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a b s t r a c t 

Infectious disease transmission models often stratify populations by age and geographic patches. Contact patterns 

between age groups and patches are key parameters in such models. Arenas et al. (2020) develop an approach 

to simulate contact patterns associated with recurrent mobility between patches, such as due to work, school, 

and other regular travel. Using their approach, mixing between patches is greater than mobility data alone 

would suggest, because individuals from patches A and B can form contacts if they meet in patch C. We build 

upon their approach to address three potential gaps that remain, outlined in the bullets below. We describe the 

steps required to implement our approach in detail, and present step-wise results of an example application to 

generate contact matrices for SARS-CoV-2 transmission modelling in Ontario, Canada. We also provide methods 

for deriving the mobility matrix based on GPS mobility data (appendix). 

• Our approach includes a distribution of contacts by age that is responsive to the underlying age distributions 

of the mixing populations. 
• Our approach maintains different age mixing patterns by contact type, such that changes to the numbers of 

different types of contacts are appropriately reflected in changes to overall age mixing patterns. 
• Our approach distinguishes between two mixing pools associated with each patch, with possible implications 

for the overall connectivity of the population: the home pool, in which contacts can only be formed with 

other individuals residing in the same patch, and the travel pool, in which contacts can be formed with some 

residents of, and any other visitors to the patch. 
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Specifications Table 

Subject Area: Mathematics 

Specific Subject Area: Epidemic Modelling 

Method Name: Contact patterns in patch-based models with recurrent mobility 

Reference of Original Method: Arenas et al. [1] 

Resource Availability: github.com/mishra- lab/age- patch- mobility- mixing 

Introduction 

Contact patterns are key determinants of epidemic dynamics because they define who can be 

infected, by whom, and how quickly [ 2 ]. Arenas et al. [ 1 ] develop a patch-based model of SARS-CoV-2

transmission applied to Spain, in which the modelled population is stratified by geographic patches 

and three age groups. Following foundational work by [ 3–5 ], the model incorporates data on short,

recurrent mobility patterns to determine contact rates between individuals in different patches and 

age groups. We build upon this contact model to incorporate improved age mixing patterns, which are

stratified by different contact types and are responsive to the age distributions of mixing populations,

as proposed by [ 6 ]. We also explore some practical considerations in parameterizing such models. 

Method 

Consider a population stratified by N g patches and N a age groups. 1 Let P ga be the number of people

in patch g and age group a . Let y denote N y different types of contacts (e.g. household, workplace,

etc.). Let B gg ′ be the proportion of population P g who travel to g ′ each day, or the “mobility matrix”. 2 

Original Approach 

Arenas et al. [1] model the force of infection (incidence per susceptible) experienced by population

P ga as: 

λga (t) = (1 − ρa ) �ga (t) + ρa 

∑ 

g ∗
B gg ∗a �g ∗a (t) (1) 

where: �ga (t) is the probability of acquiring infection while in patch g; and ρa ∈ [0 , 1] is an age-

specific overall mobility factor. Thus, λga (t) is the sum of infection probabilities from the residence

patch g, and from visited patches g ∗ � = g. The probability �g ∗a (t) is modelled using the chained

binomial for multiple exposures [7] : 

�g ∗a (t) = 1 −
∏ 

a ′ 

∏ 

g ′ 

∏ 

i ′ 
( 1 − βi ′ ) 

f g ∗C a θaa ′ �g ∗g ′ i ′ a ′ (2) 

where: βi is the per-contact transmission probability associated with infectious state i ; f g ∗ is a density

factor associated with patch g ∗; C a is the expected number of contacts made per person per day

in age group a ; θaa ′ is the age distribution of those contacts, derived from [8] for Spain, such that
1 We use different notation than Arenas et al. [1] ; a comparison is given in Table A.1. 
2 Arenas et al. [1] consider different mobility patterns by age: B gg ′ a . For simplicity, we consider B gg ′ unstratified by age, but 

age stratification could be added to our approach. 

