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A B S T R A C T   

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at 
multiple levels of government. However, this approach has not been well assessed at more granular scales, 
including large work sites such as University campuses. Between August 2021 and April 2022, we explored the 
occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catch-
ments and residential buildings spanning the University of Calgary’s campus and how this compared to levels 
from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to 
evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the 
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potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 
and N2 RNA varied significantly across six sampling sites – regardless of several normalization strategies – with 
certain catchments consistently demonstrating values 1–2 orders higher than the others. Relative to clinical cases 
identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive 
monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which 
was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that 
variants across campus were representative of the community at large, and at no time did emerging variants first 
debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease 
activity at a very granular scale, and predict disease burden across large, complex worksites.   

1. Introduction 

To cope with the COVID-19 pandemic crisis, governments worldwide 
have implemented a range of measures to mitigate the spread of the 
virus, including large-scale clinical testing. While diagnostic testing is 
tremendously important, it is limited in its capacity to perform 
population-level surveillance owing to tremendous human and capital 
resources required to run community testing centers (Hart and Halden, 
2020). In addition, clinical testing is biased by relying on voluntary 
participation and generally targets individuals with symptomatic dis-
ease (O’Keeffe, 2021). Wastewater-based surveillance (WBS) has been 
robustly demonstrated to be a useful tool for monitoring population 
health (Sims and Kasprzyk-Hordern, 2020) serving to complement 
clinical testing and providing real-time data on the burden of disease in a 
monitored sewershed. Advantages of WBS include i) comprehensive, 
inclusive, serial monitoring of the population with relatively low costs, 
and ii) unbiased data collection of biological material from all society 
members including marginalized populations and those unable to access 
clinical testing (Hart and Halden, 2020; Polo et al., 2020; Sims and 
Kasprzyk-Hordern, 2020). WBS for SARS-CoV-2 surveillance has been 
adopted worldwide (Naughton et al., 2021), including Canada where it 
currently covers ~62 % of the country’s population (PHAC, 2022). 
Generally, WBS programs monitor SARS-CoV-2 RNA in untreated 
sewage from wastewater treatment plants (WWTPs) and thus assess 
disease burden at the level of an entire community. Community-based 
studies have identified SARS-CoV-2 WBS as a leading indicator for 
cases (4-6 days), hospitalizations, and deaths (Halwatura et al., 2022; 
Kumar et al., 2021; Róka et al., 2021; Zhu et al., 2021). However, studies 
where monitoring has been performed at a more granular scale (e.g., 
defined sub-catchments within a larger sewershed or specific facilities) 
are less common, and more work is needed to clearly demonstrate if 
similar correlations and benefits exist. 

Such granular scale WBS is challenging when it comes to selecting 
sampling locations because (i) it requires detailed information on 
defined sampling nodes (e.g., each node and their GPS coordinates) and 
their connectivity (to determine if overlapping catchments exist and 
may confound analysis), (ii) nodes should have enough wastewater flow 
to ensure sufficient volume during continuous collection. A recent study 
in the City of Calgary evaluating neighborhood-scale sub-catchment 
monitoring (serving populations of 13,000 to 73,000) within larger 
WWTP catchments (serving 290,000 to 1,048,000) showcased the utility 
of node-based sampling in identifying specific sub-catchment(s) with 
disproportionate infection burden (Acosta et al., 2022b). WBS at an even 
more granular scale (e.g., buildings) as a node-based sampling strategy 
could help to specify more clearly ‘hotspots’ for infection transmission 
(Acosta et al., 2021; Bowes et al., 2022; Pico-Tomàs et al., 2023). 

One area of focused WBS that has generated significant interest is 
university/college campuses. University campuses consist of a vast array 
of building complexes where a high degree of social interaction is ex-
pected between students, staff, and faculty. Accordingly, high rates of 
SARS-CoV-2 transmission are possible across campuses in the absence of 
mitigating steps. While campus-wide studies have been performed, 
studies to determine the spatial distribution of SARS-CoV-2 RNA within 
a university campus, and enabling a comprehensive assessment of the 

total disease burden have yet to be performed. Thus far, University- 
based studies assessing SARS-CoV-2 RNA in wastewater have primar-
ily focused on longitudinal analysis rather than spatially resolved 
analysis (Karthikeyan et al., 2021; Wright et al., 2022), on a subset of 
campus buildings (Johnson et al., 2022; Reeves et al., 2021), or only on 
individual dormitories/residential buildings (Ash et al., 2023; Corch-
is-Scott et al., 2023; Gibas et al., 2021), necessitating development of 
more comprehensive monitoring strategy. 

Herein we describe a longitudinal nodal WBS monitoring program 
for SARS-CoV-2 RNA at the University of Calgary (UofC), Calgary, 
Alberta, Canada. The main campus is situated on 530-acres in the 
Northwest quadrant of the city. We conducted a cross campus node- 
based, spatially resolved WBS program from Aug 31, 2021–Apr 24, 
2022, and compared these assessments with the municipal WWTP which 
serves the campus. This monitoring program was brought about to 
monitor the safe resumption of campus activities as COVID-19 popula-
tion level controls were relaxed. Our primary research objectives were to 
i) locate specific sub-catchment(s) within the University where SARS- 
CoV-2 RNA exists in differential abundance, ii) establish the associa-
tion between wastewater measured SARS-CoV-2 and COVID-19 case 
occurrence within an individual sewershed’s catchment, and iii) deter-
mine the relative risk of COVID-19 on campus, as inferred by SARS-CoV- 
2 wastewater burden, relative to the surrounding community. We hy-
pothesized that i) higher abundance of SARS-CoV-2 RNA would be 
found in buildings with higher social connectivity and that this would be 
associated with COVID-19 reported cases; and, ii) the abundance of 
SARS-CoV-2 RNA in campus wastewater would be lower than the sur-
rounding community given a strictly enforced COVID-prevention policy 
and procedures across campus, i.e., campus mandate for universal 
masking, a high prevalence of accessible hand hygiene and masking 
product throughout campus, and a vaccine mandate (or weekly negative 
testing) required to attend campus in person. 

