
Infectious Disease Modelling 8 (2023) 947e963
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Bayesian modeling of dynamic behavioral change during an
epidemic

Caitlin Ward a, *, Rob Deardon b, c, Alexandra M. Schmidt d

a Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
b Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
c Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
d Department of Epidemiology, Biostatistics, and Occupational Health, Montreal, QC, Canada
a r t i c l e i n f o

Article history:
Received 13 June 2023
Received in revised form 20 July 2023
Accepted 3 August 2023
Available online 6 August 2023
Handling Editor: Dr Yijun Lou

Keywords:
Bayesian inference
Compartmental model
SIR
SEIR
Transmission modeling
* Corresponding author.
E-mail address: ward-c@umn.edu (C. Ward).
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2023.08.002
2468-0427/© 2023 The Authors. Publishing services
BY-NC-ND license (http://creativecommons.org/licen
a b s t r a c t

For many infectious disease outbreaks, the at-risk population changes their behavior in
response to the outbreak severity, causing the transmission dynamics to change in real-
time. Behavioral change is often ignored in epidemic modeling efforts, making these
models less useful than they could be. We address this by introducing a novel class of data-
driven epidemic models which characterize and accurately estimate behavioral change.
Our proposed model allows time-varying transmission to be captured by the level of
“alarm” in the population, with alarm specified as a function of the past epidemic tra-
jectory. We investigate the estimability of the population alarm across a wide range of
scenarios, applying both parametric functions and non-parametric functions using splines
and Gaussian processes. The model is set in the data-augmented Bayesian framework to
allow estimation on partially observed epidemic data. The benefit and utility of the pro-
posed approach is illustrated through applications to data from real epidemics.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human behavior is a driving factor in the spread of infectious disease through human populations. In the presence of
increasing infection risk, individuals typically engage in protective behaviors to avoid becoming ill. These preventative
behavior changes may be imposed by a governing body (e.g., city-wide lockdowns or school closures), or may be the result of
personal choices (e.g., social distancing or voluntary masking). Behavioral change can have a substantial impact on the
epidemic trajectory by delaying the peak, reducing the total number of individuals that contract the disease, and/or resulting
in multiple waves of transmission. Additionally, behavioral change is dynamic; higher disease prevalence tends to result in
increased preventative measures, which are subsequently relaxed as prevalence decreases. Understanding these changes in
population behavior in response to an epidemic is crucial for public health practitioners and policy makers attempting to stop
or slow the spread of the pathogen and allocate valuable resources.
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Statistical modeling of infectious disease transmission provides a quantitative approach to understanding disease dy-
namics. The conventional methodology is based on the compartmental SIR model (Kermack & McKendrick, 1927), which
segments the population into Susceptible, Infectious, and Removed compartments capturing the important disease states.
The model is then parameterized in terms of the rates of flow between compartments. Compartmental models can be
implemented deterministically using ordinary differential equations or stochastically, with statistical inference typically
carried out using Bayesian methodology. However, the traditional SIR model does not naturally account for transmission
dynamics changing in real time as the population reacts to the outbreak, limiting its applicability to real epidemic data.

Previous work incorporating behavioral change into the SIR model framework has been done in the deterministic setting,
with models generally falling into one of three categories. One approach adds additional “adherence” or “awareness” com-
partments to capture reductions in susceptibility and transmissibility for individuals engaging in protective behaviors, with
individuals more likely to be adhering to preventative measures when disease prevalence is high (Acu~na-Zegarra et al., 2020;
Agaba et al., 2017; Del Valle et al., 2005; Perra et al., 2011). Another popular method uses a game-theoretic approach, sup-
plementing the SIR model with a time-varying utility function balancing the costs associated with prevention strategies
(monetary, liberty, social) with the benefit of lowering infection risk in the population (Reluga, 2010; Fenichel et al., 2011). The
remaining approach allows the transmission rate in the SIR model to be dynamically modified as a function of the recent
disease trajectory (Capasso & Serio, 1978; Greenhalgh et al., 2015; Eksin et al., 2019; Weitz et al., 2020; Franco, 2020).

While these deterministic approaches are often easy to describe and simulate from, they can be unrealistic as disease
transmission is an inherently stochastic process. Stochasticity is particularly important when describing disease spread in a
small population or at the start of an epidemic when there is a small number of infectious individuals, when stochastic events
such as so-called “superspreading” are non-negligible (Roberts et al., 2015). The Bayesian implementation incorporates
stochasticity and offers several advantages. Epidemic data are often incomplete as infection or recovery times may not be
observed. Without such data, deterministic models cannot be properly calibrated. However, Bayesian models implemented
with Markov Chain Monte Carlo (MCMC) methods can impute missing data allowing for numerical integration over the
probability distributions of the unobserved process. Thus, Bayesianmodels can perform parameter estimation in the presence
of incomplete data, while properly accounting for uncertainty in the estimates. This is known as data-augmentation. Addi-
tionally, the Bayesian framework allows for the incorporation of prior information about the disease process, which is often
available and can help induce identifiability. This is especially important when data augmentation is required. Finally, the
Bayesian approach is also ideally suited for allowed captured parameter uncertainty to be propagated forwards when fore-
casting, via posterior predictive simulation, giving more realistic uncertainty bounds on forecasts.

However, there are still several unanswered questions. First, can these deterministic behavioral change approaches be
translated to the stochastic Bayesian setting? Many of the proposed models include highly complex depictions of behavioral
dynamics, however, Bayesian models often require simpler parameterizations than their deterministic counterparts to be
computationally tractable (Andersson & Britton, 2012). Second, can disease and behavioral change parameters be estimated
from epidemic data? The aforementioned modeling efforts have focused almost entirely on model specification, with results
coming from forward simulations using pre-specified parameter values. Notably absent in the literature is any assessment of
the statistical properties of these models when fit to real data, due to the aforementioned challenges with calibration
deterministic models in the presence of limited data. Finally, how can these models be used in practice to increase under-
standing of human behavior during an epidemic? Behavioral change is anticipated during any real epidemic, but without any
previous work fitting these models to data, their advantage is unknown.

