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Introduction

Data is now theworld’s most valuable resource. In 2018, the fivemost valuable companies in theworldwere, in decreasing
order of valuation, Apple, Alphabet, Microsoft, Amazon and Facebook. Compare this with the situation 10 years earlier, where
the top valued companies were, in decreasing order, PetroChina, Exxon, General Electric, China Mobile and ICBC.

This transition towards a data-driven world can also be apprehended when considering the wealth of information that is
readily accessible on the Internet. Science is behind the technology that drives this information exchange, so it is not sur-
prising that it would also be involved in generating some of that information. Many areas in the biological sciences are
embracing this change. At the forefront, areas such as genomics and proteomics have most of their data openly accessible
online. More andmore ecological publications require that data be made available to others. Mathematical biology, because it
is intrinsically connected to some of these domains, is also benefiting from this change. This abundance of data does not affect
all areas of mathematical biology in the same way. Besides omics, population dynamics is a domain that sees a lot of in-
formation put online. However, even within population dynamics, it is important to understand that a lot of data remains
difficult to access; for instance, not all epidemic propagation events see their data be made readily available.

Altogether, despite these limitations, it is becoming increasingly evident that not using data when it is available should be
a thing of the past. At the very least, a modeller should be situationally aware. What are the orders of magnitude of the
numbers of individuals in the populations under consideration? What are the time scales involved in the evolution of the
quantities being studied? These lecture notes are meant to provide some initial leads on the systematic use of data in the
context of mathematical epidemiology.

I have two main goals here. The first is to give a very brief overview of the abundant resources available to develop an
understanding of the context in which we are operating. My second goal is to illustrate simple techniques of data incorpo-
ration in models. Note that these lecture notes barely scratch the surface of a very rich domain area. Also, other lecture notes
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in this special issue explain in more detail how to deal with specific problems in the use of data. My aim is less ambitious: I
advocate for a more integrated use of data and present techniques that can be used to inform models with data.

This document is organised as follows. In Section 1, I discuss data sources and in particular, the distinction between
proprietary and open data. In Section 2, I describe some programmatic mechanisms for accessing and acquiring open data.
Even when one has data, incorporating it into models is not necessarily straightforward; in Section 3, I use the very simple
example of life expectancy as a cautionary example of the issues involved. The second part of the document presents case
studies related to the spatial and temporal spread of epidemics. Some data and general ideas are shown in Section 4, with
further discussion on metapopulation models, a way to apprehend this type of problems. Two examples are then given; the
case of an SLIAR model for the spread of a disease between 5 countries is considered in Section 5 and the same type of model
is used in Section 6 to study the spread of influenza between the regions of France.

Remarks about this document

To illustrate the philosophy of these lecture notes, this entire document is produced using Rmarkdown (link), an extension
of the R programming language. Rmarkdown combines the markdown language, a simple markup language allowing LaTeX
instructions and R code chunks that are executed when the code is run in R. I could also have used sweave, another R

extension allowing, this time, to include R code in LaTeX. However, Rmarkdown has the advantage that, using almost the exact
same file with very few modifications, one can also generate an html page.

The source file is accessible as an electronic appendix; it has the extension Rmd. All material is also available on my GitHub
page (link). I will try to ensure that all links in this document remain current on the GitHub page; if some of the links provided
here fail, refer to the document there. Data used to produce figures in this document was pulled off theweb and are current as
of the date of generation of the pdf of these lecture notes (2019-12-27). Some R codes are presented in the document, making
for a slightly clunky feel. In a normal Rmarkdown document, this code would typically be hidden. I have hidden some in-
structions when they were redundant; they are nonetheless present in the Rmd file and their existence is indicated in the text
by a comment. Also, in order to improve legibility, some long strings were pre-defined and comments were removed from the
displayed code chunks. Finally, rather than applying a function to the result of a function, i.e., f(g(x)), I have sometimes used
successive calls, i.e., x < - g(x) followed by x < - f(x).

To generate the document from the provided Rmd file, the following (free) programs are required.

� A recent version (� 3:5) of the R programming language, which can be downloaded here (link).
� Although not mandatory, using RStudio (link) greatly facilitates both R programming and, more importantly, the gen-
eration of this pdf file from the Rmarkdown source.

� A functional LaTeX installation is required.
� Several R packages (the list of packages used appears in the setup chunk of the Rmarkdown code).

Web access is also required. In order to accommodate readers with limited Internet access, the electronic appendix and
GitHub repository include a copy of the data current as of the date of compilation. In the first chunk of the Rmd file, setting
DOWNLOAD ¼ FALSE will trigger the use of this downloaded data rather than online one. As a consequence, all web-based
queries in the text take the form.
The code could be simplified by removing this check and just running said commands. Two additional remarks about using
Rmarkdown to produce such a file. First, it is a good idea to name chunks, as this helps when debugging. This is easily done, by
adding a name after the call to R and before any chunk options, with the chunk header taking the form.
Second, in the provided Rmarkdown file, the following chunk options were set globally:
This has the effect of removingmost warningmessages. While this is a good idea for a production-ready document such as
this one, it should be removed while developing.

https://rmarkdown.rstudio.com/index.html
https://github.com/julien-arino/modelling-with-data
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/


J. Arino / Infectious Disease Modelling 5 (2020) 161e188 163
1. Data is everywhere

1.1. Proprietary data versus open data

The Internet contains an enormous quantity of data, at scales that have become virtually impossible to quantify. As one
searches for data on this medium, one is confronted to two main types of resources: proprietary data and open data.

Proprietary data is often generated by companies, governments or research laboratories. It is either impossible to access, or
its access is heavily regulated. At the other end of the spectrum, open data is easily accessed. It is often data originating from
the same sources as proprietary data, but it is released for common use, typically after a cool-off period. It is important to note
that evenwhen data is open, it is subject to a variety of licensing frameworks. Before using open data, it is therefore important
to establish what type of licensing it is offered under; it is also important to establish citingmechanisms for that data. Another
concern with open data is that it can be of varying qualities. This should be ascertained; some brief notions of data quality
insurance are discussed later.
1.2. Open data initiatives

An exciting trend for modellers, which started 5e10 years ago and is becoming increasingly common, are open data
initiatives. Such initiatives see governments (local or higher) create portals where data is centralised and made accessible,
usually with very few constraints. The following illustrate these initiatives, from local to global scope:

� https://data.winnipeg.ca/
� https://open.alberta.ca/opendata
� https://open.canada.ca/en/open-data
� https://data.europa.eu/euodp/data/
� https://data.un.org/
� https://data.worldbank.org/
� https://www.who.int/gho/database/en/
2. Acquiring data

Before I review data acquisition methods, let me remark that even when data is readily available online, it is always good
practice to keep a copy of the downloaded data once it has been acquired. Indeed, data is sometimes removed or moved, or it
can be difficult to access because of poor or nonexistent internet connection or state-imposed filtering.
2.1. Retrieving data from open data portals

There are three main methods for retrieving data from open data portals:

1. Do it by hand;
2. Use the site’s API if there is one;
3. Use an R (or another language) library designed for that.

I now review these methods.