https://github.com/mishra-lab/age-patch-mobility-mixing
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a ′ θaa ′ = 1 ; and �g ∗g ′ i ′ a ′ is the proportion of individuals present in patch g ∗ who reside in patch g ′
nd who are in infectious state i ′ , for each age group a ′ . This proportion �g ∗g ′ i ′ a ′ is defined as: 

�g ∗g ′ a ′ i ′ = 

P g ′ i ′ a ′ M g ′ g ∗a ′ ∑ 

g ′ i ′ P g ′ i ′ a ′ M g ′ g ∗a ′ 
(3)

here M gg ′ a is a convenience simplification of the mobility matrix: 

M gg ′ a = (1 − ρa ) δgg ′ + ρa B gg ′ a (4)

This model of infection captures important mixing patterns related to recurrent mobility that are

elevant to epidemic modelling on relatively small spatial and time scales. However, the model could

e improved by separating different contact types throughout the force of infection equation, and

y allowing age mixing patterns to respond to local demographic and intervention conditions. Three

pecific issues with the original approach are as follows: 

1. Contact balancing: The contact balancing principle states that the total number of contacts

formed by group a with group a ′ should equal the number formed by group a ′ with group a

[6] : 

P a C a θaa ′ = P a ′ C a ′ θa ′ a (5)

For a model with non-random age mixing and random (proportionate) mixing by patches,

Eq. (5) could be satisfied by a single fixed age mixing matrix θaa ′ , i.e. for the population overall.

However, in the context of patch-based mixing reflecting recurrent mobility, Eq. (5) should

be satisfied in each mixing context (patch). Specifically, if different patches have different

age distributions, or different rates of per-person contact formation due to household size,

employment, etc., then it would not be possible to satisfy Eq. (5) with a single fixed age mixing

matrix θaa ′ . The implications of violating Eq. (5) depend on relative differences in demographics

and/or contact rates by patch and/or age group. For example, if a given patch skews younger

than average in age, and most contacts are formed with other members of the same patch,

then fixed average θaa ′ would underestimate the number of younger contacts among residents

of this patch, and overestimate the number of older contacts. 

2. Age mixing by contact type: A related issue is that the expected contact rates by age group

C a reflect the summation of different types of contacts, and so the fixed age mixing matrix

θaa ′ is applied to all contact types. As such, changes to the numbers of each type of contact

are not paired with changes the overall mixing patterns. As illustrated by the polymod study

[2] , age mixing patterns vary by contact type, such as highly age-assortative mixing in schools.

Thus, differential reductions in each contact type would affect overall age mixing patterns. For

example, if reductions in school-related contacts due to school closures were not reflected in

θaa ′ , then the relative contribution of children to overall transmission could be overestimated

during the period of school closures. 

3. Modelling contact & mobility reductions: The term (1 − ρa ) �ga (t) in Eq. (1) represents

transmission to non-mobile individuals in patch g. The associated definitions in Eqs. (2–

4) consider transmission to these non-mobile individuals from visitors to patch g. Such

definitions therefore imply that non-mobile individuals still form contacts with visitors to their

residence patch. However, it may be useful to model some or all non-mobile individuals as

only forming contacts with other individuals from their residence patch. That is, scenarios

may exist wherein a fraction of the population only has household contacts, as could be the

case with public health measures such as lockdowns. As illustrated in Figure A.1, the original

approach may overestimate inter-patch connectivity during periods of reduced mobility (via

lockdowns) versus an approach in which some or all non-mobile populations are limited

to contacts with others from their residence patch and not with visitors. Thus, the original

approach [1] could underestimate the impact of confinement lockdown strategies on inter-patch

transmission reduction. 