In this article, we advance the field of stochastic infectious disease modeling by answering these important questions. We
accomplish this by proposing a novel Bayesian SIR model formulation which captures dynamic behavioral change during an
epidemic. The proposed model specifies the transmission rate as a function of recent disease occurrence, and computation is
performed via MCMC methods. In our simulation study, we thoroughly investigate the statistical properties of our Bayesian
model when fit to data. In particular, we show that behavioral change parameters can be accurately estimated and that
posterior predictions from the proposed model can detect subsequent peaks in incidence. To showcase the benefits of
considering behavioral change in this class of models, we apply the model to data from an Ebola outbreak in the Democratic
Republic of the Congo and the COVID-19 pandemic in New York City.
2. Methods

2.1. Traditional SIR model

We model transmission using a discrete-time SIR model framework, where susceptible individuals can contract the
infection from those who are infectious, and infectious individuals are removed when they no longer transmit the pathogen
to others, due to death, isolation, or recovering with immunity. Let t ¼ 1,…, t indicate discrete calendar time and St, It, and Rt
denote the number of individuals in the susceptible, infectious, and removed compartments in the continuous time interval
[t, tþ 1), respectively. Furthermore, define the transition vectors I*t and R*t to represent the number of individuals entering the
indicated compartment in this interval. Compartment membership is temporally described by the set of difference equations:
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Stþ1 ¼ St � I*t (1)

Itþ1 ¼ It þ I*t � R*t (2)

Rtþ1 ¼ Rt þ R*t : (3)

We assume a closed population, such that St þ It þ Rt ¼ N at all time points, where N denotes the total population size. Given
the population size, a set of initial conditions, and the transition vectors, the compartment membership vectors can be fully
determined using Equations (1)e(3).

In the Bayesian framework, we must establish the relationship between data and model parameters using probability
distributions. We define the transitions between compartments to be binomially distributed (Lekone & Finkenst€adt, 2006;
Wilson & Burke, 1942), such that I*t � Bin

�
St ;p

ðSIÞ
t

�
and R*t � Bin

�
It ;pðIRÞ�. The transition probabilities pðSIÞ

t and p(IR) describe
transmission of the pathogen and the duration of the infectious period, respectively. Assuming an independent Poisson
contact process and constant probability of infection given a contact, the transmission probability, p(SI), takes the form

p
ðSIÞ
t ¼ 1� exp

�
� b

It
N

�
: (4)

The parameter b is interpreted as the transmission rate, which captures both the contact rate and the infection probability, as
these are not separately identifiable (Brown et al., 2016). The removal probability, p(IR), is derived by assuming the length of
time an individual is infectious is exponentially distributed with rate g. In discrete time, p(IR) is the conditional probability of
transitioning on day sþ 1, given the individual has remained infectious through time s, resulting in pðIRÞ ¼ 1� expð � gÞ. The
parameter g is referred to as the removal rate, however, it is typically more interpretable to consider 1/g, the mean length of
the infectious period.

The traditional SIR model assumes b is constant over time, but this is generally not realistic. More likely, transmission
changes as the population responds to the outbreak. Seasonal factors may also contribute, such as the start of the school year
or changes in weather. This is incorporated by modifying the transmission probability from Equation (4) as

p
ðSIÞ
t ¼ 1� exp

�
� bt

It
N

�
; (5)

where bt is the transmission rate at time t. Changes in transmission can be modeled directly through covariates, such as
change points corresponding to the timing of government intervention(s) (Lekone& Finkenst€adt, 2006;Ward et al., 2023b) or
measures of population mobility (Liu et al., 2020; Sartorius et al., 2021). This allows inference to be made on the relationship
between covariate(s) and transmission. Covariates might not capture all important changes in transmission, so more flexible
approaches have been proposed, including basis splines (Brown et al., 2016; Hong & Li, 2020), Gaussian processes (Xu et al.,
2016), or simple randomwalks (Irons& Raftery, 2021). All of these approaches are limited when forecasting, as it is difficult to
predict the lifting of a government lockdown, and restrictive assumptions must be made to allow any flexibly modeled
trajectory of bt to continue into the future. Thus, an alternate approach accounting for the mechanism of behavioral change is
needed.

2.2. Behavioral change (BC) model

The proposed behavioral change (BC) model allows for time-varying transmission which captures behavioral change via a
dynamically structured dependence on previously observed epidemic trajectory. This is accomplished by allowing a constant
transmission rate, b, to be modified by a time-varying level of alarm in the population, denoted at, such that bt ¼ b(1� at). We
consider at2 [0,1], such that at corresponds to the proportional reduction in transmission due to the alarm in the population.
When at ¼ 0, the population is in its natural ‘unalarmed’ state, and transmission is described only by b. When at ¼ 1, the
population is in its maximal alarmed state and transmission is reduced to zero. Plugging this in to Equation (5) yields

p
ðSIÞ
t ¼ 1� exp

�
� bð1� atÞ ItN

	
: (6)

The structural dependence in the alarm is captured by specifying at as a function of incidence smoothed over the pastm days,
such that at ¼ f

�
1
m
Pt�1

i¼t�m�1I
*
i

�
and the smoothing parameterm2 {1, 2,…, t� 1}. For t <m, we use themoving average of the

