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A B S T R A C T   

The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the 
epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by 
infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the 
quantitative link between clinical cases observed through traditional surveillance and the signals from viral 
concentrations in wastewater is still developing and hampers interpretation of the data and actionable public- 
health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the popu-
lation level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected 
persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we 
perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions 
and vaccination on the discordance between clinical and wastewater signals. We also apply our model to sur-
veillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, 
the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired 
with this model, can complement clinical surveillance by supporting the estimation of key epidemiological 
metrics and hence better triangulate the state of an epidemic using this alternative data source.   

1. Introduction 

Wastewater has been used previously for monitoring of a wide range 
of behavioural, socio-economic and biological markers including: 
medical and illicit drugs Feng et al. (2018); Zuccato et al. (2008, 2005); 
antibiotic and antimicrobial resistance Christou et al. (2017); Rizzo et al. 
(2013); Laht et al. (2014); and industrial pollutant chemicals Rousis 
et al. (2017, 2016). Spatial and temporal screening of the wastewater 

collection system or “sewershed" can provide qualitative and quantita-
tive information on the marker of interest within the population in a 
given sewer catchment contributing to the wastewater. The wastewater 
data when used as an index of disease burden can be incorporated into 
traditional surveillance tools for monitoring disease prevalence that is 
purposeful, economical and action-oriented for public health Gawlik 
et al. (2021). Wastewater-based surveillance (WBS) has also proven to 
be a low-cost and non-invasive tool for the management of infectious 
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disease pathogens such as norovirus Lun et al. (2018); Fioretti et al. 
(2018) and poliovirus Asghar et al. (2014); Duintjer Tebbens et al. 
(2017); Brouwer et al. (2018) where viral concentration in wastewater 
served to supplement clinical surveillance. Since the start of the 
COVID-19 pandemic, SARS-CoV-2 RNA has been detected and quanti-
fied in sewage in many locations worldwide Naughton (2020) and was 
employed successfully in correlating the concentration of SARS-CoV-2 in 
wastewater to clinical cases reported in the sewershed Medema et al. 
(2020); Ahmed et al. (2020); Wurtzer et al. (2020); Peccia et al. (2020); 
La Rosa et al. (2020); Larsen and Wigginton (2020); Randazzo et al. 
(2020); D’Aoust et al. (2021); Hata et al. (2021). In some instances of 
institutional surveillance, the leading wastewater signal (measured as 
SARS-CoV-2 RNA concentration in wastewater) compared to the clinical 
reports provided an early sign for the introduction or resurgence of 
COVID-19 into a community Gibas et al. (2021); Peiser (2020); Pagli-
nawan (2020); D’Aoust et al. (2021) enabling rapid deployment of 
public health response and mitigation efforts. 

Despite numerous successes with wastewater-based surveillance 
during the pandemic, utilizing wastewater surveillance data as a public- 
health tool for quick response remains challenging for some jurisdic-
tions, especially at the municipal level National Institute for Public 
Health Netherlands (2021); Public Health Ottawa (2021a). A major 
hurdle is the lack of a quantitative framework to assess and interpret the 
wastewater data generated and to translate that into public health action 
Public Health Ontario (2021b); WHO (2020). The common practice is to 
use the detection of SARS-CoV-2 in wastewater as a signal for COVID-19 
(re)introduction in a community and/or perform trend analysis in par-
allel with clinical surveillance of COVID-19. At the time of this manu-
script, it is generally not recommended to use SARS-CoV-2 WBS for 
direct inference of key epidemiological indicators such as prevalence of 
active infections Public Health Ontario (2021b); WHO (2020); Medema 
et al. (2020); Foladori et al. (2020). 

Public health response guided by SARS-CoV-2 levels in wastewater is 
currently hindered by a lack of structured interpretive criteria, which is 
at present obscured by the inherent complexity and variation imparted 
by diverse sewersheds and their contributing populations Li et al. 
(2021); Zhu et al. (2021); Rabson (2021). Sources of data variability 
includes individual’s shedding dynamics, sampling frequency of 
wastewater, non-standardized laboratory methods, sewershed-specific 
viral degradation and signal attenuation during its journey from the 
site of faecal shedding (and potentially from urinary or sputum deposit 
Jones et al. (2020); Wang et al. (2020)) to the sampling point. Attenu-
ation of RNA signal in wastewater involves several factors, such as 
dilution in municipal wastewater constituents (e.g., storm water effects 
in combined sewers and infiltration effects in both combined and 
separated sewers), RNA degradation (e.g., due to household detergents 
and industrial wastewaters) and viral degeneration in the harsh waste-
water environment due to temperature, bioactive chemicals, pH, etc. 
Solids sedimentation and resuspension may also play a key role in the 
transportation and decay of SARS-CoV-2 RNA because of the hydro-
phobic characteristics of the viral envelope and its strong associations to 
solids Gundy et al. (2009); Foladori et al. (2020). In addition, concen-
tration methods for detection enhancement and minimization of inhib-
itory substances of molecular tests can result in some loss of the viral 
target Kitajima et al. (2020); Michael-Kordatou et al. (2020). 

Here, we present a modelling framework that attempts to link 
quantified SARS-CoV-2 levels in wastewater with estimates of infections 
in the population within the sewershed, and to support policy decisions. 
The model incorporates both the viral transmission within the popula-
tion via a standard epidemiological SEIR-like model (“Susceptible - 
Exposed - Infectious - Recovered”) Anderson and May (1991) and the 
fate of SARS-CoV-2 in wastewater using a simplified hydrological 
transport framework. To illustrate potential applications, we fit our 
model to WBS data and traditional clinical reports gathered from six 
wastewater treatment plants (WWTPs) located in three Canadian cities 
(Edmonton, Ottawa and Toronto) and provide wastewater-informed 

estimates of key epidemiological metrics. We also perform exploratory 
simulations to investigate how the wastewater signal can be mechanis-
tically associated with clinical surveillance of COVID-19. 

2. Methods 

We develop a mathematical model that mechanistically describes 
both the transmission at the population level (“above ground”) and the 
concentration of SARS-CoV-2 in wastewater as a result of faecal shed-
ding from the infected individuals (“below ground”). 

2.1. Transmission between individuals 

To model SARS-CoV-2 transmission in the population, we use a SEIR- 
type epidemiological model. The disease progression of individuals is 
captured through several compartments that reflect their epidemiolog-
ical states and disease outcomes (Table 1). Individuals can be susceptible 
(S); exposed (infected but not yet infectious, E); symptomatically 
infected who will later become hospitalized (J) or recovered without 
hospitalization during active COVID-19 (I); asymptomatically infected 
(A); hospitalized (H); those recovered and no longer infectious but still 
shedding virus in faeces (Z); fully recovered and permanently immune 
but not shedding anymore (R) and deceased (D). We ignore any 
migration movements, so at any given time the total population is 
constant and equal to N = S + E + J + I + A + H + Z + R + D. Infection 
occurs at a time-dependent transmission rate βt between infectious 
(states I, J or A) and susceptible individuals (S). Once infected, suscep-
tible individuals enter the latent (non-infectious) state (E) for an average 
duration of 1∕ϵ days, where no faecal shedding occurs. A proportion α of 
all infections are asymptomatic. A fraction h of symptomatic individuals 
are hospitalized (H) for an average duration of 1∕ℓ days and for those, 
the COVID-19-associated mortality is δ. After their infectious period 
ends, patients enter the post-infection shedding state Z where SARS- 
CoV-2 faecal shedding still occurs for 1∕η days on average. The 
exposed (E), infectious (A, I and J) and post-infection shedding (Z) states 
are modelled with a series of sub-compartments in order to have their 

Table 1 
Description of the model’s compartments and parameters for the SARS-CoV-2 
transmission within population and disease outcome.  