2.1.1. Retrieving data ‘by hand’
This proves to be themost annoying way to acquire data from open data portals, by a largemeasure. To illustrate using this

method, suppose I were to browse to the World Health Organisation Global Health Observatory site (link) and follow links
there until I find data giving the number of reported cases of measles per country per year, for instance (link). At the time of
writing, theWHOGHO data site has recently moved to a new platform, which at present allows exporting the data tables only
in pdf or png form. Those interested in getting the actual data can still (at the time of writing) find this data on another part of
the WHO website (link).

2.1.2. Using an API
Application programming interfaces (API) allow client-side url-based access to server-side functions. In other words and in

particular, API can be used to query databases hosted on the Internet. The presence of an API is typically indicated by long URL
(web addresses) including symbols such as (?,:, *, &). API have become ubiquitous in recent years; it has become quite
common to use them to perform quite a few operations server-side.

TheWHOGHO data in Section 2.1.1 can be accessed using two different API. Both arewell documented; the one I use below
(Athena) is documented here (link), with, most importantly, some examples (link).

https://data.winnipeg.ca/
https://open.alberta.ca/opendata
https://open.canada.ca/en/open-data
https://data.europa.eu/euodp/data/
https://data.un.org/
https://data.un.org/
https://data.un.org/
https://data.worldbank.org/
https://www.who.int/gho/database/en/
https://www.who.int/data/gho
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/measles---number-of-reported-cases
http://apps.who.int/immunization_monitoring/globalsummary/timeseries/tsincidencemeasles.html
https://www.who.int/data/gho/info/athena-api
https://www.who.int/data/gho/info/athena-api-examples
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Before going into a bit more detail about the use of API, let me give the example of accessing the WHO GHO measles data
mentioned in Section 2.1.1. To do so, I must construct a URL that spells out my query. In the following chunk, I list the various
components required.
These components are relatively easy to identify, even without referring to the API documentation. options1 indicates
that the result should include all countries and all regions (the different geographic groupings used by the United Nations and
other agencies). options2 says the rows should be the countries/regions and columns the value of the selected index for each
year. options3 specifies the type of table. Finally, options4 forces the return value to be a csv table. To get the data set in
memory directly, it then suffices to reconstruct this address and use the R function read.csv.
The option skip ¼ 1 is used because there are two lines of information at the top of the csv file that are not part of the
table itself. The variable base_url_who will be used again later. Using the command above, one would end up with a data
frame (a common R data type), measles_data, containing the table under consideration.

Later, in Section 2.1.3, I show some examples of API for which there exists R libraries allowing easy access to the data.
However, as far as I am aware, at the time there is no such library for the WHO GHO data. However, it is easy to see how the
ideas that follow could be made a little more robust and turned into such a library. Therefore, let me briefly explain how one
could programmatically browse the content of the WHO GHO database.

Reading the API documentation, top level WHO information comes in XML format, so I have to play with this a bit. Let me
gather all the information in one place.
XML documents are structured documents. What the previous chunk of code does is that it browses the XML document
tree. I then make a data frame of the result, then tidy up a bit.
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As a result of this, I have a data frame containing 3287 indicators. This data frame can now be mined for information. Let
me for instance find indicators that contain the word polio. (Note that the search is performed in a case-insensitive way, so
that polio and Polio are both acceptable results.)

I obtain the following result.
Description
 Name
Poliomyelitis - number of reported cases
 WHS3_49

Polio (Pol3) immunization coverage among 1-year-olds (%)
 WHS4_544

Polio immunization coverage among one-year-olds (%)
 poliov

Polio immunization coverage among one-year-olds (%)
 vpolio
Using the name of one of the indicators in the table above (e.g., poliov) as indicator in the first chunk in this section
would then allow to load the corresponding dataset.

2.1.3. Using existing R librariesUsing existing R libraries
R abounds with packages allowing to perform easily the operations I carried out with the WHO GHO indicators in Section

2.1.2. (Python also has plethora of packages to access API, but for the present document I use only R solutions.) To name a few.

� WDI: query World Development Indicators (from World Bank).
� wbstats: download World Bank data; I illustrate the use of this library later.
� openstreetmap: access Openstreetmap data. This is very useful for mapping.
� tidycensus: get USA census data; this requires an API key, i.e., one needs to obtain a key from the relevant authority.
� cdcfluview: access the US CDC flu surveillance data.

Let me illustrate such libraries by using wbstats to find country life expectancy and population information.

My query for life expectancy data returns 43 results. Parsing through lifeExpectancy_vars_wb, I find the index
SP.DYN.LE00.IN, whose description reads Life expectancy at birth, total (years). On the other hand, my search for ‘popu-
lation’ returns 2464 results, so a more refined search is carried out.

With this more refined query, I find a suitable candidate, SP.POP.TOTL, which is described as Population, total. I now use
the function wb to download the corresponding data.

Note that theWorld Bank data has results for countries as well as for groups of countries. The latter are useful as they allow
to work at a broader scale, both geographic (for instance, Caribbean small states) and economic (for instance, Fragile and
conflict affected situations).
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Since World Bank data queries are particularly important in this document, let me make a few additional remarks.

� One useful option to the function wb is mrv ¼ , which returns the indicated number of most recent values for the index (or
the number of values present in the database if it is lower than the number requested). See an example of usage below.

� However, not all countries have all years present. If querying for more than one country, it is best to instead give a wide
range of startdate and enddate, then find the most recent year for each country, as using mrv can have an unintended
consequence in this case. A function, latest_values_general, is provided in the companion file use-

ful_functions.R, which can help with this task. See an example in Section 5.3.2.
� Using the option POSIXct ¼ TRUE returns dates that are easier to process, especially for monthly data.

Let me illustrate the use of mrv by plotting the population of China (Fig. 1). Remark that it is often useful, when exploring
data or presenting simulation results, to ensure that axes are easy to read. So instead of the usual plot command, I use the
function plot_hr_yaxis (in the file useful_functions.R) that labels units of the y-axis of the plot in a more human
readable way.
2.2. Something intermediate e htmltab

While being able to obtain data by querying an API is ideal, there are many cases where this is not an available option. It is
however easy to grab data from tables found on web pages, using the R library htmltab. Remark that it is also possible to
extract data from tables in pdf files, but this is not covered in these notes. To illustrate the use of htmltab, let me compute
the population density of countries using two tables grabbed fromWikipedia (link1,link2). Note that this is a futile exercise, as
Wikipedia also includes tables with population density information, but it serves to illustrate another important R command,
which allows to merge tables.

