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A B S T R A C T   

Epidemiological modeling is used, under certain assumptions, to represent the spread of a disease within a 
population. Information generated by these models can then be applied to inform public health practices and 
mitigate risk. To provide useful and actionable preparedness information to administrators and policy makers, 
epidemiological models must be formulated to model highly localized environments such as office buildings, 
campuses, or long-term care facilities. In this paper, a highly configurable agent-based simulation (ABS) 
framework designed for localized environments is proposed. This ABS provides information about risk and the 
effects of both pharmacological and non-pharmacological interventions, as well as detailed control over the 
rapidly evolving epidemiological characteristics of COVID-19. Simulation results can inform decisions made by 
facility administrators and be used as inputs for a complementary decision support system. The application of our 
ABS to our research lab environment as a proof of concept demonstrates the configurability and insights 
achievable with this form of modeling, with future work focused on extensibility and integration with decision 
support.   

1. Introduction 

The virus SARS-CoV-2 was first discovered in December 2019, in 
Wuhan, China. It is a novel coronavirus that causes the disease known as 
COVID-19. SARS-CoV-2 quickly spread around the world, causing the 
World Health Organization to declare a COVID-19 pandemic on March 
12, 2020 [1]. As of August 11, 2021, there have been 204,944,144 cases 
and 4,312,902 deaths linked to the disease [2]. Multiple waves of 
COVID-19 have occurred and it has been shown that 
non-pharmacological interventions (NPIs) such as masking and physical 
distancing, as well as pharmacological interventions such as vaccines, 
help mitigate disease spread [3–7]. 

Agent-based models consist of a group of individual entities known 
as agents, whose behaviour and decision-making is based on simple 
rules [8,9]. Even with simple guiding rules, these simulations can reveal 
emergent or unexpected properties in their modeled environments 
[10–17]. This paper develops an agent-based simulation (ABS) 

framework to examine the spread of COVID-19 and applies it within a 
university research lab environment. 

Contemporary epidemiological models (EMs) provide information 
about the risk related to a disease spreading, based on evidence from 
past epidemics or pandemics. In the early stages of an epidemic when 
limited data is available, mathematical forecasting tools such as 
compartmental models are used, with stochastic models introducing 
variation. Many assumptions are required for both compartmental and 
stochastic modeling, limiting their reliability to the strength of the as-
sumptions. Fractional mathematical models have also been applied at a 
population level due to their nonlocal character, overcoming certain 
limitations of other models [18–20]. Increasingly complicated 
agent-based models can be used to more accurately describe population 
behaviour and movements as additional data becomes available [21]. 
All of these models can predict parameters such as attack rate, case fa-
tality rate, or infection prevalence rate (IPR), but they are often applied 
on a large population-scale and do not necessarily account for the 
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uncertainties of individual behaviour. Modeling results are generally 
contextualized by attack rate: the proportion of a susceptible population 
that contracts a disease over an outbreak period, and case fatality rate: 
the proportion of a population that dies due to having contracted the 
disease [22]. 

It is necessary to develop an agent-based model that can be applied to 
smaller, highly localized, and variable environments. Such a model 
would also account for realistic individual behaviour. This paper pro-
poses such a model and offers the example of our research lab to 
demonstrate that disease spread and individual behaviour can be 
modeled accurately to provide actionable insights to administrators who 
are not experts in the field of epidemiology. 

Subsequent sections of this paper are structured as follows. Section 3 
describes the methodology, construction, and operation of the ABS, 
along with experimental configuration for the proof of concept. Section 
4 details the simulation outputs and select extracted insights. Section 5 
discusses the benefits of providing a highly configurable ABS for 
modeling disease spread. Section 6 concludes our findings as well as 
providing multiple promising avenues for future exploration and 
development. 

2. Objectives and contributions 

This research seeks to accomplish the following:  

● Develop a simulation framework to forecast COVID-19 transmission 
in localized environments, accounting for epidemiological parame-
ters, airborne viral spread, vaccination, and masking.  

● Provide useful data that can be converted to the epidemiological 
concepts of attack rate, case fatality rate, and risk.  

● Present these epidemiological results to facility administrators in an 
interpretable and actionable manner. 