Symbole Definition 

S susceptibles 
Ek exposed susceptibles but not infectious in kth subcompartment 
Ak asymptomatic infectious cases in kth subcompartment 
Ik symptomatic infectious cases in kth subcompartment 
Jk symptomatic infectious cases in kth subcompartment who later admits to 

hospital 
Zk non-infectious cases but fecal shedding SARS-CoV-2 RNA in kth 

subcompartment 
H hospitalized patients 
R recovered cases 
D deceased cases 
βt time-dependent transmission rate (per contact) 
1∕εk ave. latency time in kth subcompartment (days) 
1∕νk ave. duration in kth subcompartment among symptomatics (days) 
1∕μk ave. duration in kth subcompartment among symptomatics admit to 

hospital (days) 
1∕θk ave. duration in kth subcompartment among asymptomatics (days) 
1∕ηk ave. duration in kth subcompartment of shedding after infectiousness 

(days) 
1∕ℓ ave. length of stay in a hospital (days) 
nE total number of subcompartments in E state 
nI total number of subcompartments in I state 
nJ total number of subcompartments in J state 
nA total number of subcompartments in A state 
nZ total number of subcompartments in Z state 
α proportion of exposed cases that are asymptomatic 
h proportion of symptomatic cases that need hospital admission 
δ proportion of deceased individuals among hospitalized patients  
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respective sojourn time gamma-distributed Wearing et al. (2005); He 
et al. (2020); Li et al. (2020). 

The transmission dynamics are represented by the system of differ-
ential equations 1a-1n and illustrated in Fig. 1. 

Ṡ = − βtS(Ã + Ĩ + J̃)∕N (1a)  

Ė1 = βtS(Ã + Ĩ + J̃)∕N − nE εE1 (1b)  

Ėk = nE ε(Ek− 1 − Ek)2 ≤ k ≤ nE (1c)  

Ȧ1 = αεEnE
− nA θA1 (1d)  

Ȧk = nA θ(Ak− 1 − Ak)2 ≤ k ≤ nA (1e)  

İ1 = (1 − h) (1 − α)εEnE
− nI νI1 (1f)  

İk = nI ν(Ik− 1 − Ik)2 ≤ k ≤ nI (1g)  

J̇1 = h(1 − α)εEnE
− nJ μJ1 (1h)  

J̇k = nJ μ(Jk− 1 − Jk)2 ≤ k ≤ nJ (1i)  

Ḣ = nJ μJnJ
− ℓH (1j)  

Ż1 = nI νInI
+ nA θAnA

− nZ ηZ1 (1k)  

Żk = nZ η(Zk− 1 − Zk) 2 ≤ k ≤ nZ (1l)  

Ṙ = nZ ηZnZ
+ (1 − δ)ℓH (1m)  

Ḋ = δ ℓH (1n) 

where Ã = ξ
∑nA

k=1ϕkAk, ̃I =
∑nI

k=1ψkIk and ̃J =
∑nJ

k=1ψkJk. We use the 
dot notation to symbolize derivation with respect to time (e.g., Ṡ =
dS∕dt). 

The parameters ϕk and ψk are multiplicative adjustments to the 
baseline transmission rate βt to represent the infectious profile during 
the course of infection. The values for ϕk and ψk were chosen to repre-
sent the best estimate of the temporal infectiousness profile (hence their 
values are distinct, not constant) given the different results published 
(see Appendix A-2 and A-3 for details). The parameter ξ models the 
relative infectiousness of asymptomatic cases compared to symptomatic 
ones. The effective reproduction number of this model is (see Appendix 
A-4 for details on its calculation): 

R t = βt

(

αξ
1
θ
+ (1 − h)(1 − α) 1

ν + h(1 − α) 1
μ

∑nJ
k=1ψk

nI

)
St

N
(2)  

2.2. SARS-CoV-2 viral concentration in wastewater 

2.2.1. Deposited viral concentration 
The daily concentration of SARS-CoV-2 in wastewater is directly 

calculated from the total number of individuals that are actively shed-
ding into the sewage system. SARS-CoV-2 faecal shedding varies ac-
cording to the infected individual’s clinical state and disease outcomes. 
Depending on the disease progression, infected individuals shed a var-
iable amount of SARS-CoV-2 while they are in the shedding states (A, I, J 
and Z). We make the simplifying assumption that hospitalized patients 
(H)–assumed mostly bedridden and a small fraction of the shedding 
population–do not contribute to faecal shedding. Moreover, we assume 
that individuals in their latent period (E) do not contribute to faecal 
shedding: if they are not shedding enough through the respiratory tract 
be infectious, they may not shed significantly through the faecal route 
too. 

The total concentration of SARS-CoV-2 RNA entering the wastewater 
at time t is given by 

W∗(t) = ω ×

(
∑nj

k=1
λkJk(t) +

∑nI

k=1
λkIk(t) + ξ

∑nA

k=1
λkAk(t) +

∑nZ

k=1
λkZk(t)

)

(3)  

The parameters λk, represent SARS-CoV-2 faecal shedding dynamics per 
capita when the infected individual is in any of the epidemiological 

Fig. 1. Diagram of compartmental model. See main text for a description of the epidemiological states. The notation 1: n• indicates a modelling using n• sub- 
compartments to obtain a gamma-distributed sojourn time in the associated epidemiological state. 

S. Nourbakhsh et al.                                                                                                                                                                                                                            



Epidemics 39 (2022) 100560

4

states (i.e., I, J, A and Z). Given the current lack of observational data, we 
used the same parameters λk for all epidemiological states. Values for λk 
were set at mid-range values of published studies (see Appendix A-3). 
Note that we assume the same reduction in faecal shedding as in res-
piratory shedding for asymptomatic cases (parameter ξ). The parameter 
ω implies that our model can only determine up to a constant the con-
centration of SARS-CoV-2 in wastewater Brouwer et al. (2018), even if 
the limit of detection of the assay is known. This reflects our current 
inability to quantify the various complex processes that affect the con-
centration, from patients’ shedding to the concentration measured in 
laboratories (e.g., frequency and timing of sampling, RNA degradation 
in the sewer system, recovery efficiency of assays). 