2. Materials and methods 

2.1. Defining sampling nodes across the UofC sewershed 

UofC is among the ten largest Universities in Canada with >26,000 
full-time undergraduate students, 6,000 graduate students and 1,800 
academic and 3,200 non-academic staff (UofC, 2022b). The main 
campus is situated in Northwest Calgary in the province Alberta on a 
parcel of 530-acres (2.13 km2) (GPS-coordinates of 51.0784◦ N, 
114.1347◦ W). Campus sewer sampling locations were chosen to deliver 
a minimum number of manhole-accessible sites providing maximum 
coverage of campus buildings and designed to be mutually exclusive (in 
as much as possible), using GIS-based analysis of the sewer pipe network 
(Fig. 1). Residence halls were also included based upon presence of an 
accessible sampling location within the building’s plumbing network 
capturing ≥50% of the residential areas of that building. 

Three nodes were selected to capture the building complexes in the 
Northwest (NW), Northeast (NE), and South (SO) zones of the campus 
(Fig. 1). Six buildings drain into both NW and NE within these catch-
ments and are indicated as MIX (see Fig. 1; colored in orange). Both 
residence halls (RH1 and RH2 accommodating 570 and 355 students, 
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respectively) are within the NW catchment thus enabling even more 
granular scale sampling nodes. The entire monitoring program captured 
8 residential halls, 30 lecture/research facilities, 6 recreational facilities 
(including dining/fitness buildings), and 2 others (parkade, and daycare 
centre) (Fig. 1). Our monitoring catchments cover >80% of the total 
residence population (i.e., those living in dormitories; a total of 2,641 
students) and >83 % of the campus aerial footprint. The key information 
about our monitoring catchments was shown in Table 1. 

Calgary is Canada’s fourth largest city by population and its third 
most ethnically diverse (Acosta et al., 2022b; Calgary, 2019). Three 
WWTPs serve an estimated 1,441,268 people (Alberta-Government, 
2021). UofC falls exclusively within the catchment zone of the largest 
WWTP, serving 1,047,662 individuals and receiving 303.7-604.6 
ML/day. The municipal WWTP receives and processes urban and in-
dustrial wastewater, the exact proportions of which are not publicly 
available. The city of Calgary maintains separate wastewater and 
stormwater sewage networks and accordingly, the university’s waste-
water network does not include urban runoff/stormwater. 

2.2. Wastewater collection 

Wastewater samples were collected from the sites described above 2- 
3 times per week from August 31, 2021–April 30, 2022, using a work-
flow described previously (Acosta et al., 2021; Acosta et al., 2022b). In 

short, CEC Analytics V1 (C.E.C Analytics, Canada) and ISCO 6712 
(Teledyne ISCO, USA) autosamplers collected 2L (CEC) or 10L (ISCO) 
24 h composite samples (sampled every 15 mins, then pooled for 24 h) 
that were stored at 4◦C and transported to Advancing Canadian Water 
Assets (ACWA). Upon arrival, samples were thoroughly mixed and ali-
quoted into 50mL centrifuge tubes for downstream analysis. More de-
tails on field sampling techniques are described in the 
Supplementary-Material. 

Fig. 1. University of Calgary main campus in Alberta, Canada (51.0784◦ N, 114.1347◦ W) highlighting different sewershed catchments (colour key is shown in the 
figure legend). NW, NE, and SO indicate Northwest, Northeast, and South catchments, respectively. One student residence hall (RH1) falls into one of the monitoring 
catchments (NW), and the other (RH2) does not. The exact location for each residence hall was not detailed for ethical reason. The area MIX (colored in orange) 
belongs to both NW, and also NE. The university buildings outside our monitoring catchments, but which still belong to the main campus were colored in ‘dark grey’. 
L1 – 64 (in light grey) represent un-serviced parking lots. The figure was modified from http://www.ucalgary.ca/map. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The type, number, and gross area of buildings within each monitoring catchment 
in the main campus of University of Calgary, Calgary, AB, Canada. *ETC in-
dicates parkade or daycare centre. Gross area (m2) denotes summation of aerial 
footprints of all the buildings belonging to each sewer catchment.  

Name of 
catchment 

Type of building within the catchment 
(number) 

Gross area 
(m2) 

NE Research/Lecture (8) ETC* (1) 105,504 
NW Research/Lecture (16) Residence (4) 

Recreation (5) 
331,151 

SO Residence (4) Recreation (1) ETC* (1) 83,884 
MIX Research/Lecture (6) 109,459 
RH1 Residence (1) 18,596 
RH2 Residence (1) 21,774  
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2.3. Sample processing and RNA extraction 

Sample processing and RNA extraction was performed following 
established workflows (Acosta et al., 2021; Whitney et al., 2021). In 
brief, 40mL of thoroughly mixed wastewater subsamples was added to 
50mL falcon tubes prefilled with 9.5 g of sterile NaCl and 400ul of TE 
buffer and were then spiked with 200µL of Bovine Coronavirus (BCoV) 
(final concentration: 5×105 50% tissue-culture-infective dose (TCID50) 
per mL) as an internal control and vortexed for 30 s. Solids were then 
removed via vacuum filtration through a 5 µm polyvinylidene difluoride 
membrane, where samples were filtered directly into 40ml of 70% 
ethanol. This solution was then passed through a Zymo Spin™ III-P silica 
column (Zymo Research, USA). More details can be found in the 
Supplementary-Material. 

2.4. Quantitative RT-qPCR 

RT-qPCR assays were performed following established workflows 
(Acosta et al., 2021; Hubert et al., 2022). In short, two regions of the 
nucleocapsid gene (N1 and N2) were used to quantify total SARS-CoV-2 
RNA copies/mL in every wastewater sample (Medema et al., 2020; 
Randazzo et al., 2020; Wu et al., 2020a). We also analyzed variants of 
concern (VOC), including Delta, Omicron (BA.1, and BA.2) using the 
N200 multiplex assay (Fuzzen et al., 2022; Hubert et al., 2022) or 
69/70del assay (Peterson et al., 2022) for a subset of samples for WWTP 
(44 samples), RH1 (18 samples), SO (18 samples), NW (17 samples), and 
NE (9 samples) from November 28, 2021-April 27, 2022. BCoV (Bovine 
Coronavirus) was analyzed as an internal spike control, and PMMoV 
(Pepper Mild Mottle Virus) was analyzed as a potential human feces 
biomarker (D’Aoust et al., 2021; Whitney et al., 2021). All samples were 
analyzed in triplicate, including non-template controls for each run 
using QuantStudio-5 Real-Time PCR System (Applied Biosystems, USA). 
Samples with a quantification cycle (Cq)<40 were considered positive 
(Acosta et al., 2021). The Cq values (averaged between triplicates) for 
samples were converted to ‘copies’ according to the standard curve for 
each run (Table S1), then further to concentration (copies/mL) (see 
Supplementary-Method 1.2). Concentrations for N1, N2, and PMMoV 
for each week were arithmetically averaged for each monitoring loca-
tion. Those averaged concentrations (for each week) were used in 
downstream analyses, and the data presented in Dataset S1. 

