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Abstract

Since the beginning of the epidemic, daily reports of CoViD-19 cases, hospitalizations, and deaths from around

the world have been publicly available. This paper describes methods to characterize broad features of the spread

of the disease, with relatively long periods of constant transmission rates, using a new population modeling

framework based on discrete-time difference equations. Comparative parameters are chosen for their weak

dependence on model assumptions. Approaches for their point and interval estimation, accounting for additional

sources of variance in the case data, are presented. These methods provide a basis to quantitatively assess the

impact of changes to social distancing policies using publicly available data. As examples, data from Ontario and

German states are analyzed using this framework. German case data show a small increase in transmission rates

following the relaxation of lock-down rules on May 6, 2020. By combining case and death data from Germany,

the mean and standard deviation of the time from infection to death are estimated.
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1 Introduction

The CoViD-19 epidemic gained world-wide attention in March 2020 as the number of cases began to rise rapidly.
For most people, this was their first experience with an epidemic and public health measures enacted to reduce social
contact. While these measures caused major disruptions in daily life, they eventually reduced the rate of growth in
case numbers. Several regions saw localized outbreaks, particularly in long term care facilities and meat processing
facilities. After a few months, social distancing regulations began to be relaxed, with the intention that viral spread
would kept at a manageable level.

While this describes the general experience in many western nations, there are significant differences seen within
some nations, in their timelines and growth rates. This paper presents methods to characterize differences in the spread
of CoViD-19 that can be deduced from publicly available data. This information can be useful for assessing the current
situation and to identify successful strategies to reduce transmission.

This paper introduces a new general-purpose modelling framework developed to study the spread of CoViD-19. A
simple model, chosen to interpret CoViD-19 daily data, is described and its properties are investigated. Comparative
statistics, chosen to have weak dependence on model assumptions, are defined. Data analysis approaches to estimate
model parameters and their uncertainties are described, along with studies of simulated data.
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2 Modeling framework

The python Population Modeller (pyPM1), is a general framework for building models of viral spread using discrete-
time difference equations. A pyPM model is an object that consists of a set of population objects connected by an
ordered list of directional connector objects. Parameter objects are used to manage the various adjustable parameters
necessary to define a specific model. The object oriented design separates the task of model design from numerical
implementation which reduces the risk of implementation errors and simplifies the process of model redesign. The
model object, containing the model design and its parameters, can be saved in small files, allowing for a multitude of
models to be cataloged.

Two main reasons favor the use of discrete-time difference equations for this study, over the traditional ordinary
differential equation approach. Firstly, with discrete-time difference equations, it is straightforward to implement
arbitrary time delay distributions, such as normal distributions with mean and standard deviations specified as
parameters. Secondly, the purpose of the modeller is to interpret publicly available data reported as daily counts,
and with a step size of one day, daily expectations or simulated daily counts are computed directly. The daily values
are saved as a time series in the population objects, and referred to as “histories”.

The basic connector, called a propagator, transfers a fraction of incoming members from one population (referred
to as the “from-population”) to another (referred to as the “to-population”) according to a delay distribution. The
delayed transfer is accomplished by having each population maintain a list of incoming contributions for each day in
the future. A “splitter” connector divides the incoming “from-population” members to two or more “to-populations”.
A “multiplier” connector produces a number of new members in the “to-population”, based on the sizes of the “from-
populations” and forms the basis of the infection cycle. “Subtractor” and “Adder” connectors subtract from or add to
populations without delay.

Prior to taking a time step, the connectors are processed in order, with each calculating the future contributions to its
“to-populations”, given the number of “from-population” members arriving at the next time step. After all calculations
are completed, the time step is taken, by having each population extend its history with a new value, consisting of the
previous day’s number and the future contribution for that day.

As an illustration, consider a model in which a fraction fu of the symptomatic population S are admitted into ICU,
population U , and those are split into two populations, a fraction fv are treated with a ventilator V , and the remaining
are released without ventilation, W . If the current time step is t, the expected incoming population for S is E[∆St+1].
Future expected contributions to population U arising from that incoming population to S are:

E[∆Ut+1+j ] = fuE[∆St+1]βuj

βu0 =

∫ 1
2

−∞
gu(t) dt

βuj =

∫ j+ 1
2

j− 1
2

gu(t) dt for j > 0

where gu is the distribution that defines the delay in the symptomatic population transferring to the ICU population.
Following that calculation, the future contributions to the ventilated and non-ventilated populations, V and N , are
calculated in a similar fashion,