2.2.2. RNA transport and sampled viral concentration 
We use a simple advection-dispersion-decay model to simulate the 

fate of SARS-CoV-2 along its journey in wastewater from the shedding 
points to the sampling site. This model is a combination of an expo-
nential viral decay Ahmed et al. (2020) and a τ-day dispersed plug-flow 
function, g(τ), representing all possible hydrodynamic processes (e.g., 
dilution, sedimentation and resuspension) that leads to RNA degrada-
tion as well as decrease and delay of signal at the time of sampling. The 
dispersed plug-flow g(τ) acts as a transformation function, which re-
shapes the initial deposited concentration, W* , into a delayed viral 
distribution over τ days as a result of the transit of SARS-CoV-2 in the 
sewer system. Hence, we defined the sampled viral concentration at time 
t as: 

Wsamp(t) =
∫ t

0
W ∗ (t − τ) g(τ) e− κτdτ, (4)  

where κ is the daily first-order decay rate of SARS-CoV-2 due to the 
harsh, complex and bioactive environment of wastewater. Because of 
the lack of decay-specific data for any of our sampling locations, we 
naively set its value based on the literature Ahmed et al. (2020); Sil-
verman and Boehm (2020) at κ = 0.18 day− 1 for all locations. The 
SARS-CoV-2 RNA concentration entering the sewage system daily is 
modelled as a single hydrodynamic pulse per day and the plug-flow 
function, g, is obtained by the analytical solution of the axial dispersed 
plug flow differential equation Kayode Coker (2001). We then 
re-parametrize the analytical solution with the mean delay time τ and its 
standard deviation σ into a Gaussian distribution 

g(τ) = 1̅̅̅
̅̅

2π
√

σ
exp

(

−
(τ − τ)2

2σ2

)

. (5)  

Note that our advection-dispersion-decay model of the RNA transport is 
not a spatial model and the physical/biochemical characteristics of each 
WWTPs and their unique wastewater matrix are not modelled in Equa-
tion 4 and Equation 5. The simple dispersed plug flow model (Equation 
5) only modelled the average transit time of the viral particles (τ) in a 
given sewershed influenced by the unknown viral chemical partitioning 
and hydrodynamical sedimentation. See Appendix A-5 for more details. 

2.2.3. Wastewater reported sample 
The sample transportation, laboratory processing time and reporting 

lags, introduce reporting delays of RNA concentration in wastewater. 
Hence, we define the reported wastewater concentration as 

W(t) = Wsamp(t − ℓww), (6)  

where ℓww is the reporting lag between wastewater sampling and con-
centration report after laboratory analysis. (Note that the reporting 
delay of the wastewater measurement is independent from the delay 
caused by the transport of RNA particles in the sewer system as defined 
in Equation 4). 

2.3. Clinical reported cases 

We also model surveillance data derived from laboratory confirmed 
and clinically diagnosed COVID-19 cases, acknowledging that instan-
taneous identification and complete reporting after initial infection is 
not possible. We assume that a fraction ρ of symptomatic incidence is 
reported with a lag of a ℓclinical days from the time of infection. If i(t) is 
the total incidence at time t, we define the number of clinical cases re-
ported at time t as: 

C(t) = ρ (1 − α) i(t − ℓclinical), (7)  

2.4. Wastewater and clinical surveillance data 

We apply our modelling framework to data sets from six wastewater 
sampling sites located in three Canadian cities: Edmonton (Alberta), 
Ottawa (Ontario) and Toronto (Ontario). Sampling sites are the 
following municipal WWTPs (abbreviation / approximate population 
served): Gold Bar in Edmonton (EGB / 900,000); Robert O. Pickard 
Environmental Centre in Ottawa (OTW / 1,000,000 City of Ottawa 
(2021)); Toronto Ashbridges Bay (TAB / 1,603,700 Toronto Water 
(2021a)); Toronto Humber (THU / 685,000 Toronto Water (2021b)); 
Toronto Highland Creek (THC / 533,000 Toronto Water (2021c)); and 
Toronto North Toronto (TNT / 252,530 Statistics Canada (2016)). 

2.4.1. Data collection 
Wastewater samples were collected approximately two (Edmonton 

and Toronto) to seven (Ottawa) times a week. The sampling location was 
at the influent of the wastewater treatment plants. Wastewater samples 
were collected before de-gritting in Toronto, and after for Edmonton and 
Ottawa. 

Wastewater samples from Edmonton and Toronto were shipped to 
the National Microbiology Laboratory (NML) in Winnipeg, Manitoba, 
where SARS-CoV-2 RNA concentration was measured. RNA from 
wastewater samples was purified using two methods. Prior to February 
12th 2021, 15 mL of clarified supernatant (after 4000 × g centrifugation 
for 20 min at 4∘C), was concentrated using an ultracentrifugal filter 
device (4000 × g for 35 min at 4∘C) (Amicon Ultra-15, 10 kDa MWCO, 
Millipore-Sigma, St. Louis, MO, U.S.A). Total RNA was extracted from 
the resultant concentrate ( ~ 200 μL) using the MagNA Pure 96 DNA and 
Viral NA Large Volume Kit (Roche Diagnostics, Laval, QC) using the 
Plasma External Lysis 4.0 protocol as per manufacturer instructions. 
After February 12th 2021, the pellet resultant from clarifying (4000 g 
for 20 min at 4∘C) 30 mL of wastewater was resuspended in 700 μL 
Qiagen Buffer RLT (Qiagen, Germantown, MD) containing 1% 2-mer-
captoethanol. To this, 200 μL of 0.5 mm zirconia-silica beads (Biospec, 
Bartlesville, OK) were added and the sample was processed with a Bead 
Mill 24 Homogenizer (Fisher Scientific, Ottawa, ON) using 4 × 30 s 
pulses at 6 m/s, then clarified by centrifugation (12000 × g, 3 min) and 
the resultant lysate used for RNA extraction using the MagNA Pure 96 
instrument as described above. Viral RNA was quantified using RTq-PCR 
with the US-CDC N1 and N2 primers. 

For Ottawa, daily 24-hour composite primary sludge samples, con-
sisting of four discrete samples collected at 6 h intervals and subse-
quently mixed, were collected and transported on ice to the University of 
Ottawa, where samples were analyzed within 24 h of reception. Samples 
were concentrated by centrifugation at 10,000 g for 45 min and RNA 
was extracted from a 250 mg portion of the resulting pellet using a 
modified version of the Qiagen RNeasy PowerMicrobiome kit D’Aoust 
et al. (2021). Quantification was performed using singleplex 
probe-based RTq-PCR for the N1 and N2 gene regions of the virus. 

For Edmonton and Toronto, SARS-CoV-2 RNA was extracted from 
the solid fraction of influent samples. The solid concentration can be 
affected by the influent flow volume and environmental factors such as 
precipitation and sedimentation Bertels et al. (2022); Amoah et al. 
(2022). Hence, for these locations, SARS-CoV-2 concentrations in 
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wastewater was normalized by the total solid suspension (TSS) 
measured on the sampling day at the treatment plant. For Ottawa, 
SARS-CoV-2 RNA concentration was normalized by the concentration of 
the Pepper Mild Mottle Virus (PMMoV) to account for the total human 
faecal mass present in the sample. Importantly, the goal of the 
normalization is mainly to control for the variation of other unobserved 
variables that can affect the viral concentration in wastewater. TSS and 
PMMoV may be a better proxy to control for the variations of our 
measured viral concentrations than daily flow because our the labora-
tory procedure extracts viral RNA from the solids fraction of the influent 
wastewater (Toronto and Edmonton) and from primary clarified sludge 
(Ottawa). For all cities, the reported viral concentration used in the 
model (W) was the average normalized concentration across all tech-
nical replicates for both the N1 and N2 genes. 