Facility administrators are not necessarily experts in the field of 
epidemiological preparedness, and the proposed ABS provides clear 
information about risks and how they can be mitigated with different 
interventions. This paper contributes to the modeling of disease spread 
for epidemiological preparedness. The key contribution is threefold:  

1. Development of an ABS, with a focus on the effects of policy and 
preventative action.  

2. Offering a decision support system for non-experts in facility 
administration, allowing for a more rapid educated response to 
future disease outbreaks.  

3. Reducing risk and negative epidemiological outcomes associated 
with inaction or improper reaction. 

3. Methods 

This paper proposes an ABS similar to Ref. [15], which uses an 
agent-based EM to simulate the spread of COVID-19 within an elderly 
care facility. It considers staff and resident behaviour (including contact 
patterns), the age-dependent risk of severe outcomes (hospitalization or 
death), and epidemiological parameters such as the length of the incu-
bation and infectious periods. In Refs. [23–25], the authors examine 
COVID-19 transmission on a smaller scale, using computational fluid 
dynamics to model aerosol transport caused by exhalation and cough-
ing. Those principals are simplified and combined for this paper to be 
applied in a generalizable way using diffusion to model viral particle 
spread. 

The ABS is designed to be highly modular using an object-oriented- 
programming approach. The proposed software structure allows for 
very rapid generalization to different diseases, scenarios, and environ-
ments with minimal software development required. Ease of use and 
integration with new facilities will reduce the overhead of imple-
mentation for such a system, increasing the likelihood of adoption by 

various facilities. The ABS proposed in this paper is defined by the 
following informational class hierarchy:  

• Agents  
• Represent the base informational unit,  
• Interact within the simulation.  

• Simulation Scenario  
• Contains all of the agents,  
• Contains information from Fig. 1a.  

• Simulation Model  
• Organizational tool for executing agent behaviour,  
• Orchestrating evolution within a specific scenario. 

The proposed ABS is designed to be configured for use in any 
localized scenario. Important configurable parameters are defined in 
Fig. 1a. The basic input data required for the ABS is illustrated in Fig. 1b. 

3.1. Agents 

All agents in the model belong to the base agent class. The base agent 
class contains information about the agent’s location, subclass, 
schedule, epidemiological status, and “prevention index”. The location 
of the agent, stored as a Cartesian coordinate triplet (x, y, z), tracks their 
spatial position with respect to other agents and the environment (sce-
nario map) itself. An agent’s subclass reflects the role they have within 
the model and determines their behavior, scheduling, and which areas 
within the scenario map they have access to. Individual agent schedules 
further determine where and when the agent travels within the scenario 
map in more detail. The agent’s epidemiological status also informs their 
behaviour and contains information relating to their health. Each agent 
additionally has a “prevention index”, which describes how they are 
protected from infection by vaccination and masking. 

Agent subclasses are based on roles reflecting real-world facilities. 
Using long-term care facilities (LTCFs) as an example: subclasses could 
include “healthcare worker”, “non-healthcare worker”, “resident”, and 
“visitor”. An agent’s subclass directly affects their schedule and which 
regions of the scenario map an agent is able to access. For example, if an 
agent belongs to the “resident” subclass, their schedule might include 
staying in their room or accessing communal spaces. Such an agent 
would not be able to access administrative stations. Conversely, agents 
belonging to the “healthcare worker” subclass would be more mobile as 
they move between multiple rooms in the scenario map to simulate 
interaction with residents. These agents would also be able to access 
certain areas such as administrative stations and staff-only rooms which 
other subclasses cannot. Schedule characteristics for agents of different 
subclasses are determined through consultation with facility adminis-
tration. Day-to-day variance in an agent’s schedule occurs by stochas-
tically sending agents earlier or later to their objectives. 

The epidemiological status of an agent is assigned according to 
Fig. 2. Having a particular status effects agent behaviour as well as 
future risk of infection. For example, an agent with the status of 
QUARANTINED will remove themselves from the simulation for the 
required time period, while it is assumed that an agent with the 
RECOVERED status cannot be as readily reinfected with the disease. 
Additionally, the instant an agent is infected, the simulation has 
knowledge of it. If the agent is presymptomatic or remains asymptom-
atic for the duration of the infection (subject to probabilities based on 
epidemiological parameters), the agent will not quarantine. Because the 
simulation has knowledge of the infection, such an agent will continue 
on their regular schedule and possibly infect other agents. 