We therefore develop a refinement of the original approach, with the aim of addressing the above

hree issues. 
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Proposed Approach 

In the proposed approach, the contributions of different contact types to the force of infection are

added to the binomial function for multiple exposures: 

λga (t) = 1 −
∏ 

y 

∏ 

g ′ 

∏ 

a ′ 

∏ 

i ′ 
( 1 − βi ′ ) 

C 
gag ′ a ′ y �g ′ a ′ i ′ (6) 

where: C gag ′ a ′ y is the expected number of type y contacts formed per person per day among

individuals in population P ga with those in population P g ′ a ′ ; and �g ′ a ′ i ′ is the proportion of individuals

in residing in patch g ′ and age group a ′ who are in infectious state i ′ : 

�g ′ a ′ i ′ = 

P g ′ a ′ i ′ 
P g ′ a ′ 

(7) 

For each type of contact, C gag ′ a ′ y is defined to reflect both age-related and mobility-related mixing 

factors, as described in the following subsections. To support these descriptions, we will refer to

Figures from an example application, although the details of the application and the Figures are given

in § 3 . Collecting the full network of contacts in the matrix C gag ′ a ′ y provides a representation that is

easy to interpret, and allows us to compute various properties, like the margins in a, a ′ or g, g ′ , and

whether contact balancing is satisfied per Eq. (5) . Additionally, separating contact types allows the

incorporation of different probabilities of transmission per contact type βi ′ y , if desired. 

Age Mixing 

Prem et al. [9] project contact patterns by 5-year age groups from the polymod study [2] onto 177

countries, considering various demographic data. These contact matrices represent C aa ′ y : the expected 

number of type y contacts formed per day among individuals in age group a with those in age group

a ′ . Four types of contact are considered: “home”, “work”, “school”, and “others”3 ( Figure 4 a). We aim

to incorporate these contact numbers and patterns into C gag ′ a ′ y . 
The first challenge is that the contact matrices C aa ′ y are inherently weighted by the underlying

population age distribution— the proportion of expected contacts with age group a ′ is proportional 

to the size of age group a ′ . To overcome this challenge and apply these patterns to new population

age structures, Arregui et al. [6] suggest to divide by the population age distribution to obtain an

“unweighted” matrix C u 
aa ′ y ( Figure 4 b): 4 

C u 
aa ′ y = C aa ′ y 

P̄ 

P a ′ 
(8) 

where P̄ is the mean of P a ′ . 
The next challenge is that C u 

aa ′ y may not satisfy the contact balancing principle, Eq. (5) , due to

sampling and/or reporting error in the polymod survey. To ensure that the overall mixing matrix

 gag ′ a ′ y will satisfy the balancing principle, the input age mixing matrix C u 
aa ′ y must satisfy the 

principle. A simple solution is to average C u 
aa ′ y with its transpose to obtain the “balanced” matrix

 

ub 
aa ′ y ( Figure 4 b): 

C ub 
aa ′ y = 

1 

2 

[ 
C u 

aa ′ y + C u 
aa ′ y 

T 
] 

(9) 

This operation may change the margin C ay , representing the total type y contacts formed by

individuals in age group a . However, such changes are reasonable if understood as a correction for

sampling bias. 5 
3 The “others” contact type in [9] is itself derived from the combination of “leisure”, “transport”, and “other” contact types 

from [2] , while the “home”, “work”, and “school” types are the same between the studies. 
4 The matrix C u 

aa ′ y could also be interpreted as the expected contact matrix for a population with a rectangular demographic 

pyramid [6] . 
5 A perfect survey in a closed population would produce a contact matrix C u 

aa ′ y that is already balanced. 
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A final challenge in applying the contact matrices from [9] is that the 5-year age groups may

ot align with the age groups of interest. Overcoming this challenge is not theoretically required to

btain C gag ′ a ′ y , but we describe a solution here in case it is useful for modelling applications. We begin

y upsampling the contact matrix from 5-year age groups a 5 to 1-year age groups a 1 using bilinear

nterpolation, based on the midpoints of each age group, and scaled by a factor of 1 / 5 . To avoid edge

ffects associated with many interpolation implementations, we first pad the matrix by replicating the

dges diagonally. If the desired age groups extend beyond the maximum age group of 80 available in

9] , diagonal padding can also be used to approximate the trends in the additional age groups. Then,

iven the age groups of interest a ∗ (which may have irregular widths), we aggregate C ub 
a 1 a 