We obtained clinical cases and hospital admissions (except for Tor-
onto) for the catchment area of each of the six wastewater treatment 
plants. Hence, we were able to link clinical and wastewater surveil-
lances. The data sets for the three cities are plotted in Fig. 2 Seropre-
valence values at the city and province level were obtained from 
Canadian Blood Services (CBS) Canadian Blood Services (2021). The 
wastewater and clinical surveillance data used in this study are available 
in Supplementary File S1. 

2.4.2. Fit to data 
We use an Approximate Bayesian Computation (ABC) algorithm 

Beaumont et al. (2002) to fit the unknown or unobserved model pa-
rameters to the available data. Our observations consisted of i) 
SARS-CoV-2 RNA concentration in wastewater, ii) reported clinical 
cases of COVID-19, and iii) hospital admissions (unavailable for Tor-
onto). For each ABC prior iteration, the error function is defined as a 
weighted trajectory matching 

ei = wC(C − Cobs)
2
+ wH(H − Hobs)

2
+ wW(W − Wobs)

2 (8)  

We use 50,000 prior ABC iterations and retain the 100 smallest errors to 
generate posterior distributions (acceptance ratio 2 × 10− 3). For every 
site, we fitted the time-dependent transmission rates (βt), basic repro-
duction number (R0), mean viral traveling time in sewer (τ) and the 

scaling factor for SARS-CoV-2 viral concentration measured at the 
sampling location (w). We chose slightly informative prior distributions 
to reduce the computing time (Table 2 and Appendix A-9). 

The rest of the model parameters are fixed to a value based on the 
literature (Table 2). The parameter βt is modelled as a piecewise linear 
function of time where the time partition was chosen manually to reflect 
the changes in trends of the reported incidence and wastewater signals. 
More details about the fitting procedure is given in Appendix A-1. 

We define three types of fitting-to-data procedures. “Clinical” when 
wC = wH = 1 and wW = 0, to use data from clinical sources only; “WW” 
when wW = 1 and wH = wC = 0, to use wastewater data only; and finally 
“Combined” by adjusting the weights wC, wH and wW such that the 
contribution of each of the three error terms (the squared difference in 
Equation 8) are, on average, approximately equal. The “Combined” 
fitting procedure aims to have approximately the same contribution 
from clinical and wastewater data sources despite the differences in 
observation frequencies and values (in practice, we find that wW is about 
twice the value of wC in order to reach equal contribution). The simu-
lations are initialized with 10 infectious individuals in the compartment 
I1 at the date of the first reported incidence for each location. 

2.4.3. Inference of unobserved epidemiological quantities 
For a given location, once the model is fitted data, we can infer un-

observed quantities of epidemiological importance by generating 
epidemic trajectories from the posterior samples. The posterior preva-
lence distribution (at each time point) is defined by simply adding the 
populations from the compartments representing active infection, that is 

prev(t) = E +
∑nA

i=1
Ai +

∑nI

i=1
Ii +

∑nJ

i=1
Ji + H (9)  

The posterior cumulative incidence is obtained by summing Equation 1a 
until time t 

cuminc(t) = −
∑t

i=1
Ṡi (10)  

The fitted model can also provide an estimate of the effective repro-

Fig. 2. Data sets used in this study for Edmonton, Ottawa and Toronto. Each horizontal panel is a city and colors represent the type of data (reported cases, hospital 
admissions and SARS-CoV-2 RNA concentration in wastewater). All curves were normalized to 1 (dividing by their respective maximum value) to plot them in one 
single panel to facilitate visual comparison. All data sets used in this study are available in Supplementary File S1. 
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duction number from the different data sources (e.g., clinical and/or 
wastewater) using Equation 2. 

2.5. Simulations 

2.5.1. Detection timing differential 
In order to explore wastewater-based surveillance as a leading in-

dicator of infection in the community, the time when SARS-CoV-2 is first 
reported from wastewater is noted dww and defined as W(t = dww) 
= LOD where LOD is the limit of detection of the laboratory method. In 
addition, the time dclinical when COVID-19 is first reported is defined as C 
(t = dclinical) = 1. Finally, we define the reported detection differential 
Δ = dww − dclinical. As a result, the wastewater signal can be classified as 
a leading indicator over traditional clinical surveillance when Δ < 0. We 
assess how the reported detection differential Δ can be impacted by 
varying model parameters that would typically differ from one 
community-sewer system to another. We select only three combinations 
of parameters (among many) to illustrate how Δ can be affected, and 
most importantly how its sign can change indicating its transition be-
tween a leading and lagging indicator. We consider two levels of COVID- 
19 reporting, with ρ = 30% to reflect the approximate level of clinical 
under-reporting estimated from seroprevalence studies in Canada Ca-
nadian Blood Services (2021), and ρ = 70% that simulates a much more 
efficient surveillance. 

2.5.2. Impact of vaccination 
Although the model presented here does not explicitly have a 

vaccination process, we can mimic the main effects of an infection- 
permissive vaccine (despite high efficacy against infection, the 
currently available COVID-19 vaccines do not induce sterilizing immu-
nity Focosi et al. (2022); Yewdell (2021); Reynolds et al. (2022). We 
model a simple scenario that rolls out an infection permissive vaccine by 
gradually decreasing the transmission rate (β) by 70% over 50 days and 
increasing the proportion of asymptomatic infection (α) from 30% to 
90%. This reflects the growing protection of the population from severe 
outcomes of COVID-19 as well as decrease in transmissions as the vac-
cine is administered. To assess the differential impact of vaccination on 
clinical and wastewater observations, we consider the ratio of the level 
of SARS-CoV-2 in wastewater over the reported clinical cases, W(t)∕C(t). 

3. Results 

We present our results in two sections. First, we apply our modelling 
framework to wastewater and clinical surveillance data from six sam-
pling sites located in three Canadian cities (Edmonton, Ottawa and 
Toronto) and infer epidemiological parameters such as prevalence, 
effective reproduction number and incidence forecast. The second sec-
tion is based on exploratory simulations (not fitted to data of a specific 
location) that highlight important mechanistic aspects between clinical 

Fig. 3. SARS-CoV-2 prevalence estimates. Each quadrant block represents one of the four selected locations. The left panel of each quadrant block shows the es-
timates of SARS-CoV-2 prevalence in time series. The lines show the mean estimate of prevalence. The right panel of each quadrant block compares the cumulative 
incidence estimated by the model fitted on the “Combined” data set to seroprevalence levels reported by the Canadian Blood Services for each city (grey point 
indicates the mean, the vertical grey bars show the 95% confidence intervals). 
(a) Each colour represents the different data sources used to fit the model (dark red: “Clinical”, pink: “Combined”, blue: “WW”). (b) The shaded ribbon indicates the 
95% CrI for the estimate fitted on the “Combined” data set (CrIs for other data sources are shown in Appendix A-6). 
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and wastewater surveillances. 

3.1. Application to Canadian surveillance data 

In this section, we compare the inferences made on key epidemio-
logical variables by fitting the model to different data sources. Our goal 
is to assess the added-value of the wastewater-based data stream. Hence, 
in the following, we present inferences by fitting the model to different 
data sources available (“Clinical”, “WW” and “Combined”) and 
comparing the outcomes. The fitting outputs from the ABC algorithm are 
shown in Appendix A-8 and A-9. 