Each agent is also assigned a “prevention index,” which describes 
how their risk of becoming infected decreases with vaccines and 
masking. A “prevention index” of 0.0 means the agent has no form of 
protection against infection, while a “prevention index” of 1.0 means the 
agent is completely protected. Each agent’s “prevention index” is 
different and is constructed from the type of vaccine, dosage level, and 
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type of mask, based on reported efficacy in the literature [3–7]. The 
corresponding values for each prevention method are described in 
Table 1. 

3.2. Infection portrait 

The infection portrait defines all parameters related to the infection 
that is being monitored, which in the case of the proposed ABS is COVID- 
19. This includes: considered methods of transmission; the number of 
initial infections; parameterizing how viral particles are released by 
breathing agents and spread through the environment; and information 
about disease progression once an agent is infected such as the length of 
the presymptomatic (incubation) and recovery periods, percentage of 
cases that remain asymptomatic, etc. 

In the proposed ABS, both droplet and aerosol transmission are 
considered. Droplet transmission occurs primarily when agents are close 
together (within 1 m). If one of the agents is infected, the droplets they 
produce when breathing, speaking, and coughing can be ingested 
through the mouth or nose, causing infection [26]. 

Aerosol transmission of COVID-19 occurs when small particles 
(smaller then those considered in droplet transmission) are released into 
the air by infected agents through breathing and speaking [27]. These 
aerosol particles are small enough to remain in the air for hours, and can 
travel much farther than droplets [28]. As the infected agent exhales, the 
aerosol particles they generate begin to diffuse into the environment, 
spreading outwards radially and lingering in the air. Susceptible agents 
inhaling these aerosol particles are at risk of infection [23]. 

Other research has focused on viral spread through fomite trans-
mission in similar environments, including the spread of norovirus by 
the fecal-oral route. While research on SARS-CoV-2 has suggested that it 
may spread by fomite transmission, we are currently considering this to 
be outside the scope of this proof of concept. 

The number of infected agents initially present in the model is var-
iable. At the start of each “run” of the simulation, each agent has a 0.021 
probability of being infected, based on Canada’s test positivity rate (7 
day moving average) at the time of this writing [29]. This value of 0.021 
will be used as the IPR in simulation runs for the proof of concept pro-
posed in this study. 

The length of the presymptomatic and recovery periods are both 
sampled from log-normal distributions [12,24]. The log-normal distri-
bution for a variable X is given by 

X = eμ+σZ (1)  

where Z is a standard normal variable, and μ, σ are the respective mean 
and standard deviation of the natural logarithm of X instead of X itself. 
As a probability density function, fX(x) is rewritten as 

fX(x) =
1

xσ
̅̅̅̅̅̅
2π

√ exp

(

−
(ln x − μ)2

2σ2

)

. (2) 

A different log-normal distribution is used for the cases that display 
severe symptoms, representing 16% of cases [12]. Additionally, 17% of 
cases remain asymptomatic for the duration of the infection and the 
agent does not display symptoms while spreading the virus [30]. 

Fig. 1. Simulation configuration and inputs.  

Fig. 2. Possible epidemiological statuses for agents. Solid arrows represent 
typical disease progression, dotted arrows represent rare cases. 

Table 1 
Prevention index values for masking and vaccination based on reported efficacy 
in preventing virus transmission. No mask and no vaccination have corre-
sponding prevention index values of zero.  

Mask Vaccine 

– 1 Dose 2 Dose 

Cloth Surgical N95 Any AstraZeneca Pfizer/Moderna 
0.3 0.5 0.85 0.31 0.67 0.88  
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3.3. Disease life cycle modeling 

The initial version of the ABS is based on the Susceptible-Infected- 
Recovered (SIR) model [31]. It considers each agent belonging to one 
of the following states: Susceptible, Infected, or Recovered. Such models 
are common in epidemiology to simulate disease spread. The SIR model 
is governed by differential equations provided by eq. (3) [31]. 

dS
dt

= −
βIS
N

;
dI
dt

=
βIS
N

− γI;
dR
dt

= γI. (3)  

Here S, I, and R denote the susceptible, infected, and recovered pop-
ulations respectively, while N represents the total population. Each β 
and γ are epidemiological parameters representing infection and re-
covery characteristics respectively, with the ratio R0 = β/γ defining the 
basic reproduction number. 