data up until time t � 1, e.g., at time t ¼ 3 the alarm is based on the average of the incidence observed at times t ¼ 1 and 2. At
the start of an epidemic, it is assumed that the alarm is zero. It is possible for the alarm function to depend on other reported
metrics of epidemic severity, such as prevalence, hospitalizations, or test positivity rates, but we focus on an incidence-based
alarm here. Incidence is advantageous for forecasting, as it is directly generated from the SIR model. Thus, incidence forecasts
can be used directly to determine future alarm function values and generate further predictions.
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Fig. 1. Example alarm functions for various parameter specifications.
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Next, we must determine an appropriate functional form for the alarm function. As defined, the alarm must be between
0 and 1, and furthermore we would expect the alarm to be zero when there is no disease in the population, and to mono-
tonically increase as the amount of disease in the population increases. There are many functions that satisfy these char-
acteristics, and we investigate three possibilities of various complexity (Fig. 1). The first function considered is a one-
parameter function f(x) ¼ 1 � (1 � x/N)1/k used in previous deterministic literature (Eksin et al., 2019; Franco, 2020),
which we call the “power” alarm. The parameter k > 0 describes the growth rate, with smaller values corresponding with a
faster rise in alarm. The next function we consider is a two-parameter constant change point model, which we call the
Fig. 2. Example simulated epidemics for various alarm function specifications. (a) Compared to epidemics with no behavioral change, the power alarm with
various k values, the threshold alarm with H ¼ 100 and various d values, and the Hill alarm with n ¼ 5, x0 ¼ 100, and various d values. Across all simulations,
b ¼ 0.6 and g ¼ 0.2. (b) Using 1-day, 14-day, and 30-day average incidence to inform the alarm function. Across the smoothing levels, the power alarm has
k ¼ 0.0005, the threshold alarm has d ¼ 0.8 and H ¼ 350, and the Hill alarm has d ¼ 0.85, n ¼ 2, and x0 ¼ 450. Across all simulations, b ¼ 0.6 and g ¼ 0.2.
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“threshold” alarm and specify as f ðxÞ ¼ d1ðx >HÞ. The threshold alarm is zero until the threshold, H, is surpassed, at which
point it becomes d. Note that H can take on any value in the observed range of the data informing the alarm function and
d 2 [0, 1]. The final function analyzed is a modified Hill equation (Gesztelyi et al., 2012), f ðxÞ ¼ d

1þðx0=xÞn, which we refer to as
the “Hill” alarm.With three parameters, the Hill alarm is the most complex of the three alarm functions considered; d2 [0, 1]
describes the asymptote, x0 is the half occupation value, and n > 0 controls the growth rate. The Hill alarm can describe curves
similar to the power alarm, as well as sigmoid-shaped curves that resemble a smoothed version of the threshold alarm.

Using these alarm functions in the BC model can generate a multitude of shapes of epidemic curves. Fig. 2a shows that
higher levels of alarm reduce peak incidence. In addition, increasing the maximum alarm value in the threshold and Hill
alarms delays the peak, while increasing the growth rate of the power alarm does not affect the timing of the initial peak.
Fig. 2b illustrates epidemics generated using alarms which reach high values at relatively low levels of incidence, as well as
how epidemic trajectory is affected by the amount of data informing the alarm function. When the alarm is based solely on
the previous day's incidence, incidence becomes volatile and oscillates between levels producing high and low amounts of
alarm. Peaks become more pronounced and spread out when the 14 or 30-day average incidence is used to inform the alarm.
Finally, the threshold alarm, which reaches its maximum instantaneously, leads to epidemic curves with very sharp peaks. In
contrast, the power and Hill alarm increase gradually, resulting in smoother peaks.

In practice, it may not be obvious which alarm function to use, or a method which does not restrict the shape of the alarm
function may be preferred. For this reason, we also investigate the use of more flexible non-parametric approaches to esti-
mating the alarm function using basis splines and Gaussian processes. The spline alarm is modeled using natural cubic splines
with estimated knot locations and written as f ðxÞ ¼ X0

Bb. The basis matrix, XB, is constructed across the range of observedm-
day average incidence and b denotes the associated basis parameters. Constraints were used during estimation to ensure
f(x)2 [0,1], but an appropriate link function (e.g., logit) could also be used. For the Gaussian process approach, we assume the
logit of the alarm function is a realization from amultivariate normal distributionwhich is fully specified by its meanm(x) and
covariance k(x, x0), i.e., logit½f ðxÞ� � MVN½mðxÞ; kðx; x0Þ�. We specify themean function to start at (0, 0) and end at (max(x), 1) on
the logit scale, corresponding with the characteristics we expect of the alarm function. We generally expect the alarm

function to be smooth and use the squared exponential covariance function kðx;x0Þ ¼ s2exp
h
� ðx� x0Þ2=2l2

i
, where s2 > 0

the signal variance controls scaling and l > 0 is the length-scale parameter controlling smoothness. Both alarms are defined
across the range of observedm-day average incidence, so linear interpolation was used to find the value of the alarm on each
day.

One of the most important quantities estimated by epidemic models is the reproductive number, denoted R0, which
quantifies the spread of the pathogen in the population. Various methods of calculatingR0 exist, and we use the approach of
(Ward et al., 2023a). The effective reproductive number is calculated as R0ðtÞ ¼ St

P∞
k¼t ½1� expð�bk =NÞ�expð�gÞk�t and

provides the expected number of secondary infectious caused by a single individual that becomes infectious at time t (for the
full derivation, see (Ward et al., 2023a)).R0 can be interpreted in relation to the threshold of 1, asR0 � 1means the epidemic
will continue to propagate through the population and R0 <1 indicates the epidemic will eventually die out.
2.3. Bayesian estimation and implementation

The complete log-likelihood for the chain binomial SIR model is

[ðI*;R*jQÞ¼
Xt
t¼0

"
log

 
St
I*t

!
þ I*t logp

ðSIÞ
t þ�St � I*t

�
log
�
1�p

ðSIÞ
t

�
þ log

 
It
R*t

!
þR*t logp

ðIRÞ þ �It �R*t
�
log
�
1�pðIRÞ

�#
; (7)

where the parameter vector Q contains b and g for the traditional model, and includes additional parameters used to
estimated bt for the time-varying transmission models and the BC model. Complete data would provide the time series over
the course of the epidemic for the transition vectors I* and R*, the initial conditions S0 and I0, and the population sizeN. Often,
we do not observe complete information on infectious and removal times. Unless otherwise stated, we assume that incidence
(I*) is observed, and removals (R*) must be imputed, using data-augmented MCMC methods (Lekone & Finkenst€adt, 2006;
O'Neill & Roberts, 1999). The R package nimble (de Valpine et al., 2017, 2021) was used for computation, as it offers a
mechanism for implementing user-defined data-augmented MCMC algorithms.