′ 
1 

y 
to obtain

 

ub 
a ∗a ′ ∗y 

using matrix multiplication with indicator matrix A : 

C ub 
a ∗a ′ ∗y 

= 

A a ∗a 1 ∑ 

a 1 
A a ∗a 1 

C ub 
a 1 a 

′ 
1 

y 
A 

T 
a ′ ∗a ′ 

1 
, A a ∗a 1 = 

{
1 , a 1 ∈ a ∗
0 , a 1 �∈ a ∗

(10)

he right-hand A 

T term sums the total number of contacts formed with the 1-year “other” age groups

 

′ 
1 corresponding to a ′ ∗. The left-hand A term averages the total number of contacts formed from the

-year “self” age groups a 1 corresponding to a ∗. The average weights each 1-year age group a 1 equally,

lthough other weights could be incorporated through the nonzero values of A . Another interpretation

f the normalization sum is the widths of the age groups a ∗. 

The resulting matrix C ub 
a ∗a ′ ∗y 

represents the expected contacts among age groups a ∗ when mixing

ith a population having equal proportion in all age groups a ′ ∗ (regardless of their width). Thus, C ub 
a ∗a ′ ∗y

an later be multiplied by the population age distribution of interest —reversing Eq. (8) — to obtain

he expected number of contacts when mixing with that population. This approach then addresses

ssues 1 and 2 described in § 2.1 . 

obility-Related Mixing 

In conceptualizing mobility-related mixing, we define two types of contexts in which contacts can

e formed, similar to “residences” and “common” sites in [10] : 

Home pools: where contacts are formed exclusively with other residents of the same patch (e.g. for

household contacts) 

Travel pools: where contacts are formed with individuals from any patch who are present in the

pool (e.g. for work contacts) 

We model one home pool and one travel pool associated with each patch, as illustrated in Figure 1 .

In this conceptualization, only contacts associated with travel pools are influenced by the

opulation mobility matrix B gg ′ , representing the expected proportions of individuals from patch g

ho visit patch g ′ per day. For contacts associated with home pools, this matrix is functionally

eplaced with an identity matrix δgg ′ . It is not necessary to assume that all contacts of any particular

ype are formed in only one type of pool. Rather, we introduce a parameter h y ∈ [0 , 1] representing

he proportion of type y contacts that are formed in the home pool, and the remainder ( 1 − h y ) are

ormed with travel pools. For example, we could have h y = 1 for household contacts, h y = 0 for work

ontacts, and h y = 0 . 5 for school contacts. Thus, the expected contacts formed by individuals in patch

are distributed across three situations: 

1. Mobile Away: individual travelled from patch g to patch g ′ and formed contacts within travel

pool g ′ 
Proportion of contacts: (1 − h y ) B gg ′ (g� = g ′ ) 

2. Mobile at Home: individual formed contacts within their local travel pool g

Proportion of contacts: (1 − h y ) B gg ′ (g= g ′ ) 
3. Non-Mobile at Home: individual formed contacts within their local home pool g

Proportion of contacts: h y δgg ′ 

The idea of “home pools” is new versus [1] , and allows us to address issue 3 by introducing

ituation 3. Thus in [1] , all mixing was implicitly modelled using “travel pools”, and individuals

escribed as “non-mobile” reflected situation 2. 
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Fig. 1. Toy example of “home” vs “travel” mixing pools for a network with 3 patches and 50% individuals mobile. Contacts in 

the home pool are formed exclusively with other members of the residence patch, whereas contacts in the travel pool may be 

formed with any visitors to the patch. Non-mobile populations are indicated with faded colour and green outline 

 

 

 

 

 

 

 

In the context of reduced mobility, we do not assume that rows of B gg ′ sum to 1. The “missing”

proportion 1 − ∑ 

g ′ B gg ′ is then taken to represent non-mobile individuals, who do not form any 

mobility-related contacts (situations 1 and 2) that day. In § A.3 we discuss some details about

generating a mobility matrix B gg ′ with these properties, based on mobile phone data. 