While these state models are usually applied at a population level 
with differential equations describing population flow between states, 
we are using an SIR model to inform how diseases progress in a highly 
localized environment. For the purposes of our model, we are consid-
ering the “R” state as “removed” rather than “recovered”. The 
“removed” state includes agents who either recovered from the disease 
or are deceased. This means that agents with epidemiological statuses of 
either RECOVERED or DECEASED are considered to be “removed” from 
the perspective of the SIR model. 

3.3.1. Agent perspective - SI(q)R model 
As applied to an individual, the core of the SIR model can be rep-

resented as a finite state machine. The state transition from SUSCEPTI-
BLE to INFECTED is determined by the disease spread model. For our 
implementation, the recovery period is the length of time it takes an 
agent to recover from COVID-19, transitioning from INFECTED to 
RECOVERED. 

As agent-based models are most useful for observing the effects of 
individual behavior, an additional QUARANTINED state was added to 
the basic SIR model. This state has no impact on disease progression or 
contagion, but does change agent behavior. Within the model, this is 
denoted by an agent having an epidemiological status of QUARAN-
TINED. It is assumed that an agent displaying signs or symptoms of 
COVID-19 will self-isolate for 14 days based on public health guidelines 
[32]. Infected agents will display signs or symptoms at different times, 
based on the length of the presymptomatic period while some remain 
asymptomatic [30]. 

3.3.2. Disease perspective - SIR model with airborne spread 
The ABS maintains data on the level of viral particles in the air for the 

same discretized space-time underlying agent behavior, illustrated in 
Figs. 3 and 4. As with agent behaviour, the viral level is determined 
according to a simple set of rules. These rules are applied once per each 
simulation time-step.  

● Susceptible agents in a location with non-zero viral level have a 
chance of becoming infected. This chance is linearly scaled by the 
viral level, adhering to the independent action hypothesis.  

● Infectious agents shed virus, increasing the viral level in their 
location.  

● Viral level in a location exponentially decays over time.  
● Virus particles diffuse radially outward from an infectious agent 

The application of these rules results in a disease spread that matches 
current public health messaging about COVID-19: most infection occurs 
when a susceptible individual is experiencing close sustained contact 
with an infected individual. From the SIR model perspective, the 
simulation effectively treats the additional QUARANTINED state as the 
INFECTED state with instructions to vacate the environment. Fig. 3 il-
lustrates the basic operation of the simulation at a high level. Fig. 4 

shows the movement of an agent through space and time, as well as the 
progression of viral concentration and various other parameters. 

3.4. Agent behavior 

An ABS requires well-defined agent behavior to achieve meaningful 
results, which in this proof of concept is designed to mimic the behav-
iour of researchers in our lab. Implementing a system in which agents 
adhere to a schedule relies on three fundamental pieces of technical 
infrastructure: positional awareness, temporal awareness, and ability to 
execute tasks. 

3.4.1. Positional awareness 
Positional awareness in the context of simulated agents has two 

components: individual agent position within the environment, and 
environmental elements such as walls, doors, restricted areas, etc. The 
agent’s own position is important for most of the computations per-
formed at each discrete time-step in the simulation. These computations 
include both environmental interactions such as the disease spread 
mechanics and behavioral mechanics such as taking the optimized path 
to a specific location. The scenario map includes various terrain types, 
such as communal spaces, private rooms, and administrative stations. 
Some terrain is off-limits to all agents, including walls and other non- 
walkable areas. 

3.4.2. Temporal awareness 
Agents must have temporal awareness to track movement in time, 

including current position, target position, and relative position of other 
agents at the same point in time. Scheduling the behavior of agents relies 
on all agents operating on the same universal time, and the same is true 
for simulating the disease spread mechanics. This universal time is 
achieved by simulating all agents over global discrete time-steps which 
are associated with the underlying scenario. Data gathered during the 
run-time of the simulation is tracked with respect to these global time- 
steps, with temporal resolution configurable at the scenario level. 