2.5. Chemical analysis 

In addition to PMMoV, a total of five wastewater ions (sodium, 
chloride, potassium, magnesium, and calcium) were chosen to explore 
their association with SARS-CoV-2 as potential normalization markers 
for human activity (detailed in Supplementary-Material). Chemical 
markers associated with human excreta are potentially useful for cor-
recting possible underestimation of SARS-CoV-2 levels due to dilution 
effect (Hsu et al., 2022; Langeveld et al., 2022), which could be 
particularly important in small catchments. Several ions are associated 
with human excreta, for instance both urine and stool for potassium 
(Agarwal et al., 1994; Amdur et al., 2020; Klevay et al., 2007; Le et al., 
2020; Randall and Naidoo, 2018), and predominately urine for sodium, 
chloride, magnesium and calcium (Karak and Bhattacharyya, 2011; 
Randall and Naidoo, 2018; Rose et al., 2015). Ion concentrations 
enriched in wastewater beyond that contained from tap water input is 
likely to represent human waste in the proximal sewershed (Azoulay 
et al., 2001) as well as industrial output at municipal WWTP (Shrestha 
et al., 2021). To minimize uncertainty, we excluded ion(s) from 
normalization analyses that occurred below concentrations measured in 
Calgary’s tap water (yearly average) in most samples (City-of-Calgary, 
2021a, 2021b). We further excluded the ion(s) from normalization an-
alyses where WWTP levels were significantly higher than residential 
halls (RH1 and 2) assuming that alternate sources for the ion(s) may 
exist other than human waste. 

2.6. Modelling expected COVID-19 cases per capita across UofC Campus 

Cases per capita in UofC main campus (CPCUofC) was calculated using 
raw (i.e. un-normalized) SARS-CoV-2 RNA concentrations according to 
the following relationship referring to (Eq. (S4)) in the Supplementary- 
Material 

CWWTP : CUofC =
nWWTP

NWWTP
: CPCUofC  

i.e.,CPCUofC = CPCWWTP ⋅
CUofC

CWWTP
(1) 

Where, NWWTP indicates the total population in the catchment area 
for WWTP (n=1,047,622(Acosta et al., 2022b) ; nWWTP is incident 
number of new cases occurring daily (i.e., confirmed COVID-19 infected 
individuals) in the catchment area for WWTP; CUofC and CWWTP indicate 
concentration of SARS-CoV2 RNA for UofC and WWTP respectively, and 
could be calculated according to (Eq. (S6)) in the 
Supplementary-Material. 

To mitigate uncertainty which may arise from possible differences in 
human excreta across samples, CPCUofC was also calculated using 
normalized SARS-CoV-2 RNA concentration according to the following 
relationship referring to (Eq. (S5)) in the Supplementary-Material. 

CWWTP

Ce− WWTP
:

CUofC

Ce− UofC
=

nWWTP

NWWTP
: CPCUofC  

i.e.,CPCUofC = CPCWWTP⋅
CPCUofC⋅CPCe− WWTP

CPCWWTP⋅CPCe− UofC
(2) 

Where, Ce− UofC , and Ce− WWTP indicate concentration of human excreta 
surrogates for UofC and WWTP, and could be calculated according to 
(Eq. (S6)) in the Supplementary-Material. 

2.7. Uncertainty analysis 

As wastewater flow data for UofC was unavailable, models described 
in 2.6 rely on assuming flow quantities are proportional to catchment 
surface areas (i.e., total footprint of all buildings) (see Supplementary- 
Method 1.3 in the Supplementary-Material). We assumed that uncer-
tainty in this model derives mostly from variability of gross surface area 
in prediction of flow quantity. Therefore, prediction errors from these 
sources were propagated using a Monte-Carlo randomization simulation 
adapted from other relevant works (Lee, 2021; Ort et al., 2009). The 
term surface area (A) was randomized by multiplying the uncertainty 
factor (a) which is variable ranging from 0.2 (20%) to 2.0 (200%) 
assuming that the actual ratio of flow quantity lies within these 
boundaries. 

VSO : VNW : VNE− MIX = a1⋅ASO : a2⋅ANW : a3⋅ANE− MIX 

Where, a1, a2, and a3 are random variables ranging from 0.1 to 2.0, 
also are independent from each other. The ratios of (three) terms were 
written with a colon (:). 

The simulation was repeated 1,000 times, and interquartile ranges 
(IQR, Q1 – Q3) for each prediction value are displayed as error bars in 
the model. Furthermore, the p-value for permutation test was defined as 
‘the ratio of counts where CPCUofC > CPCWWTP to 1,000 (= the number of 
simulation trials)’ for each time point. Only time-paired data points 
were compared between each site. The modelling was performed using 
R (v4.1.2), and related datasets/R codes are available in the first au-
thor’s GitHub page (https://github.com/myjackson). 

2.8. Clinical case documentation 

Information on city-wide, new daily cases of clinically confirmed 
COVID-19 (patient swabs confirmed with a clinical RT-qPCR) were 
provided by a single comprehensive public health system, Alberta 
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Health Services (AHS) via the Centre for Health Informatics online 
COVID Tracker (https://covid-tracker.chi-csm.ca/). The information 
was gathered between August 31, 2022, and March 31, 2022, and a 
subset of this data (i.e., August 31, 2021 – January 04) was subjected to 
further analysis. New cases were binned by individual postal codes 
(using the first three of six digits) as an indicator of the home address of 
newly diagnosed cases. Cases were then assigned to the appropriate 
WWTP serving their primary residence. 