In the Bayesian framework, the parameter vector must be assigned a prior, with the use and justification of informative
priors for any parameters varying by disease application. Often, the gamma distribution is used to specify the prior for b and g

as both parameters must be positive. In the presence of knowledge about the duration of the infectious period, informative
priors can be used for g. Determining informative priors for the parameters of the alarm functions is challenging. We use a
vague gamma prior for k in the power alarm and Uniform(0, 1) priors for d in the threshold and Hill alarms. For H and x0
Uniform(min(x), max(x)) priors are used as we expect the change point or half occupation point to occur during the observed
range of incidence. The spline coefficients b are given vague N(0, 100) priors and the knots are given Uniform(min(x), max(x))
priors. The parameters of the covariance in the Gaussian process model, s and l are weakly identified (Zhang, 2004), making
the use of informative priors crucial. As the alarm function is estimated on the logit scale, the variability of the function is
limited, sowe use a gamma(150, 50) prior for s. The prior for the length-scale parameter was specified as inverse gammawith
951
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the shape and scale parameters determined using the practical range approach (Gelfand et al., 2005). Using this approach, the
mean of the prior for l is specified by finding the value such that the covariance function is 0.05 for two points that are
separated by half the maximum distance observed in the data. The prior standard deviation was fixed at two, as that was
found to produce reasonable estimation.
3. Simulation study

3.1. Simulation set-up

The statistical properties of the BC model are assessed via simulation. The primary goal of the simulation study was
determining whether the behavioral change mechanism could be recovered through estimation of the alarm function. The
secondary objective was comparing the BC model to the traditional approach without behavioral change and a flexible time-
varying transmission model, assessing posterior predictive forecasting and model fit. These aims were addressed by simu-
lating epidemics with behavioral change under the three alarm functions described in Section 2.2. For each of the three data
generation scenarios, 50 epidemics were simulated using the initial conditions N ¼ 1, 000, 000, S0 ¼ 999, 995, and I0 ¼ 5. Five
models were fit to each simulated epidemic: a BC model using the true alarm function, BC models using the spline and
Gaussian process alarms, the model with no behavioral change, and a time-varying transmission model with bt estimated
flexibly using natural cubic splines.

To evaluate posterior prediction, epidemics were simulated over 100 days, with the first 50 days used for model fitting and
the subsequent 50 days used to evaluate forecasting accuracy. Simulation parameters were chosen to produce epidemics with
a distinguished peak during the first 50 days of the epidemic andwith additional peak(s) occurring in the subsequent 50 days.
Complete specification of simulation parameters is provided in Supplementary Table 1. Epidemics were generated and BC
models were fitted using both 14-day and 30-day average incidence to inform the alarm function. Similar conclusions were
found in both settings, so we detail the 30-day average results here and provide the 14-day average results in the Supple-
mentary Material.

Priors were specified as described in Section 2.3. For each model, three MCMC chains were run using various starting
values of the parameters. The BC models and the flexible bt model required more burn-in iterations due to their increased
complexity. All models were run for 300,000 iterations post burn-in with samples drawn every 10th iteration. Full de-
scriptions of priors used and MCMC specifications are provided in Supplementary Table 2. Convergence was established by a
Gelman and Rubin diagnostic value below 1.1 (Gelman and Rubin, 1992). A small number of models did not converge despite
running for a large number of iterations and have been excluded from the results. More information on these models is
provided in the Supplementary Material.
3.2. Simulation results

3.2.1. Alarm function estimation
To assess estimation of the alarm function in each data generating scenario, we compare posterior mean alarm function

estimates to the true alarm functions (Fig. 3). The alarm is shown as a function of the 30-day average incidence, ranging from
zero to the maximum observed value during the epidemic, which varies between simulations. We find estimation of the
alarm function to be excellent when the true functional form of the alarm was used in model fitting. More interestingly, we
find the spline and Gaussian process approaches recover the alarm function reasonably well, particularly for the power and
Hill alarms. The alarm function recovery is not as precise when the threshold alarm is the true function. However, this is
expected as the piecewise constant form of this alarm is generally not well described by splines or Gaussian processes, which
are inherently smooth. Despite this, both approaches are able to detect the alarm function rapidly increasing and leveling off
quite impressively. These results indicate that when analyzing real datawhere the true alarm function is unknown, the spline
and Gaussian process alarms offer robust and flexible possibilities.

3.2.2. Posterior prediction
The ability of the fitted BCmodels to predict the epidemic curvewas carried out using the posterior distribution for model

parameters derived using the first 50 days of the epidemic. For 10,000 posterior draws of the parameters, the future epidemic
trajectory was simulated using the model state on day 50 to determine the initial values and proceeding with binomial draws
from St and It for t ¼ 51, …, 100. A drawback of the flexible bt model is there is no obvious mechanism for forecasting, so we
compare the model with no behavioral change to the three BC models (true, spline, and Gaussian process alarms). Consistent
results were found across simulations. For brevity, the posterior predictive distribution is provided for a single, randomly
selected, and typical simulation in Fig. 4.

The model which does not incorporate behavioral change does a poor job of posterior prediction. Assuming constant
transmission yields an estimated b which averages over what was observed during the first 50 days. Correspondingly, the
posterior predictive trajectories are increasing, but at a slower rate than the growth observed at the start of the epidemic. In
contrast, posterior predictions from the BC models are able to detect the intensity and timing of subsequent waves of
952



Fig. 3. True and posterior mean estimates of alarm functions from 50 simulated epidemics using the correct parametric alarm function, and the spline and
Gaussian process alarms for model fitting. True alarm functions shown in red.

C. Ward, R. Deardon and A.M. Schmidt Infectious Disease Modelling 8 (2023) 947e963
transmission. Minimal differences were found between predictions from the parametric and non-parametric approaches for
data generated with the power and Hill alarms. For epidemics simulated using the threshold alarm, the non-parametric
approaches predict smoother subsequent peaks, due to their failure to capture the abruptness of the change point in the
alarm. Finally, the 95% posterior credible intervals for the model with no behavioral change widen as predictions become
further from the last observed time point. This is not seen for the BC models, as the structural dependency encoded by the
alarm function restricts the shape of the epidemic curve.

3.2.3. Comparing model fit
Model fit was assessed with the Widely Applicable Information Criteria (WAIC) (Watanabe & Opper, 2010), for which

lower values indicate superior model fit. The distribution of WAIC values and the proportion of epidemics where each model
had the lowest WAIC are summarized in Table 1. The true alarm function was selected 82e96% of the time, indicating that
WAIC is able to correctly identify the best model. The spline and Gaussian process BC models sometimes provided the best fit.
This was less likely when the data was generated from the threshold alarm, where recovery of the alarm function by these
methods was poorest. Notably, despite its flexibility, the time-varying bt model was only selected once and generally had
higher average WAIC than any of the BC models. The exception was for data generated from the power alarm, the most
gradual alarm function. This indicates that the additional structure imposed by the BC models results in lower WAIC in the
simulation setting where data was generated from a model with behavioral change present. The traditional model with no
behavioral change performs poorly across all three data generation scenarios.
953



Fig. 4. Mean and 95% credible intervals for posterior predictive forecasts of future incidence compared to the truth for a randomly selected simulation.