3.1.1. Prevalence estimates 
Fig. 3 shows, for four selected locations (EGB, OTW, TAB and THC), 

the SARS-CoV-2 prevalence estimated by sampling the posterior distri-
butions fitted to the various data sources “Clinical", “WW" and “Com-
bined" and the evaluation of Equation 9. Estimates of cumulative 
incidence (Equation 10) from “Combined" is also displayed and 
compared to available SARS-CoV-2 seroprevalence levels estimated 
from surveys by the Canadian Blood Services performed on banks of 
blood donors in Edmonton, Ottawa and Toronto Canadian Blood Ser-
vices (2021). Note that our model was not fitted to seroprevalence data 
and this comparison acts as a crude check that prevalence estimates 
from the model follow the same trends as other independent data 
sources. Cumulative incidence from wastewater data source (“WW"), 
compared to seroprevalence levels is also presented in Appendix A-6. 

For all locations, as expected, wastewater-only prevalence estimates 
are close to the clinical-only ones when the levels of SARS-CoV-2 in 
wastewater mimic the COVID-19 trends in the population (Fig. 2). For 
example, the prevalence estimated from wastewater-only and clinical- 
only are comparable for the December 2020 wave in Edmonton and 
April 2021 wave in Ottawa. However, when the clinical and wastewater 
signals are discordant, prevalence estimates can be significantly 
different. For example, wastewater-based prevalence estimates in 

January 2021 for Toronto Highland Creek (THC) do not show the peak 
seen from clinical observations. On the other hand, this January peak 
was captured in Toronto Ashbridges Bay (TAB)–another part of the 
city–and the subsequent March-May 2021 wave in Toronto Highland 
Creek (THC) was identified by both wastewater and clinical surveil-
lance. Further studies are needed to understand the cause(s) of the 
discordance observed in THC in January 2021. Finally, we note that, 
because of the larger variability of SARS-CoV-2 WBS and/or their lower 
sampling frequency as compared to daily clinical surveillance, credible 
intervals of our wastewater-only inferences can be larger than the 
clinical-only ones (see Appendix A-6). 

3.1.2. Effective reproduction number 
The effective reproduction number (R t) is a key epidemiological 

parameter that has gained recognition beyond public health circles 
during the COVID-19 pandemic Hollingsworth et al. (2020); Brauner 
et al. (2021). Using the same approach as for prevalence estimates, we 
inferred R t from epidemic trajectories generated from posterior distri-
butions fitted to the three different data sources (i.e., “Clinical”, “WW” 
and “Combined”) and Equation 2. 

For comparison, we also calculate R tusing reported COVID-19 cases 
using the R package EpiEstim (version 2.2) Cori et al. (2013) as a 
separate approach based on clinical data exclusively. 

Results shown in Fig. 4 exhibit the same behaviour as for the prev-
alence estimates, that is, mean estimates of R tare similar when trends of 
clinical and wastewater surveillance are comparable. Despite being 
based on a different modelling framework, estimates from EpiEstim are 
consistent with clinical-only estimates from our model. Finally, like for 
prevalence inferences, R testimates from wastewater-only data (Fig. 4, 
blue solid line) tend to have broader uncertainty interval compared to 
R tfrom clinical-only data (see Appendix A-7 for associated 95% credible 
interval widths). 

Fig. 4. Effective reproduction number. Each panel represents a wastewater treatment plant. For wastewater-based R t(blue curve), only estimates after 2020-Nov-15 
are shown for Edmonton and Toronto to avoid the initial assay setup period. The R testimates from our model are spline-smoothed, see Appendix A-7 for details. 
(a) Solid lines represent the mean of effective reproduction number estimated with our model for given data sources, and with the R package EpiEstim (gray). (b) The 
ribbon indicates the 95% credible interval for the “Clinical” data source. 
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3.1.3. Forecasts 
Our modelling framework allows to generate forecasts based on 

clinical, hospital (if available) and wastewater data. 
In Fig. 5 we show three 1-month-ahead forecasting examples for 

Edmonton, Toronto Highland Creek and Ottawa using either wastewater 
data only, or clinical data only. The Edmonton example (Fig. 5, left 
panel) shows forecasts made as of April 1st, 2021. In this case, the 
forecasts are relatively similar because both the clinical reports and the 
wastewater signals are comparable and the model fits were similar using 
either wastewater or clinical data. The Toronto Highland Creek example 
forecasts as of December 20th, 2020 (Fig. 5, middle panel). For this 
location, the wastewater signal and clinical reports are discordant from 
December 2020 to February 2021. During this period the wastewater 
concentration is low and approximately flat whereas the clinical reports 
indicate a new wave of infections. As a result, the model fitted on these 
two data sources interprets the epidemic differently for this period and 
hence provides contrasting forecasts. The forecast for Ottawa as of 
December 15th, 2020 (Fig. 5, right panel) illustrates the case when the 
wastewater forecast is more accurate than the one based on clinical 
surveillance only. At that time, the wastewater signal in Ottawa has 
picked up a resurgence earlier than clinical surveillance. This resurgence 
is then captured by the model fit and hence the wastewater-based 
forecast correctly projects the resurgence. 

Here, we merely intended to demonstrate examples of successful and 
unsuccessful forecasts using clinical and/or wastewater data, depending 
on the factors influencing these estimations (including variations in 
testing policy, sewershed characteristics, environmental events). 

3.2. Simulations 

In this section, we report results from simulations that provide 
general insights in interpreting WBS. 

3.2.1. Leading signal and reported detection differential 
We vary the LOD of the wastewater assay across a broad, but real-

istic, range Pecson et al. (2021) and calculate Δ, the detection time 
difference, for each simulation for a given value of LOD and the clinical 
reporting rate ρ. Because SARS-CoV-2 RNA concentration in wastewater 
can only be determined up to a constant in our model, the LOD values 
chosen here are rescaled to the parameters used to run our simulations 
and cannot be directly interpreted as RNA copies per mL, the traditional 
unit for LOD. Panel A in Fig. 6 shows that, depending on the LOD of the 
laboratory assay, the wastewater concentration of SARS-CoV-2 RNA can 

either be a leading (Δ < 0 for assays with low LODs) or a trailing indi-
cator of cases (re)introduction when compared to reported clinical 
cases. This is the case whether the clinical surveillance system in the 
population is efficient or not (coloured curves, Fig. 6A). 

We also vary the decay rate of RNA SARS-CoV-2 in wastewater 
within a broad realistic range Ahmed et al. (2020); Bivins et al. (2020); 
Mandal et al. (2020), as well as the transit time of SARS-CoV-2 between 
the shedding and sampling sites. Fig. 6B shows that, here again, the 
relative timing of (re)introduction detection by WBS compared to clin-
ical surveillance can be affected by both the harshness of the wastewater 
(represented by the decay rate) and the transit time of SARS-CoV-2 in 
the sewer system. We note, as expected, that with a fast transit time 
(illustrated by a 1-day travel time in the left-most panel of Fig. 6) the 
decay rate will not have a significant impact on Δ clinical surveillance 
(efficient, ρ = 70%, or not, ρ = 30%), but as the transit time increases to 
3 days (an upper bound considering strong sediment and recirculation 
effects) the effect of RNA decay becomes more important (increasing 
slope for the 1-day and 3-day transit times, Fig. 6B). 