Comparative analyses were conducted across two distinct time- 
periods; Period A (Aug 31, 2021-Dec 12, 2021) and Period B (Dec 13, 
2021-April 25, 2021) owing to fundamental changes occurring through 
the pandemic. In particular, during the Omicron waves (Period B, 
defined when the first case was documented in Calgary), clinical case 
occurrence for the first time vastly exceeded the ability of health services 
to screen and detect the population. 

Documenting campus-associated confirmed-COVID-19 cases and 
ascribing them to a specific primary building was performed in real-time 
by the University of Calgary’s Occupational Health and Staff Wellness 
for students and employees who self-reported a positive COVID-19 test 
during the pandemic period from September 2021. Confirmed cases 
were excluded from attending campus for a minimum of 10 days 
(reduced to 5 days after January 3rd, 2022) and complete symptom 
resolution. The information gathered between September 21, 2021 and 
April 2022 was used to trace the primary buildings where individuals 
with confirmed COVID-19 were located. We assigned study-specific 
personal identifiers to each affected individual and avoided personal 
identifying information. The information gathered in the original report 
includes: i) ‘date of positive test result’, ii) ‘date university informed of 
illness’, iii) ‘recent university location(s) visited and the date when the 
person visited that location’, and iv) ‘date of onset of symptoms’, etc. 
However, in some instances case information was not always fully 
declared (i.e., the recent university location(s) visited, and the date(s) 
when the person visited), and such cases were excluded. As a result, the 
information from 463 out of 721 reported individuals was used in 
downstream analyses. The de-identified raw data is not included for 
ethical and privacy considerations, but could be provided upon 
reasonable request to the authors. The full set of processed data is shown 
in Dataset S2. The patient identifiers (PID) are not known to anyone 
outside our research group, so individuals remain anonymous. 

To model the movement of confirmed COVID-19 infected individuals 
across campus, we relied on self-reported activity tracing reported to 
Occupational Health and Safety Staff. To identify individual buildings 
where COVID-19 positive individuals visited, we first counted the 
number of positive individuals who visited each building using the in-
formation iii) above. For example, for each building, the recently visited 
PIDs were listed (Dataset S2). Then, we counted the total affected-visits 
for each building. In this way, each PID was often counted multiple 
times in situations where the person visited multiple locations or one 
location on multiple days during the monitoring period. As the majority 
of SARS-CoV-2 RNA shedding occurs in the few days before and after 
symptom onset (Acosta et al., 2021; Acosta et al., 2022a), the visits ± 2 
days of the ‘date of onset of symptoms’ were considered valid, otherwise 
excluded in the following analysis. Total affected-visits is named 
‘number of cases’. Finally, the number of cases was subjected to further 
analysis. For instance, the cases for each week were averaged arith-
metically, and aggregated by monitoring catchment for each monitoring 
week (Fig. S5). 

During the monitoring period, on-campus residents (i.e. those 
residing full-time in dormitories) who were confirmed as COVID-19 
positive were quarantined according to the following principles: (i) if 
a case was reported by an individual living in a single unit with a 
bathroom– not shared with another, the individual was isolated in place 
(a total of 10 residential halls, CR, YA, CD, GL, KA, AU, RU, IH, OL, or VC 
(Fig. 1)), (ii) if all occupants of a shared apartment are positive, they 
would continue to isolate in their same apartment in their residential 
hall, and (iii) if the positive individual shares an apartment with 

someone who is not also positive, they were moved to another suite, VC 
for their isolation period. Our monitoring program included most of the 
isolation places (i.e., a total of 8 out of 10 places, CR, YA, CD, GL, KA, 
AU, RU, and IH; see Fig. 1). 

2.9. Statistical analysis 

Kruskal-Wallis test followed by a post-hoc Wilcoxon rank-sum test 
was performed to test if there were significant differences between 
groups. For pairwise tests, p-values were adjusted using the Benjamini- 
Hochberg method. Additionally, Spearman correlation analysis was 
performed to test if there were significant relationships between the two 
factors. Finally, Fisher’s exact test was implemented to test the potential 
association between two variables (i.e., SARS-CoV-2 signals versus 
campus-associated COVID-19 cases). One-sided test was employed 
under the expectation that those two might be positively associated. 
Then, Fisher’s exact test was repeated for each pair of wastewater SARS- 
CoV-2 signals (N1 or N2) against cases reported; a week earlier (-1 week) 
cases, those on the same week (+0 week), or the week following (+1 
week) under the hypothesis that wastewater signals serve as an early 
warning sign of COVID-19 cases. The key rationale was explained in 
more detail in the Supplementary-Method 1.5. All analyses were done 
using R version 4.1.2., and related datasets/R codes are available in the 
first author’s GitHub page (https://github.com/myjackson). 

2.10. Ethics 

This study was part of a large regional SARS-CoV-2 wastewater- 
based surveillance program which included a range of hospitals, shel-
ters, schools, neighborhoods as well as municipal wastewater treatment 
plants across Alberta (~83% of the population) funded by Alberta 
Health. The campus monitoring program was developed in partnership 
between the research team, and UofC’s Provost, the Offices’ of the Vice- 
President Research and Vice President Academic, the Dean’s office for 
the Cumming School of Medicine, as well as UofC’s Facilities Manage-
ment and Occupational Health and Safety offices in order to monitor in 
real-time the safety of UofC’s campus during a return to campus activ-
ities. Wastewater results were available within 24–48 h of sample 
collection through a password protected web portal to University Health 
Administrators and Policy makers. Campus SARS-CoV-2 monitoring was 
part of several measures used to gauge the success of a campus re- 
opened to in-person learning. Clinical case data was captured as part 
of the mandate of the UofC Occupational Health and Safety office and no 
individual data was collected specifically for research purposes. The 
clinical case, tracking and exposure data that was used for safe campus 
monitoring by UofC staff was correlated with wastewater measured 
SARS-CoV-2 retrospectively, and the research study team had no 
involvement in real-time infection mitigation measures. In addition to 
all data being de-identified, all clinical data was analyzed in aggregate. 
The study received approval from the Conjoint Research Health Ethics 
Board of the University of Calgary (REB20–1544). 

