks is expected to be more difficult.250
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B. Hazard reduction

Figure 4: Estimates of vaccine effectiveness using reduction in cu-
mulative incidence (A) and hazard (B) over time. Vaccine effective-
ness was calculated by simulating the generalized vaccination model for 220
days. Colored lines represent the estimated vaccine effectiveness. Dashed
lines represent the assumed vaccine efficacy. We assume R0 = 2.5 and a
combined efficacy of VE = 0.6 throughout. All other parameters are the
same as in Fig. 2.

Discussion251

Understanding the degree to which vaccination provides protection against252

infections is critical to predicting epidemic dynamics. The polarized model253

has been largely neglected in epidemiological modeling, in part due to its254

apparently extreme assumption that a fraction of vaccinated individuals do255

not receive any protection. But the leaky vaccination model also makes an256

unrealistic assumption: that vaccinated individuals who are exposed to in-257
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fections can still remain susceptible, independent of previous exposures. This258

assumption causes the leaky vaccination model to always predict a larger epi-259

demic final size. This difference can be bridged with immune boosting. With260

boosting, vaccinated individuals can attain protection without developing a261

transmissible infection. In particular, the leaky model with perfect immune-262

boosting model predicts identical epidemic dynamics to the polarized vacci-263

nation model because individuals in both cases are completely immune after264

surviving a single challenge.265

Even though immune boosting and polarized vaccination models predict266

the same epidemic dynamics, they may have different immune-status dynam-267

ics. We investigate both aspects using a generalized vaccination model, which268

encompasses the mechanisms of all three models. The generalized vaccina-269

tion model includes one additional parameter, which determines the amount270

of immune boosting. We use this model to show that the epidemic dynamics271

are most sensitive to the assumptions about vaccine-derived immunity at an272

intermediate vaccine efficacy.273

Finally, assumptions about vaccine-derived immunity also have impor-274

tant implications for estimating vaccine effectiveness. Vaccine effectiveness275

can be estimated based either on cumulative incidence or on hazard rates.276

Cumulative-incidence-based effectiveness estimates will reflect initial efficacy277

for polarized vaccination and immune-boosting models, whereas hazard-based278

estimates reflect efficacy for the leaky vaccination model. Neither method279

reflects efficacy for intermediate cases. These differences are driven by differ-280

ent assumptions about what happens when individuals are challenged more281

than once; thus both methods reflect efficacy when the cumulative hazard of282

infection is low. Conversely, interpretation of effectiveness estimates when283

a large fraction of unvaccinated individuals have been infected depends on284

(usually unknown) details of immune dynamics.285

We rely above on a simplifying assumption that natural infections (as well286

as polarized vaccination and immune boosting) provide permanent protec-287

tion against future infections. In practice, both infection- and vaccine-derived288

immunity wane over time for many pathogens (Heffernan and Keeling, 2009;289

Lewnard and Grad, 2018; Pérez-Alós et al., 2022). When immunity wanes,290

polarized vaccination and immune-boosting models may not necessarily pre-291

dict identical dynamics. In particular, individuals who gain complete protec-292

tion through polarized immunity may immediately enter the Rv compartment293

upon vaccination, whereas those who gain complete protection through im-294

mune boosting take longer to enter the Rv compartment because they need295
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to be exposed to infections. These differences can translate to shorter delays296

between reinfection events for the polarized immunity model, which in turn297

can lead to dynamical differences at the population level.298

There are also other complexities that need to be considered. For exam-299

ple, individuals who are boosted after vaccination can have different immu-300

nity profiles compared to those who attained strong protection from vacci-301

nation alone. These individuals also likely have different immunity profiles302

from those who have been infected but never been vaccinated. These dif-303

ferences can also cause polarized vaccination and immune-boosting models304

to behave differently. Despite these limitations, immune boosting, which is305

often neglected in epidemic models of vaccination, is still expected to be an306

important mechanism for understanding dynamics of many pathogens.307

We have provided a unifying framework for understanding the impact of308

vaccination on the spread of infectious disease. The specifics of how vaccina-309

tion translates into immunization defines the population burden of infection310

via its effect on the epidemic final size. Yet discussion of how the two extreme311

models commonly used (leaky and polarized) are related has been lacking.312

By making this link, we both illustrate the spectrum of trajectories expected313

for a range of configurations, and illuminate the effects of these assumptions314

on medium-term vaccine effectiveness.315
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Supplementary Text316

Here, we show that, in the presence of immune boosting, epidemic dynamics
are independent of the shape of the susceptibility distribution (depending
only on mean susceptibility). To do so, consider an immune-boosting model
that allows for heterogeneity in vaccine-derived immunity. We assume that
a vaccinated individual’s susceptibility 0 ≤ p ≤ 1 follows some distribution
f(p):

dSu

dt
= −λ(t)Su − ρSu (34)

dIu
dt

= λ(t)Su − γuIu (35)

dRu

dt
= γuIu (36)

∂Sv(p)

∂t
= −λ(t)Sv(p) + f(p)ρSu (37)

∂Iv(p)

∂t
= pλ(t)Sv(p)− γvIv(p) (38)

dRv

dt
=

∫ 1

0

[(1− p)λ(t)Sv(p) + γvIv(p)] dp (39)

Due to immune boosting, Sv(p) is always depleted at a per-capita rate of
λ(t) regardless of the values of p, meaning that the (normalized) distribution
of Sv(p) will always follow f(p). To obtain the dynamics of total prevalence
Iv =

∫
Iv(p) dp, we can integrate ∂Iv(p)/∂t across p:

dIv
dt

=

∫ 1

0

[
∂Iv(p)

∂t

]
dp (40)

=

∫ 1

0

[pλ(t)Sv(p)− γvIv(p)] dp (41)

=

∫ 1

0

[pf(p)λ(t)Sv − γvIv(p)] dp (42)

= p̄λ(t)Sv − γvIv, (43)

where p̄ represents the mean of the distribution f(p), and Sv =
∫
Sv(p) dp317

represents the proportion of total susceptible, vaccinated individuals. There-318

fore, the dynamics of total prevalence Iv depends only on the mean sus-319
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ceptibility p̄ and not on the shape of the distribution f(p) under immune320

boosting.321
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