E[∆Vt+1+j ] = fv E[∆Ut+1]βvj

E[∆Wt+1+j ] = (1− fv)E[∆Ut+1]βnj
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Alternatively, instead of calculating expectation values, the calculations can be performed as a stochastic simulation,
where population sizes are defined by integers, for example,

b = B(∆St+1, fu)

∆Ut+1+j = M(b, βuj)

whereB returns a binomial variate andM returns multinomial variates. The stochastic simulation of the infection cycle
would use a Poisson variate if infections were described by independent events. To account for grouping of infections,
negative binomial variates are used, parameterized by the mean µ and pnb ∈ (0, 1), such that the variance is µ/pnb.
The stochastic calculations are useful for checking for bias and for evaluating standard deviations of estimators.

3 Model for characterizing the spread of CoViD-19

The pyPM reference model 2.3 is a simple model developed to characterize the spread of CoViD-19. It includes
an infection cycle connected to populations that correspond to publicly available data for cases, deaths, and
hospitalization, including ICU and ventilator use.

3.1 Infection cycle model

Results in this paper use pyPM reference model 2.3 as the nominal model, and its infection cycle is defined by three
connectors. Firstly, for each day, the expected number of new infections is calculated as:

E[∆It+1] = α
E[St]

E[Nt]
E[Ct]

where α is the transmission rate, S the susceptible population,N the total population, andC the circulating contagious
population. In the initial stages of an epidemic, when almost the entire population is susceptible, α represents the
average number of people that a contagious person infects in one day. Its value can be considered to be linearly
proportional to the number of contacts and closeness of contact between individuals, and therefore it is a parameter
that is linearly proportional to social distancing measures.

The second connector propagates a fraction of the newly infected population to the circulating contagious
population, with a delay distribution modeling the so-called “latent period”. The third connector reduces the size of the
circulating contagious population using a propagator to a removed population and a subtractor is used to remove them.
The propagator uses a delay distribution to represent the “contagious circulation period” which arises from all ways
that contagious individuals become unable to infect others, including quarantine, hospitalization, natural recovery, or
death.

In the initial stages and when the transmission rate and circulation time are constant, the “steady state” solution to
the time difference equations has the expected contagious population being exponential in time,

E[Ct+1] = (1 + δ)E[Ct].

The parameter describing fractional daily growth, identified as δ in this paper, is often referred to as r in epidemiology
literature. To ensure that the initial state corresponds to a “steady state” solution, the model uses a “boot-strap”
approach. A state with a very small expectation value for the contagious population size is allowed to grow until
the target contagious population for the initial state is reached. While only the initial contagious population needs to
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be specified, all other populations will be assigned non-zero expectation values at the initial state that correspond to a
“steady state” solution.

The infection cycle model is purposefully simplistic, being described by a homogeneous population. This reduces
the number of parameters and characterizes the epidemic spread for those groups in the population that contribute the
greatest numbers to cases, hospitalization, or deaths. While the pyPM framework includes ensembles for modelling
heterogeneous populations, there is little public data available to constrain the many additional parameters. For this
paper, we characterize the spread using a homogeneous model.

3.2 Modeling case reporting, hospitalization, and deaths

The pyPM reference model 2.3 connects the contagious population to the symptomatic population and from
symptomatic to reported (positive test cases), icu admission, and non-icu admission populations. It also has an
independent propagator from contagious to recovery or death. Each of these connectors is parametrized by a fraction
and a normal delay distribution.

If testing captures a constant fraction of contagious individuals, then the expected cases will follow the contagious
population trajectory with a time lag. The case data can therefore be used to estimate δ during these periods without
reference to a particular model. Hospitalization and death rates provide additional measures of the infection trajectory.
When these are seen to follow different growth curves, this may indicate differences in transmission by age or other
factors, since these data are unequal samplings of the infected population.

3.3 Model dependence on transmission rate estimators

It would be useful to characterize the phases of an epidemic with a transmission rate parameter like α that in some
sense is linearly proportional to social distancing. By doing so, statements can be made about relative levels of social
distancing observed in past phases and levels required going forward. Unfortunately, unlike for δ, estimating the
transmission rate, α, from case data sensitively depends on the latent and circulation delay distributions which are not
well known. The well known parameter to characterize the growth rate, the reproduction number R0, also suffers from
strong model dependence2,3.