Be careful when compiling this Rmd file: Wikipedia comments can appear as tables, so you may have to change the option
which ¼ 2 as it is currently set to a different value if the following commands yield an error.
Fig. 1. Evolution of the population of China as given by World Bank data.

mailto:Image of Fig. 1|eps
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Now that the data has been acquired, some processing is needed. Tables in Wikipedia show numbers with comma
separating groups of three digits; these commas need to be removed. Surface areas are also provided in both kilometres and
miles; I remove the latter. Finally, I rename some columns for convenience.
Note that htmltab allows to apply a function to each column in the table, so some of this processing could have been
carried out while the table was being downloaded. I now use an important function, merge, to merge data frames with
columns containing some common entries. This performs the equivalent of a JOIN command in SQL.
Let me now show how to map spatial results. There are many R libraries for mapping. One possible way is to proceed as
follows. First, I need to translate place names into ISO 3166 (country) codes, set up bins for values and set up a colour palette.
Note that bins are set up here using 20 percentiles. Indeed, using a linear scale results in too little contrast.



Fig. 2. Population density.
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Note that I have pruned the list of countries to get rid of ones that pose problem to the mapping routine (typically, small
overseas dependencies). Proper use would dictate to go through the list of errors and establish the corresponding region
name. Now that places have been binned in terms of their 20 percentile, I plot them (Fig. 2).

2.3. The extreme e data extraction from figures

One rather anecdotal method is availablewhen data is not open per se, which is to capture numerical data from a figure in a
publication. Note that this is by far the most time onerous method of data acquisition and should typically be a last resort
option.

As soon as work is published, the figures contained therein indeed become part of the common good and the data there
can be used, with proper citation of the original work. Many publications nowadays encourage publication of the data, so one
should first check if the data used in the paper has been published. In the case where the data is not available online, though,
for instance in old papers, one can digitise using programs such as Engauge Digitizer (link) or g3data (link). These programs
typically present an interface in which the figure whose data must be digitised is displayed. In a first step, the user enters
several reference points on the figure with known positions, for example, the origin and two points known on coordinate
axes. Then each point of the data is clicked on and the result is generated as a csv file.

To illustrate this method, let me first download the US census data fromWikipedia and plot it. In this case, I save the figure
to a file in order to then process it through the digitiser. Note that to make the plot easier to use, I also print a grid, which
makes setting reference points easy.

Note that the last instruction is used to completely remove the output of using dev.off(), which, interestingly, does not
seem to obey the warning ¼ FALSE, message ¼ FALSE directive given to knitr.

After processing this image with Engauge Digitizer, I obtain a csv file (provided in the electronic appendix). In order to
visually check the result, I plot in Fig. 3 the content of this file (in red) together with the original data (in black).

http://markummitchell.github.io/engauge-digitizer/
https://github.com/pn2200/g3data
mailto:Image of Fig. 2|tif


Fig. 3. Number of people in the USA as given by the census. Black: original data; red: digitised data.
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Clearly, the agreement is very good, since one can barely see any black, meaning the red points completely cover the black
ones. The situationwasmade as ideal as possible, however. In practical cases, the agreementmight not be as good. This should
be considered a last resort method and good practice dictates that additionally to citing the work from which the data
originates, one should additionally mention that the data is digitised, since errors stemming from imprecision in digitisation
should not be blamed on the authors of the original work.
3. Incorporating data in models e initial remarks

Now that the most basic mechanisms for acquiring data from the web have been explained, let me discuss how this data
can be incorporated into population dynamics models. Remark, however, that while it is important to be aware of the
magnitudes and time scales involved in the processes studied, it is also important to not use data just for the sake of using
data. Also, note that I do not discuss in these lecture notes another aspect of data acquisition that is very important, namely
the verification and validation of data.

There are a variety of ways for data to be incorporated into dynamical models. The main are as parameters or initial
conditions, or as time series with whichmodel solutions can be compared in order to identify other parameters. In essence, as
far as model simulations go, parameters and initial conditions can be thought of as being of the same nature, mimicking the
theoretic similarity between continuous dependence on initial values and parameters. So, by abuse of language, in these
notes, I often call parameters both parameters and initial conditions. Parameters can be classified for instance in terms of their
reliability or the way they are derived.

1. Reliably known parameters are related to geography, population, vaccination coverage, region centroids, etc. A typical
example would be the population of a country; there can be some uncertainty about the exact value, but the posted value
can be taken as given.

2. Known (or relatively well known) parameters are disease characteristics such as the incubation period or duration of the
infectious period. These are typically derived from expert knowledge based on statistical analysis of characteristics.

3. Imputed parameters are parameters whose values are not known precisely but can be computed from known parameters
by making some assumptions on processes. A typical example is the vaccination rate: it can be derived in a given model
from the knowledge of the vaccine coverage.

4. Identified parameters are typically obtained by comparing the outcome of the model with a known time series given as
data.
3.1. Example e Life expectancy

To illustrate the difficulty of dealing with data, let me consider what is, at first glance, a very easy parameter: life ex-
pectancy. Suppose I am tracking a cohort of individuals born at a certain time t0, where the only cause of death is natural
death, which occurs at the per capita rate d. (Because I am tracking a cohort, there is also no birth into the population.)

mailto:Image of Fig. 3|tif
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Without going into details (see for example (Thieme, 2003)), the hypothesis underlying the differential equation for the rate
of change of the number NðtÞ of individuals in this population,

N; ¼ � dN;

is that the duration of life for each individual is exponentially distributed with mean 1=d. The appropriateness of this hy-
pothesis depends on the aim of the model.

� If one uses the model for long term predictions, then the hypothesis is valid, since over several generations, the important
characteristic can be safely assumed to be the mean duration of life. In this case, we can just set 1=d to be the life ex-
pectancy data grabbed earlier.

� Now suppose that the model is to be used for short term predictions. In this case, the hypothesis of exponential distri-
bution of life durations becomes a problem, as I illustrate in the following example.

Let me consider the population of China. Querying theWorld Bank data, life expectancy at birth in China in 2017 was 76.47
years. Now recall that for a random variable with exponential distribution with parameter d (or mean 1=d), the survival
probability is given by S ðsÞ ¼ Pðt > sÞ ¼ 1� Pðt� sÞ ¼ e�ds. Using the value 76.47 years for the inverse of the death rate, it
follows that the proportion of individuals in a cohort born at time t0 ¼ 0 who survive to age t ¼ s is as shown in Fig. 4.

If considering a model for the long term behaviour of the population, the important characteristic is the red vertical line,
i.e., the mean. However, if one is interested in the short term dynamics, then there are two issues:

1. The initial attrition is too high. In Fig. 4, only 80% of the initial cohort remains after 30 years, which is much less thanwhat
it is in real life.

2. The tapering off is too slow. Almost 20% of the cohort survives to be 150 years old.

Here, I show two simple methods for addressing this problem. There are many others, more appropriate (but more
complex) ones.