To calculate C gag ′ a ′ y using these assumptions, we begin by considering the travel pool in patch g ∗. 

The effective number of individuals from population P ga who are present in the pool is given by: 6 

P 
g ∗

gay = (1 − h y ) B gg ∗ P ga (11) 

There is no distinction between situations 1 and 2 in Eq. (11) , as both are already reflected in the

off-diagonal and diagonal elements of B gg ′ , respectively. If we assume that mixing by residence patch

g within the pool is random, we need only consider age mixing within the pool. Under completely

random mixing and with 1 contact per person, the total number of contacts formed between P 
g ∗

gay and

P 
g ∗

g ′ a ′ y is given by the outer product: 

X 
g ∗r 

gag ′ a ′ y = P 
g ∗

gay � P 
g ∗

g ′ a ′ y 

/ ∑ 

g ′ a ′ 
P 

g ∗
g ′ a ′ y (12) 

where the first term represents the absolute population size of “self”, and the second term represents

proportions of their contacts among “other” strata. Then, the numbers and patterns of contacts by age

can be applied via multiplication: 

X 
g ∗
gag ′ a ′ y = X 

g ∗r 

gag ′ a ′ y C 
ub 
aa ′ y 

/ ∑ 

a ′ 
1 

A a ′ a ′ 
1 

(13) 
6 If residents of different patches might have relatively different numbers of contacts, a scaling factor could be applied here. 
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ince X 
g ∗r 

gag ′ a ′ y is proportional to the population age distribution of “others”, and will therefore act to

everse Eq. (8) as planned. The term 

∑ 

a ′ 
1 

A a ′ a ′ 
1 

is from Eq. (10) , representing the widths of the age

roups a ′ . It is necessary to divide by the widths of age groups a ′ since both X 
g ∗r 

gag ′ a ′ y and C ub 
aa ′ y are

roportional to these widths, but the proportionality should only be singular overall. We could have

pplied this normalization to C ub 
aa ′ y in Eq. (10) in the same way as for a , but this would make C ub 

aa ′ y
arder to interpret, as it would no longer represent the expected numbers of contacts for each age

roup. 

Mixing within home pools (situation 3) can be modelled similar to mixing within travel pools, with

ne small modification: replacing (1 − h y ) B gg ′ with h y δgg ′ . Following through Eqs. (11–12) , we obtain

 

h 
gag ′ a ′ y , representing the total contacts formed within home pools. Then, the total type y contacts

ormed between populations P ga and P g ′ a ′ across all relevant mixing pools is given by the sum: 

X gag ′ a ′ y = X h 
gag ′ a ′ y + 

∑ 

g ∗
X 

g ∗
gag ′ a ′ y (14)

t may be tempting to simplify the model for home pool contacts by updating the mobility matrix

 gg ′ similar to Eq. (4) from [1] , with h y = (1 − ρa ) . However, such an approach does not produce the

ame result as Eq. (14) , and indeed underpins issue 3 described in § 2.1 regarding mixing of non-

obile individuals with mobile visitors to their patch. On the other hand, if the interpretation of

non-mobile” is intended to allow mixing with visitors, then B gg ′ can still be adjusted per Eq. (4) to

imulate this behaviour. Another implication of our approach is that non-mobile individuals will not

orm mobility-related contacts. Thus, if 
∑ 

g ′ B gg ′ is reduced, the total contacts formed by residents of

atch g would be reduced proportionately, and changes to mixing patterns by age and patch reflected

utomatically. 