3. Results 

3.1. Longitudinal tracking wastewater SARS-CoV-2 RNA across campus 

Between August 3, 2021 and April 30, 2022, a total of 58 (RH1) and 
18 (RH2) samples were obtained from the residence halls, 45 (NE), 48 
(SO), and 42 (NW) samples were obtained from the campus catchments, 
and 89 samples were obtained from WWTP, providing 12 – 25 data 
points per location after being averaged weekly. The lower number of 
samples collected for campus locations primarily relates to more 
complicated access for these sampling points (e.g., manholes in the open 
(public) area for the campus sampling points versus either within 
buildings or from the WWTP facility. The outdoor locations (manholes) 
also experienced a higher rate of failure to collect especially during cold 
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weather (<-20 ֯C) for campus sites. 
During this time the City of Calgary experienced three successive 

“waves” of COVID-19 (corresponding to the fourth, fifth and sixth waves 
since the start of the pandemic). Tracked via wastewater, the first of 
these waves during the monitoring period peaked on September 06, 
2021, followed by January 03 and April 18, 2022. Allele-specific PCR to 
detect VOC in WWTP samples confirmed it was the Delta variant that 
was dominant during the fourth-wave (peaking September 06, 2021), 
and Omicron lineages were dominant during the fifth (BA.1 peaking 
January 03, 2022) and sixth waves of this study (BA.2 peaking April 18, 
2022, the third wave in this study) (Fig. S6). Notably, the burden of 
wastewater-detected SARS-CoV-2 N1 and N2 for the two latter waves 
caused by Omicron lineages vastly exceeded that of Delta. 

SARS-CoV-2 N1 and N2 concentrations across campus monitoring 
sites generally, but not always mirrored those of the community WWTP 
(Fig. 2). Values from WWTP were higher than those across campus, with 
some exceptions. While the highest N1 and N2 values observed from 
campus monitoring sites (i.e., SO, NE, and NW) occurred during the 
peaks of each wave experienced in the community, random spikes in N1 
and N2 also occurred during community troughs and appeared 
randomly suggesting brief periods of increased disease burden. Analysis 
of VOC across UofC campus mirrored those for WWTP –Delta was 
dominant in Period-A (Aug 31, 2021-Dec 12, 2021) for those locations 
where data was available (i.e., SO, and NW) (Figs. S7 & S8) and Omicron 
lineages were dominant in Period-B for SO, NW, NE, and RH1 while. In 
no instances did the emerging VOC occur disproportionally within the 
campus environment relative to that of the community. 

Among five ions measured as potential normalization factors for 
human activities, calcium was excluded based on its relatively high 
concentration in tap water relative to wastewater samples (Fig. S4). 
Furthermore, magnesium, sodium, and chloride were further excluded 
for their relatively high levels at the WWTP relative to the campus 
samples (p<0.05) (Fig. S4). Accordingly, only two human waste surro-
gates (i.e., the plant virus PMMoV and the ion potassium) were assessed 
as potential normalization markers. 

3.2. Correlating wastewater SARS-CoV-2 RNA with clinically confirmed 
cases 

A median of 153 (IQR 73 – 240) cases per day were clinically 
confirmed across the catchment of the WWTP during the period moni-
tored (August 31, 2021 – January 04, 2022; a total of 36 data points). 

These cases were correlated with raw-, and also normalized-SARS-CoV-2 
N1 and N2 signals using different investigational markers for the cor-
responding date ranges. The raw (i.e., un-normalized) N1 and N2 signals 
(i.e., copies/mL) generally correlated with confirmed cases the best 
(Table S2) suggesting normalization with PMMoV or potassium did not 
denoise variability associated with human excreta over time. However, 
for comparing different smaller catchment results with each other, we 
expected the variability in human wastes between sites could be large, 
especially when the characteristics of those populations may be very 
different, e.g., residential versus non-residential areas of the campus. 
Accordingly, while we used raw SARS-CoV-2 concentrations as our 
primary outcome for cross-site comparisons, we still assessed SARS-CoV- 
2 normalized for PMMoV and potassium as a confirmatory secondary 
outcome measure. 

3.3. Comparing SARS-CoV-2 RNA signals across different sampling 
locations 

Comparison across different locations was conducted for each of the 
two separate periods, for instance Period-A (Aug 31, 2021-Dec 12, 2021) 
and B (Dec 13, 2021-April 25, 2021). There were significant differences 
in both raw and normalized wastewater SARS-CoV-2 RNA concentra-
tions between monitoring sites during the study (Period-A to -B) based 
on Kruskal-Wallis test (p<0.001). In Period-A, a post-hoc analysis using 
Wilcoxon-rank sum test revealed that SARS-CoV-2 RNA N1 and N2 
concentrations in campus locations were 1 – 2 orders of magnitude 
lower than the community WWTP (p≤0.005) (Table 2 & Fig. 3). 
Furthermore, there were significant differences in both N1 and N2 
concentrations between campus locations. For instance, the values for 
NE were 1 – 2 orders of magnitude lower than NW and SO, and such 
difference was non-parametrically significant using Wilcoxon rank-sum 
tests for NW (p≤0.038) (Table 2). SARS-CoV-2 N1 and N2 concentra-
tions for two dormitories (i.e., RH2 and RH1) were similar to NE 
(p≥0.428) but lower than SO (p≤0.026) and NW (p≤0.038), based on 
Wilcoxon rank-sum test (Table 2). In general, normalized trends of 
SARS-CoV-2 burden between sites mirrored those of raw values 
(Table S3). The normalized N1 and N2 concentrations for WWTP were 
higher than for all the campus locations using post-hoc Wilcoxon rank- 
sum test in all comparisons (p≤0.015) (Table S3). Among university 
campus locations, the normalized N1 and N2 values for NE were lower 
than NW or SO in many instances (Table S3). 