� Refine the parameter of the exponential distribution to take into account known survival to given ages.
� Use the fact that the Erlang (Gamma) distribution is the sum of exponential distributions, i.e., add compartments.
3.1.1. Refining the parameter of the exponential distribution
Looking throughWorld Bank indicators as in Section 2.1.3, I find the indicator SP.POP.65UP.TO.ZS that has “Population

ages 65 and above (% of total)”, which I could use to refine the survival function. Call p65 that proportion, then

S ð65Þ¼ p65⇔e�65d ¼ p65⇔d¼ � ðlnp65Þ
.
65:
Fig. 4. Proportion of a cohort surviving when the mean of the exponential distribution equals the life expectancy at birth in China in 2017.

mailto:Image of Fig. 4|tif


J. Arino / Infectious Disease Modelling 5 (2020) 161e188 171
Grabbing the data from theWorld Bank, 10.92% of the population of Chinawas over 65 in 2018. From the formula above, in
order to have the (exponentially distributed) lifetime such that S ð65Þ ¼ p65, the mean lifetime should be 29.35 years.

Fig. 5 shows the original and the adjusted distributions. Note that while the slow tapering off is resolved with this new
value of d, this comes at the price of an even higher early attrition of the population.

3.1.2. Using an Erlang as a sum of exponentials
Let Xi be independent exponentially distributed random variables with parameter x and Y ¼Pn

i¼1Xi. Then, the random
variable Y,Eðn;xÞ, an Erlang distribution with n the shape parameter and x the scale parameter. (An Erlang distribution is a
Gamma distribution with integer scale parameter.)

In terms of compartmental models, this means that if n compartments are traversed successively by individuals, with each
compartment having an outflow rate of 1=x (or a mean sojourn time of x), then the time of sojourn from entry into the first
compartment to exit from the last is Erlang distributed with mean EðYÞ ¼ nx and variance VarðYÞ ¼ nx2. This is illustrated in
Fig. 6. For a single compartment as in Fig. 6a, the time of sojourn is exponentially distributed following the left-most (yellow)
curve in Fig. 7. Adding compartments with the samemean sojourn time per compartment results in increasingly red curves in
Fig. 7. Fig. 7 shows the corresponding survivals.

As an example of the use of adding compartments to fit known sojourn time distributions, let me consider the incubation
period for Ebola Virus Disease. During the 2014 EVD crisis in Western Africa, the WHO Ebola Response Team estimated in-
cubation periods in the paper (WHO Ebola Response Team, 2015). Table S2 in the Supplementary Information in (WHO Ebola
Response Team, 2015) gives the best fit for the distribution of incubation periods for EVD as a Gamma distributionwith mean
10.3 days and standard deviation 8.2, i.e., nε ¼ 10:3 and ε

ffiffiffi
n

p ¼ 8:2. From this, I obtain that ε ¼ 8:22=10:3x6:53 and n ¼
10:32=8:22x1:57. However, that is a Gamma distribution.

In order to fit within the context of using multiple compartments to better fit residence times, since the number of
compartments is an integer I need to find the closest possible Erlang distribution to this Gamma distribution. To do this, let me
compute the square of errors between data points generated from the given Gamma distribution and an Erlang. The following
function computes the square of the difference between data points ðti; diÞ and a Gamma distribution with shape shape and
scale theta, evaluated at the same ti. (To get an Erlang distribution, shape needs to be an integer.)
The following function takes as input data points ðti; diÞ and finds optimal scale and integer shape parameters (so an Erlang
distribution) corresponding to these data points. Note that the shape parameter is (arbitrarily) limited to 10, i.e., I allow at
most 10 compartments. Note that I use try to avoid issues linked to the potential non-success of the call to optim.



Fig. 5. Adjusted (exponential) life expectancy distribution for CHN, taking into account the desired area under curve for survival of 65 years and older.

Fig. 6. (a) Single compartment case, the time of sojourn is exponentially distributed. (b) Multiple compartments case, the resulting time of sojourn in the chain of
compartments is Erlang distributed.

Fig. 7. Erlang distributions with rate equal to 1 and shape parameters varying from 1 (yellow) to 10 (red). (a) Distribution. (b) Corresponding survival.
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Finally, I call the function abovewith parameters of the Gamma distribution as given in the paper. If you had your own data
points, you could use them instead in the chunk below. (The points in time for your data would be in the vector time_-
points, while the corresponding values would be in data_points.)

mailto:Image of Fig. 5|tif
mailto:Image of Fig. 6|tif
mailto:Image of Fig. 7|tif
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Now plot the result as well as the original curve, giving Fig. 8 (code chunk not shown).

4. Spatial spread of epidemics of humans

I now consider two real-life examples dealing with the spatial spread of epidemics, with focus on epidemics of human
diseases and more specifically, influenza. I first motivate the need to consider the spatial spread of infections, using some of
the techniques presented in the preceding sections of these lecture notes.

4.1. Motivation e pathogen spread has evolved with human mobility

Pathogens infecting humans spread over space and time together with the humans carrying them. As aworking definition,
let me definemobility as the collection of processes through which individuals change their current location. Until the advent
of leisure travel in the early 20th century, long range human mobility was mainly along trade routes. Now mobility has
evolved and as a consequence, so has the spread of pathogens humans carry.

Using the very broad definition of mobility given earlier, it is clear that the scale of modern mobility is difficult to
apprehend. It takes many different forms, is constantly evolving and involves numbers that are colossal.

In order to illustrate one of my points in these lecture notes, namely, that a modeller needs to be situation-aware, let me
show how one could gather evidence concerning the evolution of travel. This evidencewill not be used directly in the models,
but I do feel that its knowledge is important in model formulation and simulation.

In Fig. 9, I show the number (in millions) of people-trips taken on the French national railway network (SNCF) since 1841
and the evolution of the duration of a trip between Paris and Bordeaux since 1920 on the same network. (Code chunk not
shown.)

Thus, clearly, the number of passengers transported by train has increased considerably over the past 150 years, while the
amount of time it takes for passengers to cover distances has dropped. Another interesting component is the number of
incoming tourists worldwide, obtained from the World Bank. This is shown in Fig. 10.

Note that in the chunk used to obtain this figure, I illustrate another method for processing data: the use of the sqldf

library, which allows to use SQL-type queries on R dataframes. Note that WLD stands for World.
Fig. 8. Best Erlang fit of the Gamma given in (WHO Ebola Response Team, 2015).
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Fig. 9. Evolution of the annual number of passengers transported since 1841 and of the duration of a Paris to Bordeaux trip since 1920, by train, in France.
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Another increasingly popular method for parsing through data not illustrated in these lecture notes are the libraries in the
tidyverse. They are extremely useful, but as someone who has used SQL a lot in other context, I tend to use sqldfmore. If
you are agnostic in terms of method, I do recommend learning the tidyverse.

The massive increase (almost doubling) in inbound tourists since the early 21st century is due to a large extent to the
increase of tourism from China and other emerging markets. A lot of tourism travel involves air travel and the rise of numbers
in this context is also quite visible, as shown in Fig. 11, with data also originating from the World Bank. (Code chunk not
shown.)