Figure 1 shows how changing the delay distributions affects the relation between the exponential growth and the
transmission rate. Increasing the mean circulation period increases δ, since contagious individuals have more time to
infect more people. Increasing the latent period reduces δ for a growth phase and increases δ for a decline phase, since
newly infected individuals take longer to become contagious thereby reducing the feedback responsible for producing
the exponential growth or decline.

To further illustrate the sensitivity to the delay distribution parameters, consider the default conditions for pyPM
reference model 2.3, which describes a period of growth followed by a period of decline:

• C0 (initial contagious population): cont 0 = 10

• α0 (initial transmission rate): alpha 0 = 0.4

• t1 (day # for transmission rate change): trans rate 1 time = 20

• α1 (new transmission rate): alpha 0 = 0.1

• `µ (latent period mean): cont delay mean = 5 (days)
• `σ (latent period standard deviation): cont delay sigma = 3 (days)
• cµ (circulation period mean): removed delay mean = 7 (days)
• cσ (circulation period standard deviation): removed delay sigma = 3 (days)
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Figure 1. The relation between the exponential growth rate parameter δ and the transmission rate parameter α is shown for
several choices for the latent period parameters (left) and circulation period parameters (right). The legend shows the means
and standard deviations for the latent (left) and circulation (right) normal delay distributions (in days). The nominal model has
`µ = 5, `σ = 3, cµ = 7, cσ = 3.

If case data produced according to this nominal model, is analyzed with a modified model, having different
assumptions for the latent and circulation periods, the estimators for α0 and α1 will be biased. To estimate the bias,
assume that estimators for the model independent parameters, δ0 and δ1, are unbiased. Given a choice for the delay
parameters, the relation between α̂ and δ̂ can be found empirically

α̂ = α̂(δ̂ | `µ, `σ, cµ, cσ),

which would be the inverse of the functions shown in Fig. 1. With sufficient statistics, the bias in the transmission rate
estimators would be approximately

b = E[α̂]− α = α̂(E[δ̂] | `µ, `σ, cµ, cσ)− α.

Table 1 shows the expectation values and the relative bias for the transmission rate estimators for reasonable alternative
delay parameter values. For many cases, the bias is larger than typical standard deviations of the estimators (statistical
uncertainty). When alternative latent period parameters are used, the bias for the growth and decline estimators have
opposite sign.

From this study, we find that transmission rates, or relative transmission rates, are not good choices for characterizing
growth or decline due to their sensitivity to poorly known model parameters. Instead, in this paper we use the nominal
model parameters to form estimators for α and convert those to estimators for δ. As shown in section 4, the biases in
estimators for δ are found to be small.



6

Table 1. The size of transmission rate estimator biases for alternative delay parameter values for an epidemic having a
growth period followed by decline, as described in the text. The last column shows that the ratio of the estimated
transmission rates varies from 3 to 6 depending on the delay parameters.

`µ `σ cµ cσ E[α̂0]
b0
α0

(%) E[α̂1]
b1
α1

(%) E[α̂0]/E[α̂1]

3 2 7 3 0.333 -17 0.114 14 2.9
3 3 7 3 0.334 -16 0.112 12 3.0
3 4 7 3 0.338 -15 0.110 10 3.1
5 2 7 3 0.407 2 0.103 3 4.0
5 3 7 3 0.400 0 0.100 0 4.0
5 4 7 3 0.396 -1 0.100 0 4.0
7 2 7 3 0.497 24 0.079 -21 6.3
7 3 7 3 0.489 22 0.085 -15 5.8
7 4 7 3 0.477 19 0.092 -8 5.2
5 3 5 2 0.503 26 0.154 54 3.3
5 3 5 3 0.516 29 0.148 48 3.5
5 3 5 4 0.524 31 0.139 39 3.8
5 3 7 2 0.390 -2 0.102 2 3.8
5 3 7 3 0.400 0 0.100 0 4.0
5 3 7 4 0.411 3 0.098 -2 4.2
5 3 9 2 0.330 -18 0.072 -28 4.6
5 3 9 3 0.336 -16 0.074 -26 4.5
5 3 9 4 0.344 -14 0.075 -25 4.6

3.4 Model dependence on contagious population estimators

In addition to the rate of growth or decline, represented by δ, the size of the circulating contagious population is
important to characterize the state of the epidemic. This is not directly measured by case data and estimators are
affected by many unknown factors, such as the fraction of infected individuals who are tested. While the absolute
number may be poorly known, a relative indicator that has weaker model dependence would be useful to indicate
relative prevalence between two regions or between two different periods within a region. For this purpose, case data
is analyzed using the nominal model, and the deduced contagious population is scaled by the ratio of total cases to
total infections. The result, UC, for “uncorrected circulating contagious population”, would need to be divided by
the fraction of infected individuals tested, to be an estimate for the absolute size of the contagious population. The
correction factor is not necessary to compare the relative prevalence in regions with similar testing policy.