In Period-B, the N1 and N2 concentrations increased considerably 

Fig. 2. Log10-transformed concentrations (copies/mL) of SARS-CoV-2 N1 and N2 profiles in campus wastewater sub-catchments demonstrate much lower values 
relative to the receiving municipal WWTP during the study period (August 31, 2021 – April 30, 2022). WWTP indicates the municipal wastewater treatment plant 
servicing the surrounding community, and also UofC main campus. See Fig. 1 for the locations and catchment area. *=missing data. Date (in x-axis) : dd.mm.yyyy. 
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compared to Period-A at WWTP and across campus (Fig. 3). However, 
the values for the campus were still significantly lower than for WWTP 
for both N1 and N2 based on a post-hoc Wilcoxon rank-sum test 
(p≤0.013; see Table 2). The degree of increase for RH1 was the most 
pronounced among all monitored sites. For instance, the median N1 
concentration for RH1, and SO samples profoundly increased, for 
instance by >2 order of magnitude (from 0.0 to 184.7 copies/mL for 
RH1; from 7.6 to 369.8 copies/mL), while the median concentration for 
other campus locations increased only by approximately 1 order of 
magnitude (from 0.0 to 19.4 copies/mL for NE; from 8.1 to 94.3 copies/ 
mL for NW). In all cases, the normalized concentrations for SO were 
significantly higher than for NE based on Wilcoxon rank-sum tests in all 
cases using N1 and N2 (p≤0.043). The normalized concentrations for 
WWTP were significantly higher than all the UofC campus locations in 
all cases using N2 (p≤0.002), and in many cases except for between SO 
and WWTP using potassium-normalized N1 (Table S4). 

3.4. SARS-CoV-2 RNA measured in campus wastewater catchments 
correlates with regional case occurrence 

The association between COVID-19-confirmed clinical cases and 
wastewater-N1 or N2 concentrations was tested using a one-sided 
Fisher’s exact test under the null hypothesis that those two factors 
were independent for each location (Table 3). An association between 
cases and a concentration was observed at most monitoring sites (i.e., 
p<0.05 at RH1, NE, or SO) for samples collected before (-1 week) and 
the same week (+0 week) using either N1 or N2 as an indicator. As 
expected, given the mandatory exclusion of confirmed cases from 
campus following the diagnosis, samples collected the week following 
(+1 week) did not associate. 

3.5. Wastewater-measured SARS-CoV-2 enabled estimation of COVID-19 
cases per capita across UofC campus 

COVID-19 cases per capita for the entire UofC monitored catchments 
comprising NW, NE, and SO during the entire monitoring period (both 
-A and -B) were estimated according to (Eq. (1)) using raw concentra-
tions, and also (Eq. (2)) using normalized concentrations. SARS-CoV-2 
N2 data was used in this analysis due to its stronger association with 
clinically confirmed cases (see 3.2, also Table S2). Following this, the 
modelled aggregate SARS-CoV-2 burden for UofC was compared with 
the values for the surrounding community (i.e., WWTP catchment) 
(Fig. 4). For most time points, cases per capita in the community (as 
measured at WWTP) were significantly higher than for UofC (p<0.001). 
The results using different methods of potential normalization generally 
mirrored the raw concentrations (Table 4). 

Overall, median predicted incident cases per capita (cases per 
100,000 scaling factor) for UofC was 5.9-fold lower than for WWTP 
using raw concentration (p<0.001), and 3.5–4.8-fold lower than for 
WWTP using normalized concentrations (≤0.001). For instance, the 
median cases per 100,000 was 8.8 (IQR 6.9-14.8) for the WWTP 
catchment, and predicted to be 1.5 (IQR 0.5-2.7) for the entire UofC 
monitoring catchment using raw SARS-CoV-2 RNA concentration. The 
median values of cases per capita per 100,000 for UofC when assessed 
using normalized concentrations were 1.8 (IQR 0.7-3.3) for PMMoV, 
and 2.6 (IQR 0.9-4.7) for potassium. 

4. Discussion 

4.1. A nodal-based sampling approach reveals ‘hotspots’ for COVID-19 
cases within the campus 

This study demonstrated that WBS using spatially resolved node- 

Table 2 
Comparing SARS-CoV-2 RNA raw concentrations between different UofC monitoring locations during Period-A and -B using Wilcoxon rank-sum test. P-adjusted for 
pairwise comparison using Benjamini & Hochberg method. Those pairs that statistically differed with (p<0.05) are highlighted in red.  
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based sampling approach enables SARS-CoV-2 activity to be located and 
quantified across a large University campus on a granular scale. Such an 
approach has previously been proven effective in cities at a neighbor-
hood scale (Acosta et al., 2022b). One of the challenges for granular 
scale monitoring is identifying sampling nodes that adequately cover 
most of the targeted community. This requires a careful analysis of 
geographic information of involved sewersheds and assessing the con-
nectivity between sampling nodes so that the sub-catchments (for each 
node) can be collected comprehensively. Other studies have explored 
SARS-CoV-2 WBS in individual buildings across university campuses. 

However, those studies either targeted residences and dormitories (Ash 
et al., 2023; Corchis-Scott et al., 2023; Gibas et al., 2021) or studied 
selected residential and non-residential buildings (Johnson et al., 2022; 
Karthikeyan et al., 2021; Reeves et al., 2021). A comprehensive longi-
tudinal assessment of a campus community or large work facility has not 
previously been performed. Our approach is unique relative to other 
studies because our monitoring catchments cover the vast majority of 
buildings (>83%) on a 530-acres campus through the deployment of a 
modest number of sample collection devices. This was approach was 
made possible owing to a detailed GIS guided assessment of sampling 

Fig. 3. Log10-transformed concentrations of SARS-CoV-2 N1 (left) and N2 (right) by sub-catchment monitoring location variably demonstrate differences between 
locations during Period-A (Aug 31, 2021-X) and -B (Y-April 30, 2022) with (upper), and without normalization (lower). See Table 2 for the results from Wilcoxon 
rank-sum tests. 