Table 1
Summaries of WAIC values across 50 simulated epidemics from three data generation scenarios. Models are ordered by mean WAIC.

Data generation Model fitted WAIC Mean (SD) % selected

Power Power 369.63 (12.80) 92%
Spline 371.43 (12.73) 8%
bt 375.28 (13.19) 0%
Gaussian process 381.44 (13.78) 0%
No Behavioral Change 673.74 (16.25) 0%

Threshold Threshold 333.19 (12.61) 96%
Gaussian process 367.06 (48.96) 4%
Spline 484.39 (65.67) 0%
bt 720.61 (59.87) 0%
No Behavioral Change 1058.45 (120.73) 0%

Hill Hill 358.55 (13.61) 82%
Spline 360.28 (13.33) 10%
Gaussian process 364.06 (13.95) 6%
bt 375.39 (19.04) 2%
No Behavioral Change 793.40 (34.11) 0%

C. Ward, R. Deardon and A.M. Schmidt Infectious Disease Modelling 8 (2023) 947e963
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4. Data applications

4.1. Ebola disease

We first illustrate the BCmodel on awell-studied Ebola outbreakwhich occurred in 1995 in the Democratic Republic of the
Congo (DRC). Ebola is a deadly disease which transmits between humans through direct physical contact with bodily fluids or
contaminated clothes or bedding (CDC, 2023b). A person is only infectious once they develop signs and symptoms of Ebola
disease, which can occur anywhere between two to 21 days (average eight to 10 days) after initial contact with an ebolavirus
(CDC, 2023b,a). Once symptoms have appeared, individuals remain infectious for four to ten days and may either recover or
die, with the average case fatality rate around 50% (WHO, 2023). The 1995 DRC epidemic occurred primarily in the city of
Kikwit in the Bandundu region, which had a population of 5,363,500 during the outbreak (Lekone & Finkenst€adt, 2006). The
data used in this analysis are publicly available in the outbreaks R package (Jombart et al., 2020) and contain symptom onset
date for 291 cases and death date for 236 individuals documented between March and July 1995 (Fig. 5). It is known that 316
infections occurred, but symptom onset date was not recorded for 25 individuals. Ebolavirus was identified as the causative
agent of the outbreak on May 9th, after which control measures were immediately introduced. Further details about this
epidemic can be found in Khan et al. (1999) (Khan et al., 1999).

Due to the long latent period for Ebola disease, we extend the SIR model introduced in Section 2 to incorporate an
additional Exposed compartment describing individuals in the period between contracting the Ebolavirus and having
symptoms. The SEIR model is a direct extension to the SIR model for which we now define Et as the number of individuals in
the exposed compartment and E*t as the number of newly exposed individuals during the continuous time interval [t, t þ 1).
The difference equations become:

Stþ1 ¼ St � E*t
Etþ1 ¼ Et þ E*t � I*t
Itþ1 ¼ It þ I*t � R*t
Rtþ1 ¼ Rt þ R*t :

The transitions between compartments are still assumed to be binomially distributed as E*t � Bin
�
St ;p

ðSEÞ
t

�
, I*t � Bin

�
Et ;pðEIÞ�

and R*t � Bin
�
It ;pðIRÞ�. Now, pðSEÞ

t is the transmission probability of interest, as it describes the probability of an infectious
individual transmitting the pathogen to a susceptible individual. As before, the form of the transmission probability can be
described by the right hand side of Equations (4) and (5), or 6, depending onwhether time-varying transmission is allowed or
behavioral change is captured with an alarm function. The other transition probabilities are specified as p(EI) ¼ 1 � exp(�l)
and p(IR) ¼ 1 � exp(�g), where l and g are the mean lengths of the latent and infectious periods, respectively. Here, I* and R*
are partially defined by the data, and E* is completely unobserved. Missing exposure, symptom onset, and removal dates are
imputed using data-augmented MCMC methods (Lekone & Finkenst€adt, 2006).

Using the SEIR framework, various models were fitted. Five BC models using the power, threshold, Hill, spline, and
Gaussian process alarms were evaluated. For comparison, we also fit models with no behavioral change, a model with a pre-
specified intervention effect, and the flexible bt model as described in the simulation study. Previous modeling of this
Fig. 5. Democratic Republic of the Congo observed Ebola disease data. Cases are recorded by symptom onset date and deaths by death date.
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epidemic has evaluated a pre-specified intervention effect by assuming constant transmission until the time of the inter-
vention, after which transmission decays exponentially (Lekone & Finkenst€adt, 2006; Ward et al., 2023a). Mathematically,
this is written by allowing bt in Equation (5) to be equal to exp½b1 þ b2ðt � t*Þ1ðt� t*Þ�, where b1 corresponds to the baseline
intensity, and b2 represents the decay in transmission after the intervention was introduced at time t* (May 9th).

In the BC models, we let the alarm be informed by cumulative observed incidence as this epidemic was completely
observed. Although there were 25 additional infections, as the timings of these are unknown, so we do not allow them to
influence the population alarms. The first three observed cases occurred consecutively on March 6, 7, 8, so we start our
modeling onMarch 8th and assume E0¼ 2 and I0¼ 1. It's known that two deaths occurred prior to this date (Khan et al., 1999),
so we set R0¼ 2.We assume N¼ 5, 363, 500 (Lekone& Finkenst€adt, 2006). Vague priors for b and the parameters of the alarm
function and flexible spline model were specified as in Section 2.3. The priors for l and gwere informative and specified as in
previous modeling of this epidemic (Lekone & Finkenst€adt, 2006). Full specification of all priors for model parameters are
detailed in Supplementary Table 12. Convergencewas established by a Gelman and Rubin diagnostic value below 1.1 (Gelman
and Rubin, 1992).