Just as for α, the estimator for UC depends on the latent and circulation delay parameters. To illustrate the
sensitivity, the same combinations for delay parameters are considered and the ratio of UCmod/UCnom is shown
in Fig. 2 for the same conditions as described in section 3.3. Large deviations up to about 30% are seen, but this effect
is small compared to the observed range of prevalence which spans several orders of magnitude.

3.5 Modeling localized infection outbreaks

If a large localized infection outbreak occurs during a period where social distancing policy is being followed
consistently, the indicators for nominal infection growth/decline should be unaffected. The rapid growth in count rates
is not a result of changing social behaviour that would lead to a new infection trajectory. Instead, once the outbreak
runs its course, the region would continue with the same growth/decline as before the outbreak.

To model this situation, a burst of infections is injected into the infected population, with the number and date of
burst optimized to match the case data. During a period of increasing social distancing, a rapid rise in cases would be
a clear signal for an infection outbreak. During a period when social distancing rules are being relaxed, an increase
in cases could be a result of the expected increase in transmission or due to a new outbreak. In absence of other
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Figure 2. The expectation of the estimator for “uncorrected circulating contagious population” using a modified model
compared to that using the nominal model. The adjusted latent period and circulation delay parameters (µ and σ) are shown
in the legend.

information that can distinguish these two hypotheses, it may be necessary to wait until for the case data itself to
identify whether or not the region is experiencing a new rate of growth.

3.6 Modeling case reporting

The daily number of new cases in a region is the publicly available indicator with the largest statistics and smallest
time lag. The pyPM reference model 2.3 models case reporting by propagating a fraction (fs = 0.9) of the newly
contagious population to the symptomatic population and a fraction (fr = 0.8) of those to the reported population.
The propagation time delays are described by normal distributions (µs = 2, σs = 1 days) and (µr = 3, σr = 1 days)
respectively. The size of the reported population is compared directly with publicly available case data to characterize
the spread of CoViD-19. The uncertainties in the fractions contribute to systematic uncertainty in estimating the size
of the contagious populations, and the uncertainties in the delay parameters contribute to uncertainty in identifying
transition dates from the case data.

During the initial phase of the epidemic in western nations, in March 2020, testing policy and availability were
changing significantly. This may account for the fact that in many regions, including in Canada and the United States,
the number of cases did not follow an exponential growth trajectory in early March. After that, the growth in number
of cases are generally well described by models with relatively long periods of constant transmission and testing rates,
even though testing availability generally increased. This suggests that revised testing policies enacted after March did
not substantially change the fraction of infected individuals getting tested. Should a testing or reporting policy change
cause a rapid rise in cases, this could be misinterpreted as a reporting anomaly or a localized outbreak, but this will not
cause δ to be overestimated. It is the exponential growth of cases that determines δ, not the absolute number of cases.

Estimating the growth and size of the contagious population from case data, and interval estimation in particular,
presents a challenge due to the large variance in the daily reported numbers. Occasionally, a very large number of
cases is reported on one day, as a backlog of cases clears some bottleneck in the reporting process. These anomalies
are normally announced and they are modelled by an injection into the reported population. Even ignoring those rare
situations, daily case numbers have variance that far exceeds that expected in a model with independent infected
individuals being tested as they become symptomatic. The pyPM model includes variation that arises from the
reporting process itself, in which a variable fraction of cases are held back and reported the next day. The fraction
is drawn from a uniform distribution between rn and 1, where rn is the reporting noise parameter. This produces a
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Figure 3. Left: Points show the daily cases reported from the province of Ontario and the curve shows the expectations for
each day from the model. Right: Simulations with no reporting noise (rn=1) and with reporting noise (rn=0.7) tuned to match
the data goodness of fit statistic. The simulations use the negative binomial parameter for the infection cycle pnb=0.1. To help
the visual comparison, simulations were chosen that have total infections close to the expected value.

negative autocorrelation between one day and the next, which can be compared with actual data. A second parameter,
noise backlog, is provided to allow that only a fraction of the backlog being reported the next day, to reduce the
autocorrelation effect in the data. By including this additional source of variance, the intervals for the growth parameter
estimates can grow by a factor of 2 or more.