3.2.2. Decreasing trend in wastewater signal following an epidemic peak 
We use a simple simulation approach to compare a declining trend of 

SARS-CoV-2 RNA in wastewater following a public-health measure 
(such as gatherings limits, compulsory face covering and lockdown) 
with traditional surveillance indicators such as reported cases. Previous 
studies Medema et al. (2020); Ahmed et al. (2020); Wurtzer et al. 
(2020); Peccia et al. (2020); La Rosa et al. (2020); Larsen and Wigginton 
(2020); Randazzo et al. (2020); D’Aoust et al. (2021); Hata et al. (2021) 
suggested that wastewater surveillance could confirm declining trends 
in clinical infections, while other studies reported an apparent decou-
pling Weidhaas et al. (2021). We use our mechanistic model to explore 
this decoupling effect with simulations. 

To mimic public health interventions, we use the constant trans-
mission rate (β) in our model and modify it to decrease linearly by 1/3 of 
its pre-intervention value (β∕3). The time duration by which in-
terventions can reduce the transmission rate to a steady value (time 
between starting date of imposed interventions and time of β∕3) is 
captured through Tinterv. This variable defines the speed of in-
terventions’ impact on slowing the transmission rate. For an example, a 
complete lockdown causing a sudden change in social contact rates and 
transmission rates, yet, wearing masks requires time to affect the 
transmission rate. We compared the relative reduction in the number of 
COVID-19 cases to the SARS-CoV-2 viral concentration in wastewater 
following 7 days of the epidemic peak by scl(t) = C(t + 7)∕C(t) − 1 and 

Fig. 5. Forecast examples for Edmonton (left panel), Toronto/Highland Creek (middle panel) and Ottawa (right panel). Filled points represent past data of reported 
clinical cases. Circles represent reported clinical cases not yet observed at the time of forecast. Colour represents the type of data the model was fitted to: blue, SARS- 
CoV-2 concentrations in wastewater only (past observations not shown here, for legibility); red, clinical cases only. Dashed coloured lines indicate the fitted mean for 
reported cases. The thick solid line shows the 1-month-ahead mean forecast, and the shaded areas their respective 95%CrI. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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sww = W(t + 7)∕W(t) − 1, respectively. 
Using our baseline parameters (Table 2), we simulate an intervention 

that reduces the contact rate to a third of its pre-intervention value at 
different time of the simulations, ranging from 20 to 90 days after the 
introduction of the index case. Fig. 7A shows that, overall, the effect of 
an intervention that significantly reduces transmission yields a larger 
relative decrease in number of COVID-19 cases than the level of SARS- 
CoV-2 in wastewater. The post-peak relative reduction observed in 
clinical surveillance (scl) is consistently larger than the one from WBS 
(sww) even as the timing of the intervention changes (Fig. 7B). The dif-
ference is more pronounced as the intervention reduces transmission 
more rapidly (Tinterv small). Hence, given the observation noise typically 
encountered, we expect that the effect of a sudden change in trans-
mission rate would be more clearly observable from clinical surveillance 
than from WBS. Viral concentration in wastewater tends to decline 
slowly following an epidemic peak and indicate an apparent decoupling 
with COVID-19 cases in the downward trend, caused– in our model –by 
the prolonged faecal shedding after infection. 

3.2.3. Differential impact of vaccination 
In Fig. 8 shows how W(t)∕C(t), the ratio of reported wastewater 

concentration over reported cases, increases following vaccination with 
a infection-permissive vaccine. Indeed, while an infection-permissive 
vaccine does reduce transmission, it still allows for infections to occur 
(mostly asymptomatic) and in particular, faecal shedding. Hence, a 
smaller proportion of infections are reported (because most of them are 
asymptomatic or too mild to be reported) but faecal shedding is less 
affected by this reporting bias and level of SARS-CoV-2 in wastewater 
decreases less steadily than COVID-19 surveillance. In this simulation, 
the approximately constant ratio before the start of vaccination (Fig. 8B) 
indicates that reports from clinical or wastewater data sources provide a 
similar picture of the epidemic for that period. However, once vacci-
nation is implemented, the increasing ratio (Fig. 8B, green curve) 
highlights a discordance between the two data sources. In Appendix A- 
10, a short sensitivity analysis on the timing of vaccination and the 
duration of viral clearance shows the results presented above remain 
similar. 

4. Discussion 

Surveillance through detection and quantification of targeted path-
ogens in wastewater has been a noteworthy tool for public health across 
the world Sims and Kasprzyk-Hordern (2020); Medema et al. (2020); 
Wurtzer et al. (2020); Lun et al. (2018); Fioretti et al. (2018); Asghar 

et al. (2014); Duintjer Tebbens et al. (2017); Brouwer et al. (2018). 
While pathogen surveillance in wastewater is not new, the scale and 
urgency of scientific development for WBS are witnessed during the 
unprecedented COVID-19 pandemic. Because of the novelty of 
SARS-CoV-2-related WBS and the lack of quantitative tools for analysis, 
the interpretation of levels SARS-CoV-2 in wastewater and their trans-
lation into actionable public health measures is still challenging Public 
Health Ontario (2021b); WHO (2020); Medema et al. (2020); Foladori 
et al. (2020). 

Here, we have provided a modelling framework to improve the un-
derstanding of the mechanisms at play between the viral transmission in 
the population and viral concentration shed in wastewater. This model 
can also provide estimates of key unobserved epidemiological parame-
ters. We demonstrated the applicability of our model by fitting it to data 
from three Canadian cities and made wastewater-informed inferences of 
important epidemiological metrics (prevalence, effective reproduction 
number and forecasted incidence). Our estimates for cumulative inci-
dence were above seroprevalence levels in all locations (Fig. 3 and Ap-
pendix A-6). Although serosurveys bring key insights on the progression 
of an epidemic, they may not be considered as gold-standard as their 
sample may not be representative of the general population. We pre-
sented their levels as an interesting comparison exercise rather than 
validation of the model. We also note we did not model seroreversion 
(patients who were infected but subsequently test seronegative because 
of loss of immunity or antibodies falling to undetectable levels). 

Importantly, we observed that estimates based on wastewater-only 
data usually provide a similar picture of the epidemic trajectory 
(Fig. 3) but discordant signals can occur and lead to drastically different 
interpretations. This was the case, for example, in January 2021 in 
Toronto Highland Creek where the wastewater signal did not indicate a 
resurgence of infections, despite the wave observed from the reported 
clinical cases. We believe this muted peak in wastewater signal was not 
caused by a laboratory issue (an independent laboratory confirmed the 
same observation for this location), but rather from undetermined 
events in this particular sewershed at that specific time that need to be 
further investigated. 