3.4.3. Task execution 
Task execution utilizes the basic infrastructure established by posi-

tional and temporal awareness to add dynamic behavior to the agents. A 
task in this context can be abstracted as an instruction to move an agent 
to a specified location and stay at that location for a specified duration of 
time. Of course, these tasks represent the objectives that different people 
in a real-life LTCF would carry out each day. Each task assigned to an 

Fig. 3. Example frame visualization from the scenario simulation. Viral particle 
concentration is shown as a transparent red overlay. Agents numbered 1–8 
(ascending left-to-right, top-to-bottom) are seated as they would be in our lab 
environment. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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agent requires transit from the current position, A, to a target position, B. 
Operating under the assumption that agents will opt to take the fastest 
route connecting points A and B, the shortest direct path between these 
points must be computed. Each agent also progresses to each objective 
based on a level of “urgency” that describes how quickly they will move 
through the environment. 

Many algorithms exist for optimizing paths, however for the pur-
poses of this simulation the best option was found to be the A* (A-star) 
algorithm. This algorithm was developed in the 1960s for solving 
problems in robotics, and it was primarily chosen due to the relative 
performance scaling when compared to other search algorithms [33,34]. 
The algorithm selects a path which iteratively minimizes the cost 
function f defined in eq. (4). 

f (n) = g(n) + h(n) (4)  

Here n represents the next possible move along the path. Term g(n) 
denotes the “current” cost of the path between initial point ni and n, and 
h(n) is a heuristic function estimating the lowest cost path between n and 
final point nf. 

The specific implementation used allows for the environment to be 
represented as a 2D matrix, with elements representing discrete spatial 
regions of the environment and directly adjacent elements (cardinal and 
diagonal) representing possible moves by the agent. Elements are 
assigned weights based on the respective terrain type, representing the 
associated cost of traversal in the cost function. Non-walkable terrain 
such as walls or furniture are masked with zero-values to infinitely in-
crease the cost of a solution which paths the agent through them. If the 
weight of a non-zero element is set sufficiently high (greater than the 
sum of all regularly weighted elements), the agent will attempt to tra-
verse all other regions in the environment before returning to the non- 
walkable terrain. 

3.4.4. Defining behavioral patterns 
The base agent class is defined only with the fundamental infra-

structure required for task execution. This modular approach supports 
defining behavioral patterns independently of base agent function, 
allowing the simulation to support a diverse range of agent archetypes. 
Task execution is related closely to an agent’s schedule, which is 
dependent on its subclass. 

Using the environment of a LTCF as an example, there are multiple 
types of agents with different behavior and schedules that must be 
simulated: healthcare workers adhere to strict schedules and are free to 
move between different areas throughout the day, and during the night 
some will leave the facility and some will stay; non-healthcare workers 
have scheduled tasks during the day at set locations in the facility and 
may have limited access to some areas, leaving the facility at night; 
residents may move freely between their rooms and communal spaces, 
but will also follow a set schedule, returning to their rooms at night. This 
approach can be applied to any environment, simulating complex dis-
ease spread realistically with basic and scalable agent behavior. 

3.5. Simulation configuration and experimental setup 

For this proof of concept, the experimental setup is as follows. Our 
research lab environment is used as a basis for simulating all scenarios. 
Agents are directly modeling the behavior and schedules of researchers 
in the lab across ~210 h of contact (5-s simulated temporal resolution 
for 150,000 time-steps). A sample daily schedule for an agent researcher 
in the lab is provided in Table 2. The environment is only simulated 
between 7am and 7pm while agents are present, with full disinfection 
occurring between days. The following epidemiological scenarios are 
explored and reported in this proof of concept:  

● Masking:  
• No masking (“nomask”),  
• Cloth masks (“cloth”),  
• Surgical masks (“surgical”),  
• N95 respirators (“n95”). 

Fig. 4. Evolution of agent and scenario parameters over time in the simulation. 
The spatial position of Agent i at time-step j is given as the Cartesian coordinate 
triplet (xij, yij, zij). Viral level and corresponding relative risk are reported on a 
unitless scale with a ceiling of 16,000 units at the direct location of an infected 
agent, representing +100% relative risk. Each vertical frame represents a time- 
step, with an explicit arrow showing the path of the agent through the envi-
ronment. As the susceptible agent 1 moves to areas with higher airborne viral 
concentrations (denoted by transparent red image layer) near infected agent 2, 
their relative risk of infection per unit time increases. Once the agent becomes 
infected through probabilistic transmission mechanisms based on reported 
proximity and co-occupancy time in the literature, they begin spreading viral 
particles and further increasing the local viral level through spatial diffusion. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 2 
Sample daily schedules for select agent researchers in the simulated lab 
environment.  