WAIC was used to determine the best fitting models (Table 2). All five BC models had lower WAIC than the standard
models used for comparison, indicating the BCmodels have better fit than the other approaches. Interestingly, the parametric
threshold and Hill BC models had lower WAIC than the non-parametric Gaussian process and spline models, with the
threshold model having the overall lowest WAIC. Of the standard approaches, WAIC was relatively similar between the
flexible bt model and the model with pre-specified change in transmission after the intervention. The no behavioral change
model has the highest WAIC indicating poor fit.

Fig. 6 depicts the estimated alarm functions for all the BC models. The power, spline, and Gaussian process alarms are
relatively similar in shape, with steady increase in alarm as more cases were observed during the epidemic, with peak alarm
around 0.8e1.0. On the other hand, the threshold and Hill alarms both estimate low alarm values until around 100 total cases
had been observed, after which the estimated alarm value shifted to around 0.75. The 100th case was observed on May 2nd,
which also corresponds to the peak of the epidemic. It's worth noting, however, that this was one week prior to the discovery
of Ebola as the cause of the outbreak and subsequent introduction of control measures.

As the threshold BC model provided the best fit per WAIC, we compare estimated reproductive numbers and posterior
predictive distributions of cumulative incidence between the BC model and the three standard modeling approaches. The
posterior predictive distributionwas computed using 10,000 posterior draws of the model parameters, and for each draw, the
epidemic trajectory is simulated from the chain binomial model. When fitting the BC models, it was assumed that the alarm
was a function of only the 291 observed cases, as the symptom onset date was missing for the other 25. To ensure accuracy in
the posterior predictive distribution for the BCmodels, we assumed only 92% of cases were observed and only observed cases
could impact the alarm function.

The BC model, intervention model, and the flexible bt model all provide relatively similar estimates ofR0ðtÞ at the start of
the epidemic with posterior means between 1.9 and 2.1 (Fig. 7). However, the intervention model is restricted in shape as the
change point in transmission is fixed at May 9th, and the exponential decay form of the intervention effect forces trans-
mission and R0ðtÞ to zero by the end of the epidemic. Conversely, the threshold alarm can detect a change point in trans-
mission which best fits the data, and the alarm level after the change point dictates the reduction in R0ðtÞÞ, although R0ðtÞ
must remain constant after the change point occurs. This flexibility allows the BCmodel to detect behavioral change resulting
inR0ðtÞ dropping below 1 on April 30, around aweek prior to the implementation of public health interventions. The flexible
bt model results in reproductive number estimates similar to the intervention model, although with much wider variance at
the start of the epidemic and while the intervention model estimates R0ðtÞz0 by the end of May, the flexible bt models
estimates R0ðtÞ to level out at a value of 0.1.

The subtle differences in the trajectory of R0ðtÞ between the modeling approaches lead to larger differences in the pos-
terior predictive distribution of cumulative incidence. As the reproductive number estimated for the intervention model goes
quickly to zero, the final size of the epidemic is underestimated with a posterior predictive mean of 116 compared to the
observed value of 316. The flexible bt model overestimates the final size with a posterior predictive mean of 471 and also has
huge variability in predicted epidemic trajectory. The threshold BC model has the best posterior predictive distribution
Table 2
WAIC values for all models used in the DRC Ebola disease analysis. Models are ordered by WAIC.

Type Model fitted WAIC

BC Model Threshold 600,676.6
Hill 603,614.8
Gaussian Process 605,838.9
Power 611,096.6
Spline 616,479.3

Standard Approach bt 622,297.5
Intervention 622,767.5
No Behavior Change 675,743.6
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Fig. 6. Posterior means and 95% credible intervals for all estimated alarm functions for the DRC Ebola outbreak.

Fig. 7. Posterior means and 95% credible intervals for the effective reproductive number over time and the posterior predictive distribution of cumulative
incidence for the DRC Ebola outbreak. Results are presented for the BC model using the threshold alarm, the model with an exponential decay intervention, the
flexible bt model, and the model with no behavioral change.
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although it still underestimates the final epidemic size with the mean at 235. The model with no behavioral change is forced
to average transmission over the entire epidemic and estimatesR0ðtÞ just below 1 over the entire time period, which results
in posterior predictive distribution over epidemics that only infect one or two individuals before dying out.
4.2. COVID-19

After the first cases of COVID-19 were identified in China in December 2019, the SARS-CoV-2 virus spread rapidly across
the globe, being declared a pandemic by the World Health Organization in March 2020 (WHO, 2020). We illustrate the use of
the BC model to evaluate change in behavior over time using two waves of COVID-19 data from New York City (NYC) during
the period March 2020eMay 2021. The data used for this study are publicly available as part of the NYC Department of Health
and Mental Hygiene Github repository (NYC Health, 2022). Based on the observed case counts, we define two waves of
COVID-19 in NYC to be analyzed (Fig. 8).
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Fig. 8. New York City COVID-19 data and waves defined for the analysis. Wave 1 occurs between Mar 1 and Jun 15, 2020 and Wave 2 between Oct 1, 2020 and
May 15, 2021.
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To illustrate the differences in the various BC model specifications, the power, threshold, Hill, spline, and Gaussian process
alarms were all used tomodel both COVID-19 waves. As in the simulation study, themodel with no behavioral change and the
flexible bt model were also fitted for comparison purposes. Prior to model fitting, the reported counts of new cases over time
were smoothed to the 7-day average to account for weekly fluctuations in reporting. Although COVID-19 is known to have a
short latent period around 5e6 days (Xin et al., 2022), this is difficult to incorporate in a fully Bayesianmodel due to the lack of
reliable data arising from the presence of asymptomatic infections and lag between infectiousness and testing (Subramanian
et al., 2021), and therefore the SIR model is commonly used (de Oliveira et al., 2020; Irons & Raftery, 2021; Lawson and Kim,
2021, 2022). For this analysis, we assume the smoothed incidence provides the time-series I*, and use data-augmentedMCMC
to estimate R*. While we know this is not true because of under-reporting, this assumption reduces computational expense.
Additionally, as we anticipate behavioral change to be informed by observed epidemic trajectory, we do not expect the
absence of undetected cases in our model to impact the estimation of our alarm function.