Similarly, the effective reproduction numbers inferred from waste-
water data only are consistent with more traditional methods, such as 
using clinical reports with the software EpiEstim (Fig. 4). The fact that 
wastewater data can potentially act as a substitute for clinical surveil-
lance (albeit with more uncertainty) to provide critical epidemiological 
metrics is encouraging, although more realistically, it will likely act as a 
complementary data source. The possibility to estimate epidemiological 
metrics using wastewater surveillance represents a step forward in 

Fig. 6. Simulations were run varying selected parameters to show their impact on the reported detection time differential (Δ). Panel A: effect of the limit of detection 
of the quantification assay performed on wastewater. Values below the 0-intercept horizontal dashed line indicate a leading signal from wastewater concentrations 
than from clinical reports. Panel B: effect of the SARS-CoV-2 RNA decay rate in wastewater for different transit times between the shedding and sampling site. The 
colour of the curves represents the proportion of clinical cases reported (ρ) out of the total symptomatic incidence. 
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attempting to use wastewater data for actionable public health metrics, 
if they are available to public health in a timely manner. In addition, the 
ability to triangulate the state of an epidemic using alternative data 
sources would help ensure additional confidence in the estimation of 
relevant parameters or forecasting. Indeed, the COVID-19 pandemic has 
consumed public-health resources at levels that are probably not sus-
tainable for long-term surveillance of this pathogen. However, the cur-
rent wastewater surveillance performed in many communities can 
probably be continued as long as necessary given its relative low cost 
Gawlik et al. (2021). But clearly, as our study illustrates, more research 
is needed to reach a level of confidence in wastewater-based surveillance 
that could match clinically-based surveillance. 

Our modelling framework provides a more principled alternative to 
simpler smoothing techniques (e.g., moving averages, polynomial in-
terpolations) that have been used to support the interpretation of WBS 
D’Aoust et al. (2021). However, we note that less complex modelling 
options are possible if the focus is on specific epidemiological metrics 
(Huisman et al. (2021); Xiao et al. (2021)). We also note recent efforts to 
use machine learning techniques and artificial neural network that 
incorporate WBS Li et al. (2021). While those methods are promising, 
they cannot–by design–explain the epidemiological mechanisms at play. 

Our model enables in silico experiments on the epidemic/wastewater 
system to identify key parameters and processes that can play an 
important role for the epidemiological interpretation. We showed, using 
simulations, that the relative timing of the wastewater signal (whether it 
is leading or not) compared to traditional clinical surveillance is actually 
influenced by the characteristics of both systems (Fig. 6). On the one 
hand, the laboratory analysis of wastewater samples may not detect the 
presence of SARS-CoV-2 because, for example, its limit of detection is 
too high, or prevalence of infection in the community is very small, or 
the viral RNA has degraded before reaching the sampling site. Shipment 
time of wastewater samples can also be significant (e.g., several days) 
for remote sampling locations without any laboratory capacity. On the 
other hand, the delay in clinical cases reports is usually caused by the 
incubation period and the reporting time of an infection by the health 
system (turnaround time for contact tracing and/or laboratory results of 
individuals’ swab) or availability of testing. Some communities would 
typically have a longer lag for clinical reporting than for wastewater 
surveillance La Rosa et al. (2020); Randazzo et al. (2020); D’Aoust et al. 
(2021); Hata et al. (2021), while others may have the opposite (for 
example when a very effective contact tracing system is in place Mettler 
et al. (2020) or rapid testing is implemented). Moreover, a community 
may experience both situations, that is a period when clinical surveil-
lance is extremely efficient at detecting cases so rapidly that it leads 
wastewater surveillance while, at other times, it can lag (for example 
when incidence is high, overwhelming contact-tracing and clinical 
testing capacities). The model presented here allows to quantify how 
various factors can impacts the relative timing between clinical and 
wastewater surveillances. 

It can be tempting to monitor the effect of public health interventions 
using changes in the levels of SARS-CoV-2 in wastewater given its non- 
invasive nature. Indeed, WBS should be less affected by sampling bias 
than clinical surveillance (for example the latter may miss most of the 

Table 2 
Description of fixed and fitted parameters used in this model and their sources.  

symbol description value/ 
distribution 

unit source 

ξ relative 
infectiousness of 
asymptomatic 
versus 
symptomatic 

0.8 – Landaas et al. 
(2021); Tian et al. 
(2021); Folgueira 
et al. (2021); 
Sayampanathan 
et al. (2021); 
Kociolek et al. 
(2020); Kissler et al. 
(2020) 

1∕ϵ latent mean 
duration 

2 day Li et al. (2020); He 
et al. (2020) 

1∕ν infectiousness 
duration for 
symptomatic 
individual 

12 day Ontario Agency for 
Health Protection 
and Promotion 
(Public Health 
Ontario) (2021); 
Owusu et al. (2021); 
Jang et al. (2021); 
Neant et al. (2021); 
Bullard et al. (2020) 

1∕μ infectiousness 
duration for 
symptomatic 
individual before 
admission to 
hospital 

8 day Murthy et al. (2021); 
Faes et al. (2020); 
He et al. (2020) 

1∕θ infectiousness 
duration for 
asymptomatic 
individual 

10 day Owusu et al. (2021); 
Jang et al. (2021); 
Neant et al. (2021); 
Bullard et al. (2020) 

1∕η faecal shedding 
duration after 
infectious period 

24 day Hoffmann and 
Alsing (2021); 
Cuicchi et al. (2021) 

1∕ℓ length of hospital 
stay 

11 day Health Canada 
(2021); Canadian 
Institute for Health 
Information (2021) 

α asymptomatic 
proportion 

0.316 – Topol and Oran 
(2021); Mizumoto 
et al. (2020); 
Nishiura et al. 
(2020); 
Buitrago-Garcia 
et al. (2020) 

δ proportion of 
death from 
hospitalized 

0.19 – Canadian Institute 
for Health 
Information (2021) 

ℓww reporting lag 
between sampling 
date and reporting 
date 

2 day wastewater data 

κ first-order decay 
rate of SARS-CoV- 
2 RNA in 
wastewater 

0.18 day− 1 Ahmed et al. (2020); 
Silverman and 
Boehm (2020) 

σ std deviation 
transit time 
between shedding 
and sampling sites 

0.3 day assumed 

τ mean transit time 
between shedding 
and sampling sites 

U (1,5) day fitted 

R0 basic 
reproduction 
number 

N (2.9,0.2) – fitted 

w scaling factor for 
measured viral 
concentration at 
sampling location 

U (0.001,0.005) – fitted 

h proportion of 
hospital 
admissions per 

N (0.02, ,0.005) – fitted  

Table 2 (continued ) 

symbol description value/ 
distribution 

unit source 

symptomatic 
infections 

βt time-dependent 
transmission rate 

N distribution 
with different 
mean & stdev 
for break times 
in each location 
(see Appendix A- 
9) 

– fitted  
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subclinical infections). However, our simulations showed that waste-
water surveillance may be inferior to clinical surveillance to identify 
sharp declines in transmission, as typically seen after a lockdown is 
implemented (Fig. 7). The long period of faecal shedding creates a lag in 

comparison to the sudden drop of incidence caused by the public health 
intervention, inhibiting a prompt signal in wastewater. This effect is 
visible on the Canadian data sets presented here (Fig. 2). We note that 
this result may not be valid for laboratory assay with a high limit of 