Finally, the number of type y contacts formed per person in population P ga with population P g ′ a ′ 
an be obtained by dividing X gag ′ a ′ y by the population size: 

C gag ′ a ′ y = 

X gag ′ a ′ y 
P ga 

(15)

xample 

We applied the proposed methodology for generating a mixing matrix C gag ′ a ′ y , which reflects

atterns of age mixing, recurrent mobility between patches, and different contact types, to the

opulation (14 million) of Ontario, Canada, in the context of covid-19 transmission modelling. Ten

atches were defined based on groupings of the 513 forward sortation areas (FSAs) 7 in Ontario. The

SA groupings reflect deciles of cumulative covid-19 cases, excluding cases among residents of long-

erm are homes, between 15 January 2020 and 28 March 2021 [11] . Thus each patch represents

pproximately 10% of the Ontario population (37–68 FSAs), but not contiguous geographic regions.

uch definitions were used to support allocation and prioritization of covid-19 vaccines to “hot spot”

eighbourhoods in Ontario [12,13] . Figure 2 illustrates the locations of the FSAs and their decile rank,

hich is synonymous with their patch index. Figure A.10 plots the daily incidence of covid-19 cases

er patch, and Figure A.11 plots the age distributions of each patch. Age groups were then defined to

eflect historical and hypothetical covid-19 vaccine eligibility in Ontario: 

a ∗ = 

{
0-11, 12-15, 16-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80+ 

}
(16)

ata 

Ontario population sizes by age and FSA P ga were obtained from the 2016 Canadian Census via

tatistics Canada 8 and aggregated from 1-year age groups ( a ) into 5-year ( a ) and target ( a ∗) age
1 5 

7 Each FSA is the first 3 characters of the postal code. 
8 https://www150.statcan.gc.ca/n1/en/catalogue/98- 400- X2016008 

https://www150.statcan.gc.ca/n1/en/catalogue/98-400-X2016008
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Fig. 2. Ontario forward sorting areas (FSAs, N = 513 ), stratified by decile rank in cumulative covid-19 cases between 15 Jan 

2020–28 Mar 2021; decile rank was used to group FSAs into 10 patches for transmission modelling. 

Fig. 3. Mobility matrix B gg ′ , representing the expected proportion of individuals in decile (patch) g who are mobile in decile g ′ 
per day. Derived from mobile device geolocation data; deciles represent groupings of Ontario forward sortation areas (FSAs) by 

cumulative covid-19 cases between 15 Jan 2020–28 Mar 2021; colour scale is square-root transformed to improve perception 

of smaller values; reference period: Jan–Feb 2020. 

 

 

 

 

 

 

 

 

 

groups as needed. We obtained the final output contact matrices C aa ′ y for Canada from [9] , for each

of the “home”, “work”, “school”, and “others” contact types, as well as the population size of each

5-year age group used in [9] . 9 We assumed that residence patch did not influence the numbers of

contacts formed per person, only with whom those contacts are formed, although such a belief could

be incorporated in the model, perhaps in Eq. (13) . 

The mobility matrix B gg ′ between patches was derived using private data on geolocation service 

usage among a sample of approximately 2% of mobile devices in Ontario [14] during January–

December 2020. Appendix A.3 details the specific methods and assumptions used; to summarize: Each 

devices was assigned an approximate home location (152.9 m × 152.4 m) based on the most common

location during overnight hours for each calendar month. This location was then used to determine

the home FSA ( n ). The proportion of time spent outside the home location each day, stratified by

inside vs outside the home FSA, was also used to estimate the relative proportions of intra- vs inter-

FSA mobility. Finally, the total numbers of visits to other FSAs ( n ′ ) by all devices were used to estimate
9 The rows for Canada in contacts_home.rdata , contacts_work.rdata , contacts_school.rdata , and 

contacts_others.rdata from /generate_synthetic_matrices/output/syntheticcontactmatrices2020/ 
and poptotal.rdata from /generate_synthetic_matrices/input/pop/ within https://github.com/kieshaprem/ 

synthetic- contact- matrices/tree/6e0eebc . 

https://github.com/kieshaprem/synthetic-contact-matrices/tree/6e0eebc
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Fig. 4. Intermediate results in obtaining unweighted and balanced age contact matrices C ub 
aa ′ y (expected number of type y 

contacts per person per day in each age group a , with those other age groups a ′ ) from population-weighted matrices C aa ′ y 
from [9] which may not satisfy contact balancing. Contact matrices for Canada, derived from [9] ; colour scales are square-root 

transformed to improve perception of smaller values. 

t  

o

 

a

 

w  

f  

c  

a  
he conditional probability of travelling from FSA n to FSA n ′ , given that an individual will travel

utside the home FSA n . 