As an example, the daily cases from the province of Ontario is shown, along with the expectations from the model
fit to that data in Fig. 3. The first 110 days are generally described by two transitions of transmission rate (on day 26
and 44) and one broad reporting anomaly centered at day 91. The day-to-day variation is larger than the model with
no reporting noise. In many jurisdictions, the effect of reporting noise is even larger than this. To match the goodness
of fit, calculated by assuming the daily data follow a Poisson distribution, the reporting noise parameter is set to 0.7.
Other provincial and state data typically require additional reporting noise with this parameter set between 0 and 0.5.
To match the goodness of fit for the cumulative cases, the negative binomial parameter for the infection cycle pnb is
set to 0.1. These parameters were set by looking at the goodness of fit for 10 fitted simulation samples.

3.7 Modeling hospitalization and death reporting

The pyPM reference model 2.3 models hospitalization data by propagating a fraction of the newly symptomatic
population to icu and non-icu hospitalized populations, and a fraction of the icu admissions are propagated to the
ventilated population. Each of these use by normal time delay distributions. Deaths are modelled by propagating a
fraction of the newly contagious population with a normal time delay distribution.

4 Point estimates using case data

As indicated in section 3.6, the variance in the daily case counts exceeds that expected in a simple model, and therefore
an additional source of variation is included in the model to represent variation in daily reporting. A more significant
complication is that the daily cases do not represent outcomes of independent random variables. Having a larger than
expected number of infections for one day will generally result in larger than expected number of cases (and a larger
than expected number of infections) in subsequent days. This effect is illustrated in Fig. 4.

The standard approach of maximum likelihood estimation is difficult to apply given the challenges in defining an
appropriate likelihood function. Instead, point estimates for model parameters are the combination that best reproduces
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Figure 4. The ratio of daily new infections to expected new infections are shown for four simulations of the Ontario model to
illustrate that daily new cases are not outcomes of independent random variables. The simulations use the negative binomial
parameter for the infection cycle pnb=0.1.

Table 2. Descriptive statistics for point estimates for the 1000 simulated samples using the Ontario model. The column
labeled σstat shows the standard deviation of the point estimates.

parameter truth mean σstat bias (in σstat)

cont 0 29.0 26.4 6.3 -0.41
alpha 0 0.632 0.638 0.033 0.19
alpha 1 0.202 0.205 0.007 0.42
alpha 2 0.128 0.127 0.004 -0.03
anomaly 1 n 3727 3722 598 -0.01

the cumulative case history by minimizing the sum of the squares of the differences between the model expectations
and data. The following model parameters are estimated:

• initial size of contagious population
• transmission rates for each period (and end dates)
• sizes of infection outbreaks (and dates)
• size of reporting anomalies (and dates)

Biases and standard deviations of the estimators are found by fitting simulated samples. As an example, the
distributions of point estimates for 1000 simulated samples using the Ontario model are found to each be approximately
normal and only the final two (α2 and number in reporting anomaly) have strong correlation (ρ ≈ −0.6). The standard
deviations of the transmission rate estimators are found to be approximately 5% of the true values. Table 2 shows that
the biases are less than 1 standard deviation for all parameters.

As discussed in section 3.3, characterizing the growth in terms of δ instead of α has the benefit of being less
model dependent. This is illustrated in table 3 which shows the point estimates for α and δ for different choices for the
parameters that define the latent and circulation periods in the infection cycle. For this distribution of delay parameters,
the standard deviation of the α parameter estimates, indicated in the table as σsys, are significantly larger than standard
deviations in the estimators, σstat. For δ, the systematic and statistical standard deviations are nearly the same. The
systematic uncertainty is characterized by σsys, provided the range of variation of the delay parameters corresponds
to about 1 standard deviation in the prior beliefs for these quantities. The range of the delay parameters were chosen
using the summary provided by the Public Health Agency of Canada Modelling Group4.
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Table 3. Estimates for growth parameters for Ontario data from March 1 - June 17 under different latent and circulation
period parameters. For these fits, the transmission rate transition dates and the outbreak date were fixed. Systematic
uncertainty is characterized by the standard deviation of the parameter estimates for the distribution of delay period
parameters and statistical uncertainties are taken from Table 2.