Fig. 7. Detectability of a sharp transmission 
reduction. Panel A: example of how the post- 
peak relative changes are calculated. The 
colour-coded dashed lines represent the time 
series of reported clinical cases and SARS-CoV- 
2 RNA concentration in wastewater. The grey 
shaded area indicates when the transmission 
rate decreases (here, Tinterv = 10 days). The 
segment illustrates the relative change between 
the peak value and 7 days later (sww and scl),i.e., 
how we would typically assess the efficacy to 
reduce transmission. Panel B: the horizontal 
axis represents the time (since the start of the 
epidemic) when transmission begins to reduce 
to a third of its value. The vertical axis repre-
sents the post-peak relative changes from clin-
ical reports (scl, red lines) or wastewater (sww, 
blue lines). Each subpanel indicates a different 
value (3, 10 and 20 days) for Tinterv, the time it 
takes to reduces the transmission rate to a third 
of its initial value. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 8. Infection-permissive vaccination. Panel A shows 
the trajectories of reported clinical cases and SARS-CoV-2 
concentration in wastewater under a scenario using an 
infection-permissive vaccine (“Vaccination”), or not 
(“Baseline”). In the vaccination scenario, the reported 
clinical cases decrease more rapidly than the level of SARS- 
CoV-2 in wastewater because sub-clinical infections tend to 
be less reported whereas faecal shedding continues. Panel B 
highlights this difference showing W(t)∕C(t), the ratio of 
reported wastewater concentration over reported cases, for 
the baseline / no-vaccination (pink) and the vaccination 
(green) scenarios. The ratio is normalized to have a starting 
value at 1 to make it easier to quantify the increase visu-
ally. The vertical dotted line indicates when vaccination 
starts (at time 70). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the 
web version of this article.)   
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detection of SARS-CoV-2 RNA in wastewater.We also highlight the po-
tential for an infection-permissive vaccine to generate discordant signals 
between wastewater and clinical surveillances (Fig. 8). Indeed, vacci-
nation implies a larger proportion of asymptomatic infections which are 
less likely to be detected by clinical surveillance, but still picked up in 
wastewater because of continued faecal shedding. Note that we use our 
model to highlight this potential effect, whereas detecting it in real data 
is probably challenging without studies purposely designed to detect 
this. 

Here, we used a mixed approach regarding the normalization of the 
levels of SARS-CoV-2 in wastewater, with Ottawa using PMMoV- 
normalization versus TSS-normalization for Toronto and Edmonton. It 
is likely that some normalization is necessary to discount the in-sewer 
daily fluctuations resulting from environmental factors (PH, ammonia, 
temperature, precipitation, etc.), sampling methods and total mass of 
faecal shedded, but it is still not clear which normalization is the most 
appropriate for a given sewershed and the type of sampled wastewater 
(influent liquid versus solid). A recent study Kim et al. (2022) showed 
that SARS-CoV-2 concentration measurements from solid samples with 
PMMoV normalization produce comparable results between different 
laboratory methods and across sampling locations but comparability 
was not observed for viral measurements from liquid influent waste-
water, perhaps due to multiple recovery methods for liquid wastewater 
which each extracts different recovered fractions of the SARS-CoV-2 
RNA concentration at different efficiencies. This might explain the 
reduced correlation between COVID-19 case counts and SARS-CoV-2 
N1/N2 genes in influent wastewater samples which are normalized 
with human faecal markers (e.g., PMMoV) Feng et al. (2021). Hence, the 
choice of normalization might be more relevant to the type of waste-
water sample analyzed (liquid versus solid fraction). 

Our modelling approach has several weaknesses. Forecasts and R t 
estimations depend on the quality of the model fitting to data and here, 
we used a simple ABC algorithm that could certainly be improved. 
However, the model reasonably fit to data for most locations (Appendix 
A-8 and A-9). In general, fitting the model to the combined clinical and 
wastewater surveillance (“Combined") might not be the best practice in 
the long run because of the reduction of traditional surveillance to pre- 
pandemic levels. Given the multiple sources of uncertainties associated 
with the wastewater data, we think that informing the model with 
combined data sets may provide a better triangulation of the pandemic. 

We did not precisely model the transport and fate of SARS-CoV-2 in 
municipal sewer systems. The lack of data about flow dynamics and 
particles binding of SARS-CoV-2 in wastewater hampered a more 
detailed approach. Hence, we took a simple approach to model the 
below-ground component and assumed the flow dynamic followed a 
low-dispersion plug flow model with a plausible fixed decay rate Ahmed 
et al. (2020) and let vary the mean transit time (from shedding to 
sampling sites) within a range of possible values. As more research fo-
cuses on the fate of SARS-CoV-2 in wastewater, the transport module of 
our model can be enhanced.Our model does not model vaccination 
explicitly. We made this choice to keep the first version of our model 
relatively simple. However, we believe that we can appropriately 
approximate the effects of infection-permissive vaccination by reducing 
the transmission rate and increasing the proportion of asymptomatic 
infections. As the proportion of vaccinated individuals increases, 
modelling an explicit vaccination process is necessary. We note that for 
the Canadian cities studied here, the vaccination coverage was either 
null or low during the study period. We model SARS-CoV-2 as a 
single-strain pathogen which is an oversimplification of reality, given 
the numerous variants circulating in Canada since late 2020 McLaughlin 
et al. (2021). However, it is not clear how (or if) multi-variants 
modelling would affect our results, given that the difference of viral 
shedding (respiratory and faecal) between variants is still not fully un-
derstood Kidd et al. (2021); Kissler et al. (2021). Because of ordinary 
differential equations, this model is not well adapted to either small 
communities or very low prevalence settings. While its epidemiological 

structure (Fig. 1) would still be valid for such environments, a more 
advanced statistical modelling would be preferable to handle low inci-
dence counts and observation uncertainty King et al. (2015); Li et al. 
(2018). A further limitation of our model is the use of a scaling coeffi-
cient for the amount of SARS-CoV-2 shedded in the wastewater by the 
infected population (parameter ω in Equation 3). This scaling coefficient 
embeds all the uncertainties associated with sampling strategy and 
laboratory analysis, such as assay recovery efficiency, limit of detection, 
and total faecal mass normalization. Most of those processes are 
currently poorly known for SARS-CoV-2 and, as long as more observa-
tional data is not available, will constrain modelling (note that this 
limitation has already been identified for polio models Brouwer et al. 
(2018)). An ultimate goal of wastewater surveillance may be to measure 
all the components of the scaling coefficient (here, ω) in order to esti-
mate infection prevalence in a community directly from viral concen-
tration readings. 

To conclude, the model presented here–built upon previous similar 
approach for other pathogens McMahan et al. (2020); Brouwer et al. 
(2018); Kraay et al. (2018)–is a first step to better understand the 
mechanistic relationships between the COVID-19 epidemic spreading in 
a community and the SARS-CoV-2 RNA concentration in wastewater 
caused by faecal shedding of infected individuals (and potentially from 
urinary or sputum shedding). Future developments should explicitly 
incorporate vaccination and multiple variants/strains given the ability 
of new assays to detect variants from wastewater samples La Rosa et al. 
(2021); Agrawal et al. (2021); Jahn et al. (2021). This model can be the 
basis of quantitative tools to support public health decision making that 
embraces wastewater-based epidemiology. Beyond the 
SARS-CoV-2/COVID-19 pandemic, WBS coupled with the type of model 
presented here could be leveraged and applied to other transmissible 
pathogens where urinary or faecal shedding occurs, such as other res-
piratory diseases (e.g., influenza, respiratory syncytial virus, adeno-
virus) and some enteric diseases (e.g., norovirus, rotavirus, shigellosis). 
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