The contribution of each FSA to overall mobility of the patch/decile (group of FSAs) was then

ggregated as: 

B gg ′ = 

∑ 

n ∈ S g 

∑ 

n ′ ∈ S 
g ′ 

B nn ′ (17)

here S g is the set of FSAs ( n ) corresponding to patch/decile g. Mobility matrices were estimated

or each month in the available dataset (Jan–Dec 2020). A reference period reflecting pre-pandemic

onditions was defined as Jan–Feb 2020; unless otherwise specified, all subsequent results use the

verage mobility patterns during that period ( Figure 3 ). We did not model any differences in mobility



10 J. Knight, H. Ma and A. Ghasemi et al. / MethodsX 9 (2022) 101614 

Fig. 5. Differences between intermediate results shown in Figure 4 . Contact matrices for Canada, derived from [9] ; colour scales 

are square-root transformed to improve perception of smaller values. 

 

 

 

C  
by age group, although such differences could be included in the model by adding a relative rate in

Eq. (11) . 

Finally, we specified the proportions of each contact type assumed to be formed with the home

pool: 

h y = { home : 1 , work : 0 , school : 0 , others : 0 } (18) 

The parameters P ga , C aa ′ y , B gg ′ , and h y represent the necessary inputs to our approach for calculating

 gag ′ a ′ y . The following § 3.2 walks step-wise through the approach and presents all major intermediate

results. 
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Fig. 6. Intermediate results in obtaining age-restratified contact matrices C ub 
a ∗a ′ ∗y 

(expected number of type y contacts per person 

per day in each age group a ∗ , with those from age groups a ′ ∗) from matrices C ub 
a 5 a 

′ 
5 

y 
with 5-year age stratifications a 5 . Contact 

matrices for Canada, derived from [9] ; colour scales are square-root transformed to improve perception of smaller values; the 

horizontal streaks in (c) corresponding to age groups 0–11 and 16–39 are expected, as more contacts will be formed with larger 

age groups. 

R
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e  

l  

t  

F  
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esults 

Figure 4 illustrates the contact matrices C aa ′ y from Prem et al. [9] , before and after the steps

f unweighting by population age distributions, Eq. (8) , and ensuring contact balancing, Eq. (9) .

igure 5 illustrates the differences in contact matrices between each step. These differences can be

xplained as follows. The Canadian age distribution used by Prem et al. [9] (Figure A.11 black dashed

ine), is below the mean for the youngest and oldest age groups; thus inverting the weighting by

his age distribution increases the contacts expected with these age groups ( Figure 5 a). By contrast,

igure 5 b is purely symmetric (and opposite about the central diagonal), reflecting differences from

he symmetric mean matrix. 
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Fig. 7. Total contacts per person per day C ay = 

∑ 

a ′ C aa ′ y for each intermediate step in obtaining C ub 
a ∗a ′ ∗y 

, stratified by contact type. 

Contact matrices for Canada, derived from [9] ; modelled contacts for each age group are plotted at the midpoint of the age 

group; the cut points for the original age groups a 5 from [9] and the target age groups a ∗ in our application are indicated on 

the bottom and top x-axes, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 illustrates the unweighted and balanced contact matrices C ub 
aa ′ y before and after bilinear

interpolation and aggregation to the target age groups of interest, Eq. (10) . The final matrices C ub 
a ∗a ′ ∗y 

include dominant horizontal streaks corresponding to larger age groups. These streaks are expected, 

as more contacts are expected to form with larger “other” age groups. Vertical streaks do not appear,

as each column represents the expected contacts for each person in the “self” age group, not the total

contacts formed by that age group. 10 

Figure 7 plots the total expected contacts per person per day, C ay = 

∑ 

a ′ C aa ′ y , before and after each

of the above steps, from before Eq. (8) through after Eq. (10) . Overall, patterns remained roughly

consistent across transformations, although some details among the large 16–39 age group are lost 

due to substantial averaging. 