`µ `σ cµ cσ α̂0 α̂1 α̂2 δ̂0 δ̂1 δ̂2

3 2 7 3 0.514 0.197 0.135 0.188 0.029 -0.020
3 3 7 3 0.520 0.199 0.135 0.192 0.030 -0.020
3 4 7 3 0.531 0.200 0.134 0.195 0.030 -0.019
5 2 7 3 0.634 0.201 0.128 0.171 0.025 -0.021
5 3 7 3 0.632 0.202 0.128 0.177 0.027 -0.019
5 4 7 3 0.635 0.203 0.127 0.182 0.027 -0.020
7 2 7 3 0.754 0.202 0.119 0.155 0.026 -0.010
7 3 7 3 0.755 0.203 0.119 0.160 0.027 -0.014
7 4 7 3 0.754 0.204 0.118 0.167 0.025 -0.021

5 3 5 2 0.740 0.268 0.181 0.172 0.022 -0.024
5 3 5 3 0.778 0.270 0.179 0.174 0.024 -0.022
5 3 5 4 0.811 0.269 0.173 0.175 0.026 -0.021
5 3 7 2 0.608 0.199 0.128 0.176 0.025 -0.020
5 3 7 3 0.632 0.202 0.128 0.177 0.027 -0.019
5 3 7 4 0.662 0.205 0.126 0.178 0.028 -0.019
5 3 9 2 0.545 0.161 0.099 0.179 0.030 -0.015
5 3 9 3 0.567 0.163 0.099 0.182 0.029 -0.016
5 3 9 4 0.583 0.167 0.098 0.181 0.030 -0.019

mean 0.648 0.206 0.131 0.177 0.027 -0.019
σsys 0.096 0.032 0.025 0.010 0.002 0.003
σstat 0.033 0.007 0.004 0.008 0.004 0.003

σsys/σstat 3.0 4.9 6.3 1.2 0.7 1.2

4.1 Using hospitalization data to characterize growth

Public data from regions with significant CoViD-19 hospitalizations can be used as an alternative measure of the
exponential growth rate parameter δ. In the simplified homogeneous model assumed for this paper, daily hospital
admissions and the number of individuals in hospital will also follow exponential growth or decline during periods of
constant transmission rate. For the Ontario public hospitalization data corresponding to the case data used for the fits
in Table 3, there is sufficient data to estimate δ2. The results are found to be δ̂2h = −0.003± 0.012 (in-hospital data)
and δ̂2i = −0.022± 0.010 (in-ICU data), both consistent with the case data estimate (δ̂2 = −0.019± 0.003), albeit
with much larger statistical uncertainties, given the limited number of hospitalizations as compared to positive tests.

Differences between case data and hospitalization estimates for δ could arise in models with heterogeneous
populations, accounting for the fact that the population requiring hospitalization for CoViD-19 is older than the
population tested positive for the disease, and the transmission rates and circulation periods may differ by age. In
British Columbia, for example, the median age for the hospitalized population is 69 years, compared to 51 years for
the population who have tested positive5.
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5 Analyses of German state data

Data from German states represent samples from populations subject to the same public health measures and testing
policies. Germany enacted strict lock-down measures on March 22, 2020 as cases were rising rapidly. Following the
decline in cases in April, the measures were relaxed on May 6, 2020. The Robert Koch Institute6 reports daily CoViD-
19 cases and deaths for each of the 16 German states. This section reports on analyses of the 13 states reporting more
than 2000 cases by the end of June 2020. Data between March 1 and June 25 are used, with exceptions that data after
May 30 for Berlin and after June 18 for North Rhine-Westphalia are not used since localized outbreaks affected the
case data for those periods.

A minimum of three constant growth periods are necessary to describe the observed rise and fall in daily cases in
each of the states, with one transition (on day d1) occurring before March 22 and another (d2) near March 22. A third
transition is forced on May 6, in order to estimate the growth following relaxation. Results from model fits to the data,
showing the point estimates for the transition dates d1 and d2 and the growth rates are shown in Table 4. Figure 5
shows the cumulative distributions for cases and deaths for the first 45 days compared to the model predictions that
use the fitted parameter values.

To estimate bias and standard deviations of the estimators, 200 simulated samples were produced using these point
estimates, and fit keeping the transition dates fixed. The mean and standard deviations of the estimates are reported
in Table 5. In separate studies, the standard deviations of transition date estimates were found to be typically 1 day.
The estimated dates for the second transition has a mean of 22.6 days following March 1, and a standard deviation
2.4 days. The growth estimates, corrected for bias, are summarized along with their estimated standard deviations in
Fig. 6.