As a final illustration of the importance of mobility, this time at a more local scale, see this animation of the scheduled
positions of buses in the City of Winnipeg (link). To create the animation there, the bus schedules were downloaded and
plotted. (The code is available on the linked page.)

4.2. Metapopulation models

Since mobility has become such an important component of the every day life of humans, one needs ways to model this in
relation to the spread of infectious diseases. There are many different approaches to do this. One of them is using so-called
metapopulation models.

I give here a very short introduction to the topic. Refer to other work on the subject for a more detailed presentation; for
instance, see (Arino, 2017) and the references therein.

4.2.1. Quick introduction to metapopulation models
Metapopulations split space into jP j geographical locations called patches and are thus appropriate for the description of

phenomena involving discrete regions rather than continuous space. Each patch contains compartments, relatively homo-
geneous groups of individuals, e.g., susceptible humans, infected humans, etc. Individuals in a compartment may move
between patches; mcqp is rate of movement of individuals from compartment c2C from patch p2P to patch q2 P . Each
patch is equipped with a system describing the evolution of the number of individuals in each compartment present. For
epidemic models, the general form is as follows. Assume uninfected (s) and infected (i) compartments in sets U and I ,
respectively, with U ∪I ¼ C . For all k2U , [2I and p2P ,

https://julien-arino.github.io/2018/winnipeg-bus-schedules
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Fig. 10. Evolution of the number of incoming tourists worldwide.
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s’kp ¼ fkp
�
Sp; Ip

�þ X
q2P

mkpqskq (1a)

i’[p ¼ g[p
�
Sp; Ip

�þ X
q2P

m[pqi[q; (1b)

where Sp ¼ ðs1p;…; sjU jpÞ and Ip ¼ ði1p;…; ijI jpÞ are the discrete distributions of individuals in the different compartments in
patch p2P . The functions f and g describe the interactions between compartments in a given patch, while the sums describe
the movement of compartments between locations and are written compactly by assuming that

mcpp ¼ �
X
q2P

mcqp; cc2U ∪I ; (2)

i.e., by denoting mcpp the rate of movement out of patch p2P for individuals from compartment c2U ∪I .
5. An SLIAR model for five countries

Let me consider the example of influenza, for which a lot of data is available online. A basic model for influenza is the SLIAR
model (Arino, Brauer, van den Driessche, Watmough, & Wu, 2006).
Fig. 11. Evolution of the annual number of passengers transported by air transport and of the number of aircraft movements.
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Before proceeding further, remark that it is important to understand why a model is being used, as this determines the
nature of the modelling framework used (ODE, PDE, Markov chains) and the type of model that is formulated. Here, I want to
provide a reasonably realistic simulation context inwhich the spread of influenza between countries or regions in a country is
modelled over one season. The spatial context calls for a metapopulation framework, while modelling influenza over one
season means that an SLIAR model without demography is appropriate.

5.1. Base model in each patch e SLIAR without demography

When formulating a metapopulation model, it is good to start by clearly establishing the model that is used in each patch.
Here, the population in each patch is divided into five compartments as a function of the epidemic status of individuals.
Susceptible individuals (S) might be infected by the disease; upon infection, individuals go into a phase where they are
incubating with the disease (L); after the incubation period finishes, individuals can become either symptomatically (I) or
asymptomatically (A) infectious to others. Finally, after recovery, individuals are immune to reinfection with the strain of
influenza they were infected with (R). In terms of the notation of (1), here U ¼ fS;Rg and I ¼ fL; I;Ag. The flow diagram of
the model is shown in Fig. 12.

Parameters are as follows: infection occurs at the rate f ðS; I;A;NÞ, where N ¼ Sþ Lþ Iþ Aþ R; the incubation period lasts
on average 1=ε time units; the proportion of individuals becoming asymptomatically infectious is p; finally, the infectious
period lasts on average 1=gI and 1=gA time units for symptomatically and asymptomatically infectious individuals, respec-
tively. I do not consider disease-induced death here. As a consequence, the SLIAR model takes the form

S’¼ � f ðS; I;A;NÞ (3a)

L’¼ f ðS; I;A;NÞ � εL (3b)
I’ ¼ð1�pÞεL� g I (3c)
I

A’ ¼pεL� gAA (3d)
R’ ¼g I þ g A: (3e)
I A
Note that at present, the form of the incidence function f has not been specified. What form to use depends on the aim of
the model (McCallum, Barlow, & Hone, 2001). In the following, h � 0 is a multiplicative factor indicating the change in
infectiousness due to being an asymptomatic case. Typically, it is assumed to be in ½0;1�.

� Mass action, f ðS; I;A;NÞ ¼ bSðI þ hAÞ, is the easiest mathematically. This form also seems to work well for epidemics.
� Standard incidence, f ðS; I;A;NÞ ¼ bðI þ hAÞS=N, is better suited for endemic situations or with demography present.
� More elaborate, better for fitting (if sufficient epidemic data available)

f ðS; I;A;NÞ¼ b
�
Ir þ hAs�Sp �Nq;

where r; s; p and q are fitting parameters.
Here, for simplicity, I use mass action incidence. With the model in each patch established, let me now turn to the

metapopulation model. This is simple: indices are added to all variables and parameters to indicate what patch is being
Fig. 12. Flow diagram of the SLIAR model used in each patch.
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considered; movement terms are added in order to allow individuals to move between patches. For simplicity, I assume here
that movement rates are independent of disease status, so that for all p;q2P ,

mpq : ¼mSpq ¼ mLpq ¼ mIpq ¼ mApq ¼ mRpq:
The rates mpp are defined using (2), dropping the first index because of the assumption that movement rates are inde-
pendent of disease status.

The resulting jP j-SLIAR model then takes the form, for p2P ,

Sp’¼ � bpSpIp þ
X
q2P

mpqSq (4a)

Lp’¼ bpSpIp � εpLp þ
X

mpqLq (4b)

q2P

Ip’¼
�
1�pp

�
εpLp �gIpIp þ

X
mpqIq (4c)
q2P

Ap’¼ppεpLp � gApAp þ
X

mpqAq (4d)

q2P

Rp’¼g Ip þ g Ap þ
X

mpqRq: (4e)
Ip Ap
q2P
Initial conditions are taken with Spð0Þ>0 for all p2P and dq2P such that Iqð0Þ þ Aqð0Þ>0 (otherwise the model is
trivial); all others initial conditions are nonnegative.

5.2. Mathematical analysis

The focus of this paper is on running numerical simulations integrating data acquired from the Internet. However, it is
always a good idea to conduct at least a local stability analysis of the model one is going to simulate, since this allows to get a
sense of what themodel can be expected to do. It is also useful to set what I have referred to earlier as imputed parameters or to
get a sense of the range of values one should identify parameters in.