Table 3 
The Fisher’s exact test results (p-value) for testing interdependency between wastewater SARS-CoV-2 signals and COVID-19 confirmed cases across UofC campus under 
each assumption. ‘-1 week’, ‘+0 week’, and ‘+1 week’ indicate an early warning, no time lag, and time lag scenario, respectively (see Fig. S1 in the Supporting In-
formation for details). The results with p < 0.05 were highlighted in red.  
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nodes through the sewershed (Section 2.1). 
Comparing the concentration of SARS-CoV-2 RNA in wastewater 

across different sampling locations, makes it possible to locate the 
catchment(s) where infected individuals were disproportionally located. 
Under the rationale suggested in the Supplementary-Method 1.4, con-
centration is proportional to cases per capita, we have confirmed that 
WBS is a predictor for ‘hotspot’ where excessive disease occurrence 
exists. For example, Fig. S4 indicates the absolute values of confirmed 

cases per day was much lower for RH1 and 2 than for other larger 
catchments (NE, NW, and SO). This was mainly due to the fact that the 
number of people associated with the area was higher for the larger 
catchments than for RH1 and 2, but not because disease occurrences 
were disproportionately lower for RH1 and 2. Our concentration-based 
analysis predicts that SO and NW portions of the campus consistently 
showed high levels of SARS-CoV-2 using raw and normalized data, 
demonstrating hotspots for COVID-19 occurrences per capita. For 

Fig. 4. Log10-transformed cases per capita estimated for UofC according to Eq. (1) (for raw-concentration) or Eq. (2) (for normalized-concentrations using PMMoV 
and potassium), and measured for the surrounding community (i.e., WWTP) during the entire monitoring period. Cases per capita was calculated for each data point 
(i.e., time point), and displayed using trend lines (linearly extrapolated between two data points) over time in (a), and using box plots after aggregated by group in 
(b). Only paired data points were shown, and statistically compared between each other using Permutation test. Error bars for the modelled (UofC’s) values indicate 
IQR (Q1-Q3) derived from uncertainty analysis (see 2.7). 
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example, RH1, a dormitory, could be one of the buildings where highest 
disease incidence occurs and disproportionately contribute to a high 
level of SARS-CoV-2 signals for NW, at least during Period-B (see Fig. 3). 
This is consistent with other reports demonstrating high secondary 
COVID-19 case occurrence in dormitories (Gibas et al., 2021; Johnson 
et al., 2022; Reeves et al., 2021). The catchment SO includes three 
additional residence halls (KA, AU, and RU; see pink sections of Fig. 1), 
and these may be a reason why SO demonstrated particularly high levels 
of SARS-CoV-2 signals, especially during Period-B (Fig. 3). Unlike NW 
and SO, the catchment area for NE does not include any such buildings, 
rather is predominately comprised of lecture halls and administration 
offices – this might be one of the reasons why the level of SARS-CoV-2 
concentration for NE was low relative to SO or NW. The ability to 
discern the building(s) with the highest number of cases per capita 
however, is unknowable in this study. WBS at even more granular scales 
(i.e., building level) could be followed for those specific building types 
within catchments of interests, for instance NW and SO in this study, 
during disease outbreaks, although this would significantly increase the 
effort and cost of active monitoring by introducing many more nodes. 

Under the rationale suggested in Eq. (S5) in the Supplementary- 
Method 1.4, normalization may help to denoise variability of human 
wastes over time across samples. Normalization has been hypothesized 
to correct the variability of fecal burden allowing for more appropriate 
comparisons. However, in our data, raw concentration correlated better 
with clinical cases using longitudinal WWTP data (Table S2). Whether 
raw concentration manifests better case correlation than measures 
normalized by various biomarkers remains controversial. While the bulk 
of studies conducted at the level of WWTP have found that human- 
specific surrogates did not necessarily improve correlation between 
confirmed cases and normalized SARS-CoV-2 signals (Ai et al., 2021; 
Duvallet et al., 2022; Feng et al., 2021; Maal-Bared et al., 2023), some 
other studies found that normalization using fecal markers improved 
correlations at specific sites (D’Aoust et al., 2021; Zhan et al., 2022). 
This implies that whether normalization improves the correlation be-
tween wastewater data and clinical cases depends on site, thus 
site-specific longitudinal assessments should take precedence. 

For cross-site comparisons on a granular scale, there is still a possi-
bility that target analyte abundance could be underestimated in 

catchment(s) where a high volume of water use relative to individuals is 
expected (e.g., non-residential buildings). For this reason, we assessed 
PMMoV-normalized concentration as a secondary outcome measure 
when comparing SARS-CoV-2 RNA concentrations across different lo-
cations (representing a range of scales). For relatively high longitudinal 
variability for PMMoV (see relatively high spread for PMMoV compared 
to other markers in Fig. S4), potassium was used as additional confir-
matory surrogate. Lower concentrations for those surrogates in a sample 
indicate lower proportion of human waste relative to tap water, thus 
higher dilution. Tap water consumption might vary by type of building 
(Abdelalim et al., 2015; Almeida et al., 2021) – higher dilution of human 
excreta is expected in the buildings where non-toilet based consumption 
(e.g., cleaning, research activities, air conditioning, etc) is high. For 
instance, concentrations of those markers were the lowest for NE which 
predominately represented research/lecture buildings (Fig. S4). 
Normalization using human excreta markers could, in theory, compen-
sate for potential overestimation of SARS-CoV-2 raw concentration in 
NE. 

4.2. Campus-wide WBS is positively associated with confirmed COVID-19 
case occurrence demonstrating its potential for disease monitoring 

A positive association between COVID-19 cases and wastewater 
signals in the majority of instances (see 3.4 and Table 3) indicates that 
WBS has the potential for passive disease monitoring at a granular scale. 
This positive association has previously been reported in other targeted, 
granular scale monitoring programs. For instance, a positive correlation 
between wastewater SARS-CoV-2 levels and confirmed cases was 
observed in hospitals (Acosta et al., 2022a; Peng et al., 2023; Schenk 
et al., 2023) and university dormitories (Ash et al., 2023), and also 
larger building complexes (Wright et al., 2022). However, adapting WBS 
as an early warning for COVID-19 cases on a more granular scale may 
not provide the same lead time relative to clinical diagnoses as was 
observed early in the pandemic now that testing capacity has markedly 
increased. Indeed, the early warning scenario (-1 week) did not lead to 
lower p-values relative to the no time-lag scenario when comparing 
confirmed COVID-19 cases and wastewater SARS-CoV-2 in this campus 
monitoring program. A similar observation was reported in another 

Table 4 
The p-values for statistical difference in modelled COVID-19 cases per capita between WWTP and UofC campus using raw and normalized values. The p-values were 
calculated using Permutation test (see 2.7), and indicate the ratio of counts where cases per capita for UofC > cases per capita for WWTP to 1,000 (=the number of total 
simulation runs). Those pairs that statistically differed with (p < 0.05) are highlighted in red.  
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study where node-based sampling strategies were applied for moni-
toring different neighborhoods at a range of scales (from 853 to 9,094 
serving populations) in Illinois, USA (Oh et al., 2022). The authors re-
ported that a correlation between wastewater signals and confirmed 
cases varied significantly by neighborhood, and an early warning sce-
nario (-1 week) did not necessarily result in a better correlation (Oh 
et al., 2022). 