Table 4. Point estimates for the four growth parameters from model fits to case data are shown for each state in Germany.
The transition day estimates d̂1 and d̂2 were determined in the fit, and are shown as the day in March. Transition day d3 was
fixed to May 6, in order to estimate the growth parameter, δ3 following relaxation of lock-down measures.

State δ̂0 d̂1 δ̂1 d̂2 δ̂2 δ̂3

Baden-Warttemberg 0.288 12 0.105 24 -0.049 -0.060
Bavaria 0.256 14 0.160 23 -0.049 -0.041
Berlin 0.402 7 0.131 20 -0.038 -0.021
Brandenburg 0.345 10 0.102 26 -0.031 -0.086
Hamburg 0.410 9 0.122 20 -0.043 -0.061
Hesse 0.354 11 0.078 23 -0.031 -0.026
Lower Saxony 0.494 5 0.160 21 -0.039 0.002
North Rhine-Westphalia 0.274 5 0.134 22 -0.038 -0.029
Rhineland-Palatinate 0.483 9 0.075 23 -0.047 -0.028
Saarland 0.282 13 0.108 28 -0.073 -0.031
Saxony 0.426 10 0.108 23 -0.045 -0.033
Schleswig-Holstein 0.355 8 0.148 21 -0.041 -0.056
Thuringia 0.287 15 0.117 20 -0.017 -0.029
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Figure 5. Cumulative case and death data (points) are shown in comparison to model predictions (lines) with the point
estimates shown in Table 4 for the period March 1 - April 15, 2020. The dashed lines show the model predictions for the
cumulative deaths during this period.
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Table 5. To estimate bias and the standard deviations of estimators for the growth parameters, fits to 200 simulated samples
using the point estimates from Table 4 were performed. The means and standard deviations of the estimates, shown here,
do not indicate significant bias.

State δ0 (µ, σ) δ1 (µ, σ) δ2 (µ, σ) δ3 (µ, σ)

Baden-Warttemberg 0.283, 0.024 0.119, 0.007 -0.048, 0.002 -0.065, 0.009
Bavaria 0.238, 0.022 0.186, 0.011 -0.049, 0.002 -0.046, 0.010
Berlin 0.394, 0.036 0.150, 0.013 -0.038, 0.005 -0.036, 0.036
Brandenburg 0.342, 0.036 0.113, 0.019 -0.029, 0.007 -0.088, 0.027
Hamburg 0.401, 0.029 0.141, 0.016 -0.043, 0.005 -0.075, 0.031
Hesse 0.365, 0.039 0.096, 0.013 -0.031, 0.004 -0.029, 0.010
Lower Saxony 0.470, 0.019 0.175, 0.010 -0.038, 0.003 -0.001, 0.007
North Rhine-Westphalia 0.207, 0.046 0.156, 0.009 -0.037, 0.002 -0.033, 0.007
Rhineland-Palatinate 0.467, 0.023 0.092, 0.011 -0.046, 0.004 -0.037, 0.021
Saarland 0.264, 0.031 0.122, 0.015 -0.069, 0.009 -0.055, 0.043
Saxony 0.396, 0.031 0.132, 0.015 -0.045, 0.006 -0.041, 0.022
Schleswig-Holstein 0.332, 0.032 0.173, 0.024 -0.040, 0.007 -0.068, 0.032
Thuringia 0.295, 0.027 0.173, 0.056 -0.016, 0.006 -0.029, 0.013
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Figure 6. Summary of the growth rate estimates (corrected for bias) and their one standard deviation statistical
uncertainties for the four periods for each state in Germany.
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Figure 7. Cumulative case and death data (points) are shown in comparison to model predictions (lines) with the point
estimates shown in Table 4 for the two periods (A-left) March 27 - April 15 and (B-right) April 17 - May 6. Lock-down
measures were fixed across these two periods. The dashed lines show the model predictions for the cumulative deaths. The
colors in the legend for Fig. 5 apply.