Times Agent 1 Times Agent 2 Times Agent 3 

07:40 WORK 09:00 WORK 09:00 WORK 
07:45 TEA 12:00 EXIT 09:20 TEA 
09:10 TEA 14:00 WORK 12:00 TEA 
11:00 EXIT 15:40 TEA 13:00 EXIT 
11:20 WORK 16:30 EXIT 13:40 WORK 
11:30 TEA   18:30 EXIT 
17:00 EXIT      
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● Vaccination:  
• No vaccination (“novax”),  
• One dose any vaccine (“1dose”),  
• Two doses Oxford AstraZeneca (“astra”),  
• Two doses Pfizer/Moderna MRNA (“mrna”).  

● Physical distancing: normal desk spacing.  
● Capacity reduction: eight actors total.  
● Schedule staggering: normal observed schedules.  
● Infection testing: none applied. 

The combination of each masking and vaccination option provides 
16 unique scenarios to explore for this proof of concept. An example of 
one scenario is the combination “surgical” + “novax”. In this scenario all 
agents adhere to surgical mask requirements and are unvaccinated. Each 
unique scenario is simulated for 10,000 ensemble trials to provide suf-
ficient data for analysis. The simulation outputs the following raw data 
per time-step:  

• Virus matrix (shape of environment map)  
• Per-pixel viral concentration in space  

• Agent information  
• Spatial location (x, y, z)  
• SI(q)R epidemiological status  

• Temporal index (date-time timestamps) 

4. Results 

Results generated by this proof of concept model are focused on the 
16 possible mask and vaccine combinations defined, with policy effec-
tiveness based on external studies exploring pharmacological and non- 
pharmacological interventions (summarized in Table 1) [3–7]. Anal-
ysis of the raw results explored in this paper includes only a subset of 
possible investigations. For analyses which are not comparing multiple 
scenarios, the nomask-novax combination is used. 

4.1. Non-comparative analysis 

Fig. 5 illustrates the epidemic trajectory curves as both a cumulative 
stackplot (top) and line chart (bottom). For the nomask-novax scenario, 
the peak of infections (INFECTED + QUARANTINED) occurs between 60 
and 72 h of exposure, representing between five and six 12-h workdays. 
After 210 h of exposure the number of infections has nearly plateaued 
out with a final recovered proportion of 0.038. 

Fig. 6 plots the average excess risk of infection beyond the population 
IPR per agent as a time series. Agent numbering reflects the seating 
structure shown in Fig. 3 and respective behavior based on observed 
daily schedules. For the nomask-novax scenario, individual agents 
experience significantly different excess risk, ranging from 0.010 to 
0.022 after 210 h of exposure. Observing lines of constant-risk (i.e. 
constant y) will demonstrate how much time exposure will incur similar 
risk for an agent. For example at y = 0.010, agent 1 intersects at x = 60 h 
while agent 6 intersects at x = 210 h, representing a tripling in exposure 
time to incur the same level of risk. Conversely observing lines of 
constant-time (i.e. constant x) will demonstrate the incurred risk at the 
same level of exposure. There are two apparent clusters which emerge 
after 75 h of exposure: agents 3, 6, 8; and agents 1, 2, 4, 5, 7. 

4.2. Comparative analysis 

Fig. 7 shows the average excess risk of infection across all agents for 
different scenarios. In all comparisons, a higher prevention index results 
in a reduced excess risk of infection. The magnitude of this reduction is 
proportional to the magnitude of the compound prevention index. As 
with Fig. 6, lines of constant-risk (i.e. constant y) illustrate time taken to 
incur set risk, and lines of constant-time illustrate risk incurred at the 
exposure level. For example in Fig. 7 at x = 125 h, agents with n95 masks 

experience 10% excess risk while agents with surgical masks experience 
33% excess risk, representing a 330% increased level of risk at the same 
exposure time. Similarly, at x = 125 h agents with 1-dose of vaccine 
experience a 500% increase in excess risk over agents with 2-dose mRNA 
vaccine. 