Similar to other studies correlating wastewater measured SARS-CoV- 
2 with COVID-19 disease occurrence was our reliance on clinically 
confirmed cases to build models. Individuals with asymptomatic and 
pauci-symptomatic disease are thusly not captured in this syndromic 
surveillance-driven manner (Subramanian et al., 2021; Wu et al., 
2020b). As university campuses generally comprise a younger cohort 
relative to the general population, the number of asymptomatic in-
fections is expected to have been higher (Poletti et al., 2021). Further-
more, as case reporting to University staff was voluntary, it is possible 
that not all confirmed cases were properly reported. As data was 
collected by university staff with the primary intent of actionability, 
cases with missing data (i.e., those with inaccurate dates and details on 
campus associated movements) were not necessarily followed up on 
resulting in an incomplete dataset. Finally, the analysis of both waste-
water samples and the corresponding campus-confirmed clinical cases 
were confounded by the use of weekly-aggregate data comparisons. As 
daily reported cases were discontinuous, and at times relatively low 
(median=1 and IQR=0-3 for NW; median=0 and IQR=0-1 for NE and 
SO; med=0 and IQR=0-0 for RH1 and 2), the paired comparison be-
tween wastewater signals and reported cases was difficult for campus 
sites, which is why comparisons were made using weekly-aggregate 
signals. Daily comparisons would allow for a more accurate analysis of 
the potential lead time generated through granular WBS, however, such 
an approach would also create considerable operational and cost 
challenges. 

4.3. SARS-CoV-2 activity across University campus was lower than the 
surrounding community 

Our results in Figs. 3 and 4 demonstrated a much lower viral burden 
in wastewater across the campus relative to the surrounding community. 
The relatively low SARS-CoV-2 burden within UofC campus wastewater 
likely relates to strict COVID-19 mitigating measures mandated within 
the campus – well beyond that of the Province’s at the time. As an 
example, the university mandated proof of vaccination (2 doses; or 
documented weekly-negative testing) in order to attend campus. As a 
result, the rate of vaccination for University staffs/students reached 
91.3% at the beginning of our monitoring on September 2021, which 
vastly exceeded that for the general population (73.7%) (CHI, 2023; 
UofC, 2021). The ‘COVIDSafe Campus’ run by the university during the 
pandemic (UofC, 2022a) included additional efforts such as an enforced 
universal masking mandate and wide availability of hand hygiene 
products and extra medical face masks, and a consistent effort for 
increasing public awareness of COVID-19 and the importance of phys-
ical distancing. Furthermore, our study confirms that new and emerging 
SARS-CoV-2 VOC appeared on campus commensurate with that in the 
community, and at no time was spread within the campus identified 
before the community. 

Recent studies have suggested that similar COVID-19 mitigating 
strategies employed at other university campuses have likewise been 
effective and that universities were not a large source of disease prop-
agation. For instance, a SARS-CoV-2 phylogenetic study performed at 
the University of Michigan, USA, revealed that the descendants of SARS- 
CoV-2 from student cases were rarely found in the community during 
the next wave (Valesano et al., 2021). In another study performed at the 
University of Cambridge, UK, the authors revealed that the majority of 
SARS-CoV-2 genomes from students originated from a single genetic 
cluster – the cases occurred after a single event (e.g., social gathering 
outside the campus), suggesting a limited introduction of the virus into 

the community (Aggarwal et al., 2022). Likewise, we did not observe 
new VOC occur earlier within the campus than the general community. 
Collectively these studies suggest that the intensive efforts to reduce 
forward transmission of COVID-19 adopted in a large work sites could be 
applied to other contexts to mitigate further disease spread in those 
environments. 

4.4. Other notable limitations 

There are several other noteworthy limitations of this study. For 
instance, toileting patterns do vary considerably across space and time. 
In particular, there have been reports documenting that many in-
dividuals prefer to defecate at home (Heaton et al., 1992), and these 
active cases would therefore be underrepresented in work-based studies. 
Accordingly, work (or school)-based studies such as those monitoring 
campuses may underestimate the true burden of infected populations 
within. We attempted to mitigate for this factor by assessing 
SARS-CoV-2 RNA concentration both raw, and normalized against fecal 
and population surrogates, where we observed the same general trends. 

Furthermore, the monitoring in this study was performed when not 
all students and employees had fully returned to in-person learning/ 
work; a small number continued to telecommute from home and, 
therefore, may not fully represent the entire university community. 
Thus, care has to be taken when interpreting our results – the results in 
this study do not indicate for instance that university members tend to 
have lower infection rates then populations outside the campus, but 
rather suggest that university campus is not the place where high cases 
per capita exist, or diseases were contained relatively well ‘within the 
campus’. Finally, wastewater-based monitoring at a granular scale may 
not fully represent actual case burden within the catchment because 
individual confounding differences may have a larger effect relative to 
community monitoring. Viral shedding may vary by individual (Ke 
et al., 2022) and the chances of capturing shedding events when auto-
samplers were being operated are highly stochastic, etc. We attempted 
to address this issue by employing 24 h composite sampling over a 
“grab” sampling strategy, and by achieving a reasonably high sample 
size (i.e., up to 35 points for weekly aggregated signals from 89 indi-
vidual data points) followed by various statistics (e.g., non-parametric 
tests such as Kruskal-Wallis, Wilcoxon tests). In this way, our waste-
water results could provide an “approximate” to the case per capita 
existing in each monitoring catchment. 

5. Conclusion 

Uniquely we performed a comprehensive assessment of SARS-CoV-2 
(and VOC) burden across a large university campus using a spatially 
resolved, nodal based strategy. We have confirmed the potential of this 
platform technology to perform population health monitoring through 
wastewater analysis. This study has established wastewater-based sur-
veillance is positively associated with clinical cases at a granular scale, 
suggesting it can be used synergistically with contact tracing in order to 
identify ‘hotspots’ for COVID-19 occurrence across campus (i.e., build-
ing). This study also confirmed the markedly lower rates of SARS-CoV-2 
across campus, lending support to the importance of restrictive mea-
sures in mitigating COVID-19’s potential for spread across worksites. 
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