Finally, Figure 8 illustrates the margins (sum over “other” strata and population-weighted average 

over “self” strata) of the complete mixing matrices C gag ′ a ′ y , in terms of age groups a & a ′ ( Figure 8 a),

and patches/deciles g & g ′ ( Figure 8 b). Such margins are computed as follows: 

C aa ′ y = 

∑ 

g 

P ga 

∑ 

g ′ 
C gag ′ a ′ y 

/ ∑ 

g 

P ga (19) 

C gg ′ y = 

∑ 

a 

P ga 

∑ 

a ′ 
C gag ′ a ′ y 

/ ∑ 

a 

P ga (20) 

The equivalent matrices for total number of contacts per person of all types ( C aa ′ and C gg ′ ) are also

given in Figures 8 c and 8 d, respectively. The marginal matrices C aa ′ y are identical to the input age

mixing matrices from Eq. (10) , which could be used as an implementation check. Since h y = 1 for

“home” contacts, C gg ′ y is an identity matrix. The equivalent matrices for “work”, “school”, and “others”

contact types also feature a strong diagonal, due to a strong diagonal in the source mobility matrix

B gg ′ (individuals who are mobile within their home FSA). However, the off-diagonal elements are less 

clustered towards the central diagonal versus the mobility matrix B gg ′ ( Figure 3 ). Mobile individuals

from patches g and g ′ may form contacts not only when either travels to the others’ patch, but

also when they both travel to a third patch. Thus, the degree of mixing between patches using this

approach is greater than the mobility matrix alone would suggest, though less than if completely

random mixing was assumed. 
10 The corresponding matrix of absolute contact X aa ′ y = C aa ′ y P a ′ will be symmetric, and thus will include symmetric horizontal 

and vertical streaks. 
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Fig. 8. Expected contacts per person per day, stratified by age, decile (patch), and contact type, computed as the margins of 

the overall contact matrices C gag ′ a ′ y . Contact matrices for Canada, derived from [9] ; colour scales are square-root transformed to 

improve perception of smaller values. 
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Arenas et al. [1] develop an approach to modelling contact patterns associated with recurrent

obility, which is relevant to dynamic models of infectious disease transmission, such as SARS-

oV-2. The original approach simulates contact patterns between age groups and geographic patches

onnected by recurrently mobile individuals, and considers changes to mixing between patches due to

educed mobility among some individuals. In this paper, we proposed approaches to improve upon the

pproach to: ensure contact balancing between age groups; model changes to age contact patterns in
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response to reduced mobility; and allow complete isolation of non-mobile individuals from mobility- 

related contacts. 

The first key change in the proposed approach draws on [6] to combine preferential patterns of age

mixing with the age distribution of the mixing population, such that the actual number of contacts

formed reflects both elements. This change is incorporated into each separate mixing “pool” where 

contacts are formed, and ensures that the number of contacts simulated from age group a to age

group a ′ will equal those from age group a ′ to age group a . This revised approach can also ensure

contacts balance if population sizes change over time, such as in the case of large differential mortality

by age group or patch; or if the numbers of contacts formed per-person differ by patch, such as if

individuals in some patches have higher numbers of work contacts. 

The second key change in the proposed approach is to maintain separate mixing patterns for each

type of contact, only aggregating the contribution of different contact types to overall transmission 

within the force of infection equation. With this change, the age mixing patterns associated with any

contact type are not influenced by changes to the numbers or mixing patterns of any other contact

type. This change also supports differential probability of transmission by contact type. 

The final key change in the proposed approach is to introduce two separate mixing pools where

contacts can form. Within “home” pools, contacts can only be formed with other residents of the same

patch. Within “travel” pools, contacts cab be formed with other residents of the same patch who are

mobile within their residence patch, or with any mobile visitors to the patch. Home pools therefore

allow true isolation of some individuals from mobility-related contacts, with implications for overall 

network connectivity. 

In developing and applying the proposed approach to an example context, we present the 

methodological details and results of each intermediate step, so that they may be reproduced or built

upon in future work. 
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