5.2.1. Behaviour when movement is absent
Model (4) is a Kermack-McKendrick-type model, so we can expect from (Arino, Brauer, van den Driessche, Watmough, &

Wu, 2007) that Ip/0 and Sp/Sp∞ as t/∞ for all p2P . Let us confirm this. In patch p2P , the model in the absence of
movement is given by (3) with indices, i.e.,

Sp’¼ � bpSpIp (5a)

Lp’¼ bpSpIp � εpLp (5b)
Ip’¼
�
1�pp

�
εpLp � gIpIp (5c)
Ap’¼ppεpLp � gApAp (5d)
Rp’¼gIpIp þ gApAp (5e)
A thorough analysis of (5) was conducted in (Arino et al., 2006), let me summarise it here. As often in epidemicmodels, one
first seeks a disease-free equilibrium (DFE). This is obtained by setting Ip ¼ 0. Clearly, Ip ¼ 00Lp ¼ 00Ap ¼ 0, so the DFE has
ðSp;RpÞ ¼ ðSp∞;Rp∞Þ, ðLp; Ip;ApÞ ¼ ð0;0;0Þ. Also, note that Np’ ¼ ðSp þ Lp þ Ip þ Ap þ RpÞ’ ¼ 0, which implies that Rp∞ ¼
Npð0Þ� Sp∞. The number Spð0Þ � Sp∞ is the final size of the epidemic; it is typically expressed in the epidemiology literature in
terms of the attack rate of the epidemic by considering the ratio Sp∞=Spð0Þ (expressed as a percentage).

From (Arino et al., 2006), the basic reproduction number in isolated patches is given by

R p
0 ¼ Sð0Þb

 
1� pp

gIp
þpphp

gAp

!
: (6)
This is a useful quantity to have, as it can be used to compute parameters so that R 0 is known for patches in isolation.
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5.2.2. Behaviour when movement is present
Let me return to the full system (5). In metapopulation models, problems are much easier to deal with when the system is

written in vector form (Arino, 2017). Here, we have

S’¼ � b+S+Iþ M S (7a)

L’¼ b+S+I� εL þ M L (7b)
I’¼ðI�pÞεL�gIIþ M I (7c)
A’¼pεL � gAA þ M A (7d)
R’¼gIIþ gAA þ M R; (7e)
where + denotes the Hadamard product. Note that the vector form is also useful when simulating the system; see Section
5.3.1. In (7), S, L, I, A, R, b, ε, gI and gA are vectors with jP j entries, p ¼ diagðp1;…;pjP jÞ is diagonal, I is the identity matrix and
the movement matrix is given by

M ¼

0
BBB@

�
X

p2Pyf1g
mp1 m12 / m1jP j

m21 � P
p2Pyf2g

mp2 / m2jP j

mjP j1 mjP j2 � P
p2PyfjP jg

mpjP j

1
CCCCA: (8)
Note the negative terms on the diagonal; they are the outbound movement rates given by (2). Properties of (8) are
important in the analysis of metapopulation models. Refer to (Arino, Bajeux, & Kirkland, 2019) for a list of these properties.

Without going into details here, working with a large system of ordinary differential equations such as (7) is not much
different fromworking with the system in a single patch (5). As we did there, we start by looking for the DFE. Set I ¼ 0. Then
since ðI�pÞε is invertible (we have assumed that pp2ð0;1Þ for all p2P ), L ¼ 0. Substituting this into (7d) gives in turn A ¼ 0.

So the DFE satisfies L ¼ I ¼ A ¼ 0 and

M S¼M R ¼ 0:

+
M is clearly a singular matrix, since all its columns sum to zero. This implies that M S ¼ M R ¼ 0 have nonzero solutions S
and R+. Also note that, summing equations in (7), we findN’ ¼M N. This means that the total population in the system, 1TN ¼
C1;ND, is constant, since

d
dt
C1;ND¼ C1;

d
dt

ND¼ C1;0D¼0;

T
where 1 ¼ ð1;…;1Þ. As a consequence, we can proceed as in (Arino& van den Driessche, 2003) and use Cramer’s rule to solve
the augmented system�

1
M

�
N+ ¼

�
Nð0Þ
0

�
: (9)
A sufficient condition for N+[0, i.e., to be entry-wise positive, is that M be irreducible, that is, that the graph of patches
be strongly connected.Wemake this assumption and thus know there exists a uniqueN+ that solves the system (9). Note that
this solution is a function of Nð0Þ and as a consequence, so are S+ þ R+ ¼ N+. It is probably feasible to use the method in
(Arino et al., 2007) to compute these distributions more precisely, but this is beyond the scope of the present work.

5.3. Computational analysis

5.3.1. Define the vector field
Here, I adapt the code in (Arino, 2017) to the SLIAR case. As is customary when solving ODEs numerically, I first need to

define the vector field. This is done in the following function. Note that I have defined a set of indices for the different
epidemic stages, in order to quickly look-up the corresponding entries in the state variables vector x. This is not technically
required but makes the vector field easier to read.
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Recall that in R, * denotes the Hadamard (entry-wise) product of vectors, which I denoted + in (7), while %*% denotes the
usual matrix product. Thus, bywriting the system in vector form, numerical integration is notmuchmore complicated that if I
were considering a single-population equivalent.

5.3.2. Setting up parameters
This first example is based on the one given in (Arino, 2017). I consider five countries: Canada, China, India, Pakistan and

the Philippines. The total populations of these countries are known; for instance, I obtain below themost up to date estimates
from the World Bank. Also known through other means is the average number of air passengers travelling between each of
these countries on a given day (estimates are from 2015).
The function latest_values_general used above is part of the file useful_functions.R and is used to keep only the
most recent value in a data frame. I now need to set up the movement matrix M . Here, I proceed in one of twoways that will
be presented in these lecture notes, which is based on a method explained in (Arino& Portet, 2015). Suppose X and Yare two
locations connected bymobility, with the population of X given byNX. We seek the per capita ratemYX of movement fromX to
Y. If one considers a short enough time interval, then one can assume that the rate of change of the population of X due to
travel to Y is governed by NX ’ ¼ �mYXNX. Integrating this simple linear differential equation and solving formYX when t ¼ 1
gives

mY X ¼ � ln
�
1� TY X

NX

�
; (10)
where TYX is the number of individuals having moved from X to Y in 1 time unit.
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I now set up the remainder of the parameters. As indicated earlier, it is useful to keep track of indices of the different
compartments.

Disease-related parameters are then set. Note that values are here chosen arbitrarily, just for illustration. They aremeant to
roughly mimic parameters that would be used for influenza.

I now set up the initial conditions. As an example, suppose that there are initially two infected individuals in Canada.

Although parameters are chosen arbitrarily, to avoid numerical issues it is useful to have some control over parameter
values. Here, for instance, I set up the contact parameter b in such a way as to avoid blow up of solutions. Solving R p

0 for
patches in isolation as given by (6) in terms b, I obtain

b¼ R p
0

Spð0Þ

 
1� pp

gIp
þ pphp

gAp

!�1

:

Suppose for instance that R 0 ¼ 1:5 for patches in isolation; this is incorporated into the model by assuming that.