The population size was set as N ¼ 8,804,190, the recorded population from the 2020 census. For each wave, we allow the
initial conditions S0 and I0 to be estimated, using strong priors based on the past epidemic trajectory. Vague priors for b and
the parameters of the alarm function and flexible splinemodel were specified as in Section 2.3. The prior for gwas specified to
correspond with a mean infectious period of three days and 80% prior probability of the mean between 2 and 4 days. This
corresponds with the typical length of time between an individual becoming contagious and testing positive and subse-
quently isolating. Results of a sensitivity analysis on this prior indicated little impact to the main conclusions across various
priors and are provided in the Supplementary Material. Full specification of all priors for model parameters are detailed in
Supplementary Table 21. In this example, the epidemic was not fully observed, so the BC models were fit using both 30-day
and 60-day average incidence to inform the alarm functions. Convergence was established by a Gelman and Rubin diagnostic
value below 1.1 (Gelman and Rubin, 1992).

To determine the best fitting models for the two COVID-19 waves, WAIC values were compared (Table 3). Modeling bt
flexibly with splines provided the best fit to both waves, indicating that the additional structure imposed by the alarm
function does not fully capture the observed epidemic trajectory. The Gaussian process and Hill alarms were among the BC
models with the lowest WAIC across both waves. For the first wave, using 60-day average incidence to inform the alarm
function offered better model fit, while the 30-day average performed better for the second wave. This is likely due to the
different shape of the epidemic curve duringWave 2, which peaked in the beginning of January 2021, but leveled off between
MarcheApril 2021 before incidence was truly driven down. In contrast, Wave 1 showed steady decline in incidence post-
peak, indicating the behavioral change in the population continued until the wave died out. The model with no behavioral
change had the highest WAIC for Wave 1 and for Wave 2 had the second highest WAIC, indicating the importance of
incorporating of behavioral change when considering real epidemic data.

Based on the WAIC results, we present the estimated alarm functions for each BC model based on 60-day average inci-
dence for Wave 1 and 30-day average incidence for Wave 2 (Fig. 9). Despite the restricted shapes of the parametric functions,
the estimated alarm functions were generally similar. The spline and Gaussian process alarms were very alike, which is not
surprising due to the relationship between Gaussian processes and splines (Wahba, 1978). Comparing the estimated alarm
functions between the twowaves can be used to evaluate changes in pandemic response over time. During the first wave, the
alarm reached very high levels at relatively low observed incidence. The second wave started while many restrictions from
the first wavewere still in place, and correspondingly the BCmodels estimate very slight increases in alarm at higher levels of
observed incidence. In the secondwave, the estimated Gaussian process alarm is notmonotonically increasingwhich allows it
to capture raised alarm during the large winter peak of the epidemic and during the subsequent mini-peak occurring in the
spring. As the Gaussian process alarm achieved the lowest WAIC, it seems this flexibility allows for better model fit.
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Table 3
WAIC values for all convergedmodels used in the NYC COVID-19 analysis.Within eachwave, models are ordered byWAIC. The BCmodels
chosen for the final results are indicated in italics. The power alarmmodels did not converge forWave 2 and are therefore excluded from
these results.

Wave Model fitted Smoothing WAIC

Wave 1 bt None 1089.83
Gaussian Process 60-day 1092.92
Spline 60-day 1099.02
Hill 60-day 1125.36
Spline 30-day 1157.33
Gaussian Process 30-day 1157.89
Hill 30-day 1190.37
Threshold 30-day 1466.06
Threshold 60-day 1466.34
Power 60-day 1540.83
Power 30-day 1753.43
No Behavior Change None 2263.96

Wave 2 bt None 2865.70
Gaussian Process 30-day 3025.92
Threshold 30-day 3041.86
Hill 30-day 3045.90
Spline 30-day 3051.68
Threshold 60-day 3078.72
Hill 60-day 3080.96
Gaussian Process 60-day 3091.50
No Behavior Change None 3102.84
Spline 60-day 3105.28

Fig. 9. Posterior means and 95% credible intervals for all estimated alarm functions from each wave of the NYC COVID-19 epidemic. The power alarm model did
not converge for Wave 2 and is therefore excluded from these results.
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Finally, we compare estimated reproductive numbers and posterior predictive distributions between the BC model using
the Gaussian process alarm, the flexible bt model, and the model with no behavioral change (Fig. 10). The Gaussian process
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Fig. 10. Posterior means and 95% credible intervals for the effective reproductive number of time and the posterior predictive distribution from each wave of the
NYC COVID-19 epidemic. Results are presented for the BC model using the Gaussian process alarm, the flexible bt model and the model with no behavioral change.
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alarm was chosen as it had the lowest WAIC of the BC models for both waves. The posterior predictive distribution was
computed using 10,000 posterior draws of the model parameters, which includes S0 and I0. For each draw, the epidemic
trajectory is simulated from the chain binomial model and is compared to the true observed epidemic curve. For the first
COVID-19 wave, the trajectory of R0ðtÞ is quite different between the three models, particularly between March and April
2020. The BC model estimatesR0ðtÞ starting around 2, while the flexible bt model estimates a higher value around 3, and the
model with no behavioral change estimatingR0ðtÞz1 over the entire wave. This leads to vastly different posterior predictive
distributions, due to the high variability in stochastic epidemic models at the start of an epidemic. Interestingly, the flexible bt
model has poor posterior predictive fit, despite having the lowest WAIC. This is likely because WAIC weights each time point
equally in calculating the log predictive density, whereas the posterior predictive epidemic trajectory is highly influenced by
the estimated R0ðtÞ at time one. Additionally, the flexible bt model has a very wide 95% posterior predictive interval, esti-
mating the peak incidence to be anywhere between 6000 and 50,000 cases per day. The BC model has lower uncertainty in
the posterior predictive distribution, but the 95% interval does include the scenariowhere the epidemic dies out immediately.
The high variability in these distributions is not surprising as forecasting at the very beginning of an epidemic is extremely
difficult with many unknowns.