5.1 Test of statistical uncertainty of growth rate estimates

A test was performed for the statistical uncertainties assigned for growth rate estimates, by comparing estimates for the
growth rates for two independent periods (A) March 27 - April 15 and (B) April 17 - May 6. Lock-down measures were
fixed during this period, so growth rates would be expected to be nearly the same for the two periods. The cumulative
cases and deaths for those periods are shown in Fig. 7

Model fits were performed using case data for those periods separately, by optimizing only the growth rate
parameter, δ2, and the scale parameter C0 (the initial size of the contagious population). The same approach was
applied to 100 simulated samples using the point estimates shown in Table 4. The differences between the point
estimates for the two periods, ∆ = δ̂2A − δ̂2B , for data and the simulated samples are summarized in Fig. 8. The
hypothesis that the model correctly assigns a statistical uncertainty is tested using the χ2 statistic, using the differences
between the observed and expected ∆ and the model estimates for σ∆. The statistic yields χ2 = 18.1 for 13 degrees
of freedom, with the corresponding p-value= 0.15.
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Figure 8. Difference in growth rate estimates for periods (A) and (B) during which lock-down measures were fixed. The red
points show the data estimates. The blue bars show the mean and ± 1 standard deviations of the estimates from 100
simulated samples. The data estimates are consistent with being outcomes of the estimators defined by model fits: the
goodness of fit test yields the p-value= 0.15.

5.2 Change in growth rate following relaxation of lock-down measures

As described above, a transition in transmission rates was forced on May 6, so that the estimated growth rate
parameters before (δ̂2) and after (δ̂3) that date can be compared. The test of bias and statistical uncertainty shown
in section 5.1 confirms the method to estimate the statistical significance of the observed difference in growth rate.
After correcting the point estimates in Table 4 for biases deduced from fits to simulated samples as reported in Table 5,
the weighted average difference of the point estimates for the 13 German states is δ̂3 − δ̂2 = 0.0145± 0.0035, a small
but statistically significant increase. Even with 50 days of data following relaxation, the growth rate estimates δ̂3 have
large uncertainty due to the diminishing numbers of cases.

5.3 Estimated size of epidemic

As discussed in section 3.4 the “uncorrected circulating contagious population” (or UC) is a useful comparative
statistic for the size of the contagious population, with reduced systematic uncertainty. The UC history for each of the
German states is shown in Fig. 9 relative to the state population. The relative sizes for different states were within a
factor of about 5 throughout the period shown.

5.4 Estimated death delay time distribution

After estimating the transmission rates using the case data, the death delay distribution parameters are estimated in
separate fits of the model to the cumulative death data. In these fits, the transmission rates are fixed to the point
estimates in Table 4 and only three parameters are estimated; a scale factor (the fraction of the contagious who die),
and the mean and standard deviation of the time between becoming contagious and death. The statistical uncertainty
in these estimates are defined by the standard deviation of estimates from fits to 100 simulated samples. The results
from each state are shown in Fig. 10. The data from the rapid rise in the death rate in the early stages of the epidemic
carry the most information to estimate the standard deviation of the delay (σD). With larger values for σD, the rise in
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Figure 9. The uncorrected circulating contagious population history is shown for each state relative to the state population.

deaths is slower. The analysis is not sensitive to a long upper tail in the delay distribution, and the assumption that the
distribution is normal may be incorrect.

The weighted average for the mean delay is 18.7± 0.3 days and for the standard deviation of the delay is 8.4± 0.4

days. Sources of systematic uncertainty on the mean delay arise from possible mis-modelling of other delays. Case
and death report modelling have the latent delay in common, and since the fitted transition date d̂2, is consistent with
the expected transition (March 22), the systematic uncertainty from latent delay modelling could be assigned as the
standard deviation of the observed transition dates, about 2.3 days. Including an additional 2 days for uncertainty in
case reporting delays, and using the mean latent period in the model (5 days), the time distribution from infection to
death is estimated to have a mean of 24± 3 days and a standard deviation of about 8± 1 days. The mean time from
symptoms to death estimated with the pyPM model 2.3, 16.7 is consistent with the 95% credible interval [16.919.2]
reported from an early study of 24 deaths in China.7

6 Summary and conclusions

The simple pyPM model, introduced in this paper, can be used to interpret public data in order to characterize the
spread of CoViD-19 in different regions around the world. With relatively few parameters, the epidemic history can
be conveniently summarized, with relatively long periods having constant transmission rates (reported with the daily
growth parameters δi) and the size of the contagious population (reported with UC).

As governments relax social distancing rules and open borders, it will be important to compare the state of the
disease and to detect changes in growth rates. As the situation develops, results from additional studies will be made
available on the website www.pypm.ca.
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Figure 10. Estimates of the mean (µD) and standard deviation (σD) of the time between becoming contagious and death.
The states indicated with ’*’ and shaded out have one of their estimates more than 3σ from the full weighted average and are
not used in the reported weighted averages. The vertical bars indicate the weighted averages and 68% CL statistical
uncertainty.
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