The final step is to set up the time span of the simulation, one year here.
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One important remark concerning the vector of times is that it can be tailored tomatch existing data points. I will return to
this with the next example in Section 6. Finally, I call the solver,

and put the result in a form that is easier to use. Note that in order to overcome numerical issues, I have changed the
method used to solve the system from the default lsoda to ode23, as well as changed tolerances and the maximum number
of steps. The issues arising here are linked to the difference in orders of magnitudes of the different quantities involved. For
instance, population counts are in millions, whereas values of bp so that R p

0 equals 1.5 are of the order of 10�8.

In the code above, I have to shift indices of the positions of the different variables by 1, since the first column in the result
matrix contains time. This is different from the vector field itself, where x is the vector of state variables only.

Just for illustration, Fig. 13 shows the results. As is often the case with epidemiological data, I show results per 100,000
people rather than actual numbers. (Code chunk not shown.)

6. Spread of influenza between regions in a country

In Section 5, I considered the spread of influenza between five countries. I had air travel mobility numbers and could
assume that, to a large extent, the numbers represented a large fraction of the actual means of movement, due to the distances
between most of the countries involved. I did not, however, have access to precise epidemiological surveillance of influenza
for all these countries and simply simulated the spread.

Here, I consider a somewhat converse problem, where the disease epidemiology is much better known, but mobility
patterns need to be inferred. Staying with influenza, I look at its spread between regions of metropolitan France. Influenza
data is obtained from the R�eseau Sentinelles, which has been conducting practitioner-based surveillance of influenza since
1984 (Valleron et al., 1986). Also known is a rough measure of vaccine uptake in each region; the model will be (slightly)
adapted to incorporate this vaccination information.

Influenza data is available online by regions in metropolitan France. Regions in France were redefined in 2016. Until then,
there were 22 regions in metropolitan France (Corsica being considered part of metropolitan France). In 2016, some regions
were aggregated and the number was reduced to 13. Data can be downloaded in terms of the new regions, or in terms of past
Fig. 13. Time evolution of the number of cases of influenza in 5 countries.
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regions until 2016 and of new regions since. This illustrates a common problem when dealing with data: adapting the new
data to the past regions would require to infer how the data was processed. As a consequence, I use the new definition of
regions.

Also available is the regional uptake of influenza vaccine. Of course, the population of regions and their geography is
readily available. I now download all of the required data.
Note that here, I had to impose encoding of the downloaded data because of accents in French text. Interestingly, this issue
does not arise under Linux but does in Windows.

6.1. Setting up a gravity matrix

In the 5 countries example of Section 5, I had access to population mobility data that, because of the distances between
some of the countries, can be assumed to be a relatively good approximation of the actual travel volume. Another example
where data sums up most of the actual mobility is the work in (Arino & Portet, 2015), where estimates of the number of
travellers, by road this time, between a large city and a few neighbouring smaller ones are obtained and used. In the present
case, though, there are two levels of complication.

1. Mobility in a country like France is multi-modal, with the main modes of mobility being air, rail and road travel.
2. Even if numbers were available for all travel modalities, they would be hard to combine.

Given this complexity, in order to approximate the volume of travel between locations using non-proprietary data, I
compute a gravity matrix. The idea is to use the analogy of gravitation. The gravitational force Fij between two bodies with
masses mi and mj and centres of mass r distance units apart is given by

Fij ¼G
mimj

r2
;

where G is the gravitational constant. Here, I use this principle with centroids (centres of gravity) of regions as centres of mass
and the population of regions as their mass. The result is a symmetric matrix with zeros on the main diagonal and the
gravitational constant G as a scalar factor. That constant is later used to set values in the movement matrix so that movement
rates are commensurate with the problem under consideration.

As has become the leitmotiv throughout this paper, first I create a data frame with all relevant information. As region
centroids are given in (degrees, minutes,seconds), they must be transformed to decimal degrees.
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I can now compute the distances between region centroids.
Note that I could also have used some internal R functions, such as dist, to compute the distances. Once this has been
done, I compute the gravity between all pairs of regions. Note that if there were many more pairs to deal with, exploiting the
symmetry of the gravity matrix would allow to gain some time.
Note that the last instruction is used because in the computation of distances, I did not exclude diagonal entries and thus
am dividing by zero along the diagonal. So, finally, I have the gravity matrix, where region names are abbreviated for
convenience.
ARA
 BFC
 Br
 Ce
 Co
 GE
 HdF
 IdF
 No
 Na
 Oc
 PL
 PACA
ARA
 0
 604
 65
 213
 10
 335
 181
 640
 97
 402
 598
 137
 894
BFC
 604
 0
 27
 129
 2
 525
 148
 605
 57
 94
 83
 58
 99
Br
 65
 27
 0
 71
 1
 47
 96
 251
 190
 120
 48
 428
 24
Ce
 213
 129
 71
 0
 1
 138
 187
 1395
 183
 197
 84
 269
 48
Co
 10
 2
 1
 1
 0
 3
 2
 5
 1
 3
 5
 1
 16
GE
 335
 525
 47
 138
 3
 0
 531
 1281
 112
 103
 85
 84
 100
HdF
 181
 148
 96
 187
 2
 531
 0
 3652
 434
 112
 72
 153
 59
IdF
 640
 605
 251
 1395
 5
 1281
 3652
 0
 1225
 392
 227
 564
 172
No
 97
 57
 190
 183
 1
 112
 434
 1225
 0
 104
 50
 326
 31
Na
 402
 94
 120
 197
 3
 103
 112
 392
 104
 0
 673
 314
 127
Oc
 598
 83
 48
 84
 5
 85
 72
 227
 50
 673
 0
 95,292
PL
 137
 58
 428
 269
 1
 84
 153
 564
 326
 314
 95
 0
 43
PACA
 894
 99
 24
 48
 16
 100
 59
 172
 31
 127
 292
 43
 0
Interestingly, the method returns realistic results: the fifth entry in thematrix is Corsica, which has a small population and
is quite isolated, being an island. The unadjusted values here are too large and will be scaled down using G prior to being used
in the numerical simulations.

6.2. Setting up initial conditions e vaccination coverage

I could, as I did in Section 5, use as initial conditions the population Npð0Þ in each region p2P . Here, however, I want to
incorporate the effect of vaccination. There are more elaborate methods to model vaccination, but a minimalist approach
consists in assuming that vaccination simply reduces the susceptible population. Thus, I consider the initial susceptible
population ~Npð0Þ ¼ ð1 � vpÞNpð0Þ, where vp is fraction vaccinated in region p2P . Note that this means that I am assuming
that the vaccine is 100% efficacious; that is far from true, but to keep the problem simple, I make this assumption.

In our recurrent theme, I need to process vaccination data a little in order to be able to use it in simulations. (Chunk not
shown.)
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Setting initial conditions then proceeds as in Section 5, except that the total population Npð0Þ reflects the percentage
vaccinated. I start with several cases in, say, Île-de-France (the region comprising Paris). (Chunk not shown.)