In Wave 2, the estimated R0ðtÞ for the BC model and the no behavioral change model is just above 1 until mid-January
2021. The flexible bt model follows a similar trajectory, except R0ðtÞ is below 1 for the first two days, which allows it to
better capture the slow growth of the epidemic at the beginning of October 2020 in the posterior predictive trajectory. The BC
model struggles with the shape of the epidemic curve inWave 2, as incidence stops declining betweenMarch and April 2021.
However, the posterior predictive distribution appears slightly better than that of the model with no behavioral change.
5. Discussion

There is a critical need to understand the dynamics of population behavior changing in response to an infectious disease
outbreak. Guided by the previous deterministic literature, we developed a novel Bayesian epidemic model framework which
characterizes behavioral change dynamics at the population level while remaining simple enough to be computationally
feasible. We showed that the proposed BC model can accurately estimate the mechanism of behavioral change across a wide
range of scenarios, including when flexible non-parametric methods are used. The practical implications and usefulness of
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the proposed approach were illustrated with two relevant case studies using Ebola and COVID-19 data, although the model
could be applied to any communicable disease.

Our simulation study conducted a thorough investigation of the BC model and made several notable findings. First, when
behavioral change impacts epidemic trajectory, the BC model is able to accurately estimate the mechanism of behavioral
change. We considered three different alarm functions to describe behavioral change, and although the functions impact the
epidemic trajectory differently, we were able to reasonably capture all three functions using non-parametric splines and
Gaussian processes. This is hugely beneficial, as it may be difficult to choose an appropriate functional form of the alarmwhen
analyzing real epidemic data. We also showed that posterior predictive forecasts from the BC model can accurately detect a
second peak, something that is not feasible with the traditional SIR model. Finally, WAIC provided an accurate metric for
selecting the best fit model and we found the additional structure in the BC models generally lead to lower WAIC values than
themore flexible approach of estimating bt directly, even though both approaches are able to capture changes in transmission
over time.

Our analysis of the Ebola and COVID-19 epidemics offers numerous insights into behavioral change. In both analyses, we
found the incorporation of behavioral change offers superior model fit compared to an approach without behavioral change.
In the analysis of the Ebola outbreak, we illustrated the ability of the BC model to detect behavioral change which occurs
separately from a government intervention. Allowing for structured behavioral change without restricting the timing or
impact offered superior model fit and provided additional insight on the population engaging in protective behaviors a week
prior to Ebola being identified as the cause of the outbreak. The use of the SEIR model in this analysis also shows how the BC
model can be incorporated intomore complex compartmental models when additional data is available. In the analysis of the
first two waves of the COVID-19 pandemic in New York City, we presented the use of the BC model for comparing behavioral
change over time.

Although illustrating the proposed model on real epidemic is extremely valuable, these analyses are not without limi-
tations. In particular, the COVID-19 pandemic has led to many modeling challenges arising from the large presence of
asymptomatic cases, lack of testing availability, changes in disease severity over time, and waning immunity. By modeling the
COVID-19waves separately, wemitigate issues with changing disease severity and waning immunity, not tomention changes
in the way the population/government reacted to increasing cases between waves. However, it might be desirable to model
multiple waves in one analysis, in which case we would want to extend our model to allow for time-varying alarm functions
and/or changes in pathogen transmissibility. We have not incorporated undetected infections in the model, however, some
preliminary simulations (not shown) have found that the presence of undetected infections which are not accounted for in
the model does not impact the estimation of the alarm function when the alarm is based on observed cases, a realistic
assumption. While this model misspecification does likely lead to underestimation of the reproductive number, our primary
goal in this work is to illustrating the BC models ability to estimate behavioral change and we believe this is accomplished
with the presentedmodel. Various methods to account for undetected infections exist, including the addition of vaccinated or
asymptomatic compartments (Angeli et al., 2022) or incorporating sero-prevalence surveys (Irons & Raftery, 2021). The BC
model could be directly incorporated into these more complex structures when needed to achieve the analysis goals.

In this work we considered a population-average model which assumes homogeneous mixing and equal susceptibility for
all members of the population. These assumptions may not be realistic, as factors like age are known to impact contact rates
and susceptibility. Many extensions to the Bayesian SIRmodel have been introduced to relax these assumptions, including the
use of a stratified population structure (Brown et al., 2016; Porter&Oleson, 2016), the addition of spatial random effects in the
transmission rate (Lawson & Kim, 2021; Mahsin et al., 2022), or allowing the transmission rate to be impacted by individual-
level covariates (Deardon et al., 2010). Establishing the BC model in the population-averaged framework is important as data
are often limited, but ongoing work seeks to incorporate behavioral change into models with individual covariates and spatial
structure. In a more precise model where susceptibility and contact patterns are estimated separately, the alarm function
could modify either factor. The alarm function itself may also be modeled as a function of individual-level covariates.
Additionally, one may consider both the transmission rate and the alarm function to vary spatially, and models incorporating
spatial structure in the alarm function could estimate region-specific alarms.

Across all alarm functions considered, we assume the alarm level is zero when there have been no cases observed. This
assumption is realistic for new or localized outbreaks, but may be restrictive when considering the scale of a global pandemic.
For example, we may expect alarm in a rural region to be elevated prior to the first incidence, based on knowledge of disease
occurrence in a nearby urban area. While one could consider adding a parameter to estimate a baseline alarm level, without
strong priors this would be unidentifiable with the baseline transmissibility b in a single population model. However, in a
multi-region spatial model with some global baseline transmissibility this type of “nugget effect” could be estimated for each
region.

The proposed framework models behavioral change implicitly by allowing transmission to depend only on the perceived
amount of disease in the population. However, time-varying measures of population behavior (e.g., Google mobility reports)
exist and could be used to incorporate behavioral change directly in the specification of the transmission rate (Vanni et al.,
2021; Hu et al., 2021). One disadvantage of this approach is it requires simulation of the behavioral change metric, which
may be challenging. In contrast, transmission in the BCmodel is based on previous incidence, which is generated directly from
the SIR model. Despite this issue, comparing an approach using mobility metrics to the BC model is a promising avenue for
future work. Developments including both measures of mobility and an alarm function based on epidemic trajectory in the
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transmission rate would be particularly interesting. In this setting, one could examine whether the alarm function is able to
detect “finer grain” behavioral change which may not be captured by mobility data, e.g., voluntary masking.

Software

Software in the form of R code, together with data used and complete documentation is available at https://github.com/
ceward18/epidemicBCM.
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