For the movement matrix M , I start with the gravity matrix I already computed, which I also store for future use. Here, I
normalise by imposing that movement rates in the matrix should not be larger than 0.005, a somewhat arbitrary value I have
often used in metapopulation models and gives usually reasonable results in terms of population movement.
If information about mobility volumes is available, one can “invert” the method used in Section 5 in order to obtain finer
estimates for the value of G.

The following is then done (chunks not shown). Parameters are set as before. As I did earlier, I suppose that R 0 ¼ 1:5 for
patches in isolation. This having been done, I carry out the numerical integration and plot the solution, giving Fig. 14.

6.3. Using epidemiological data

Let me load the R�eseau Sentinelles data and prepare it for use. Note that in the case R�eseau Sentinelles, where data
typically changes weekly and the equipment does not necessarily support very frequent queries, it is good practice to keep a
local cache of the data and refresh only in case of change. So, when loading the data, I use a function called nice_load (found
in the useful_functions.R electronic appendix) that handles this. Some more elaborate mechanisms are available, but I
felt it was worth illustrating how to do this here. The data has dates in the form YYYY-WW, whereWW is the week number. I
need to transform this into a regular date.
It is always a good idea to explore the data. At the very least, it should be plotted in order to get a sense of the general
behaviour. Let me create a few variables that allow to access the data easily. (Chunk not shown.)

Let me take a look at the data. First, in Fig. 15, I show the total weekly number of cases over the entire country for the entire
dataset.
Fig. 14. Number of cases of influenza per 100,000 inhabitants (simulation results).
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Fig. 15. Weekly number of cases of influenza in France as reported by the R�eseau Sentinelles. (a) All dates. (b) 2018e2019 epidemic season.
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Let me now select the latest influenza season at the time of writing. An end date in 2019 is specified because future uses of
the code provided here would extend the plot to more than one season.
I then plot, in Fig. 15, the number of cases during the 2018e2019 epidemic season for the entire country and in Fig. 15, the
breakdown of these numbers region by region (per 100,000 people, in this case, because of the wide variation of population
between regions).

6.4. Numerical simulation of the system

For initial conditions, I use actual incidence, not the number of cases per 100,000 that I plotted in Fig. 16. For simplicity, I
assume that all reported cases are symptomatically infectious. I further assume that, as in System (3), a fraction pp of cases in
patch p2P are asymptomatically infectious, so that if there are initially Ipð0Þ symptomatic cases, there are also ð1�ppÞIpð0Þ
asymptomatic ones.
First, let me run a naïve simulation. Note that for time span and time points, I use the dates I selected. This feature, that was
mentioned earlier, is useful when minimizing errors.
The remainder of the call (chunk not shown) then proceeds as previous instances; the result is shown in Fig. 17.
Letme now carry out a naïve parameter identification routine. Asmentioned in the Introduction, the procedure carried out

here is very simple and much more informationwill be gained by following the techniques found in lecture notes from other

mailto:Image of Fig. 15|tif


Fig. 16. Weekly number of cases of influenza in each of the 13 regions of metropolitan France for the 2018e2019 epidemic season, as reported by the R�eseau
Sentinelles. Numbers are per 100,000.
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authors. The results of the procedure are not good by any means and much more attention should be paid to the details in
actual work.

The way I proceed is to allow two parameter types to vary: the individual value of bp in the patches and the gravity
constant G. First, I need a function similar to the one used in Section 3.1.2, which, given values of ðb1;…;b13;GÞ, returns an
error, taken here as the sum of the square of the differences between data points and the simulated solutions. The vector v
passed as an argument to this function contains the parameters that change, while param is the remained of parameters.
Now that this function is ready, I can use a genetic algorithm to minimise the error. Genetic algorithms work by max-
imising the so-called fitness function, hence I give as argument the negative of the function I just defined. Note that since the
data is incidence data, I need comparable model output. Because I assume that neither latently infected nor asymptomatic
cases are detected, it follows that comparison is to the rate of apparition of new symptomatically infectious cases, ð1 � pÞεL.
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Fig. 17. Simulation of 1 year of influenza propagation in France. Numbers are per 100,000.
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Once themethod has run, results can be accessed in GA@solution. Recall that I have used parameters as ðb1;…;b13;GÞ, so.
Fig. 18. Weekly number of cases of influenza in each of the 13 regions of metropolitan France for the 2018e2019 epidemic season. Parameters obtained by genetic
algorithm optimisation. Numbers are per 100,000.
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Once this is done, I solve the ODE numerically and plot the result (chunk not shown). The plot is shown in Fig. 18.
Obviously, the results are not fantastic. Muchmore could be done to obtain a better fit; I will refer to other lecture notes in this
special issue for details. Two potential ways to address the limitations here are the following.

1. Switch to time units of weeks. Recall that data is the number of new cases detected in one week. The time unit in the
simulation is the day, so that ð1�pÞεL is expressed per day. To decrease the distance between data and simulation, the
genetic algorithm thus selects larger values of b, resulting in an earlier epidemic.

2. I could also play with the date of start of the simulation and make it a parameter to identify as well.

Conclusion

To conclude, let me start by justifying in hindsight the use of the type of methods presented here, by giving a very brief
overview of the path that led me toward this type of problems. My systematic use of data in epidemic models beganwith my
work with the Bio.Diaspora Project, now the company Bluedot (link). In this context, we have a very rich database focused on
human mobility; see some details in (Arino & Khan, 2014). We use these data to understand global public health risks, with
emphasis on those aspects of risk linked to mobility and, in particular, air travel. Questions that arise in this context are
twofold. First, if an alert is generated by a disease surveillance system, what is the potential for the event being reported on to
transform into a significant event with potential for regional or international spread? Second, if the event has potential for
transborder spread, what are the most likely next locations it will affect? Clearly, considering these questions requires
gathering data on a scale that cannot be realistically achieved without programmatic approaches. Hence, the move towards
automated or, at the very least, semi-automated information retrieval. Automated report generation, on the other hand, is
prompted by the need to summarise the same indicators about different locations based on the location of an alert.

Themethods presented here should be seen as a component inmodelling work. Data can helpmodellers get a better sense
of the context they are operating in. Data can also help modellers conduct better numerical investigation of their model.
However, data is not a substitute to proper modelling work, nor does it absolve the modeller from conducting some
mathematical analysis. In any case, programmatic techniques of data acquisition such as the ones I illustrate in these notes
should, in my view, become part of the arsenal of techniques mathematical epidemiologists are familiar with. Ideally,
mathematical epidemiologists should also familiarise themselves with the concept of reproducible research, which is illus-
trated by the medium chosen for these notes. While the model formulation and mathematical analysis part of our work is, of
course, inherently reproducible, the numerics or data components are not necessarily and adopting reproducible research
ideas would be sometimes helpful.
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