Fig. 8 illustrates the final excess risk of infection per agent for all 16 
scenarios combining masking and vaccination measures. As with Fig. 6, 
agent numbering reflects the seating structure shown in Fig. 3 and 

Fig. 5. Average infection and recovery numbers over time from 10,000 sce-
nario simulations as a stackplot (top) and line chart (bottom). Scenario simu-
lated for no-mask, no-vaccine, and an infection prevalence rate of 0.021. 

Fig. 6. Average excess risk (probability of infection) experienced by agents 
over time from 10,000 scenario simulations. Scenario simulated for no-mask, 
no-vaccine, and an infection prevalence rate of 0.021. 

P. Ciunkiewicz et al.                                                                                                                                                                                                                            



Computers in Biology and Medicine 144 (2022) 105396

7

respective behavior based on observed daily schedules. It can be seen 
that there are clear trends between agents based on the compound 
prevention index, and similarly there are clear trends between scenarios 
based on the specific agent being studied. The highest excess risk is 
marked as red and associated with the nomask-novax scenario, while the 
lowest excess risk is marked as green and associated with the n95-mrna 
scenario. The color map is logarithmically scaled to better capture the 
range of excess risk. An excess risk of 10− 2 represents a ~50% increase 
over the population IPR of 0.021, while an excess risk of 10− 4 represents 
a ~0.5% increase. Agents 3, 6, and 8 consistently have lower excess risk 
than the others, while agents 2, 4, and 5 consistently have higher excess 
risk. 

5. Discussion 

In this study we proposed a highly configurable agent-based 
approach to modeling disease spread in localized environments. 
Focusing specifically on modeling localized environments provides a 
distinct benefit over large-scale and equation-based EMs by offering 
decision support insights at a granular level. Different environments and 
facilities have unique challenges in epidemic management based on 
numerous factors, including architectural characteristics, population 
and demographic distribution, and specific risk tolerance. These chal-
lenges are often not taken into account when using large-scale or 
equation-based EMs, resulting in policy decisions which may not be 
appropriate for all environments. Conversely, existing localized agent- 
based modeling techniques are highly specific, targeting limited envi-
ronments without strong emphasis on configurability [10,13,15,23]. 
This focused scope results in limited utility provided by these models 

and many challenges in adapting them to new applications. 
Our approach places configurability as one of the core tenets, 

allowing non-experts to deploy the model in many possible environ-
ments with reduced integration overhead. With the goal of widespread 
deployment, high adoptability and ease of integration is necessary in 
order to maximize the risk-mitigation benefits provided by such soft-
ware. The agent-based model explored in this paper provides a proof of 
concept for the technique as applied to our research lab. From our re-
sults, it is shown that a wide range of analyses can be performed on the 
outputs of the model. These analyses provide useful insights for risk 
mitigation at the policy level for facility administration, as well as a 
more robust understanding of the consequences of various actions. One 
such example is the unequally distributed risk of infection across the 
agents in our lab scenario. Based on the spatial location of agents and 
their proximity to both other agents and common walking trajectories, 
their assumed excess risk of infection varies. We observe the logical 
result of agents in high-traffic areas bearing higher risks of infection, 
however our model quantifies this risk to provide actionable insights to 
manage occupant capacity and spatial organization such as seating ar-
rangements. This is particularly important for scenarios with high oc-
cupancy limits such as lecture theaters, or scenarios where agents 
require different levels of risk management, such as immunocompro-
mised individuals in hospitals or LTCFs. 

Beyond configurability for different environments, our framework 
provides the ability to simulate arbitrary epidemiological profiles for 
diseases beyond COVID-19. This extensibility offers utility beyond 
modeling COVID-19 outbreaks and can be used for epidemic and 
pandemic preparedness in the future. 

Analyses which compare different simulation scenarios prove useful 
for evaluating the effectiveness of various policy implementations in the 
context of specific environments. This utility is demonstrated by the 

Fig. 7. Effect of masking (top) and vaccination (bottom) on average excess risk 
(probability of infection) experienced by agents over time from 10,000 scenario 
simulations. Scenario simulated for an infection prevalence rate of 0.021. 
Percent excess risk is calculated from this baseline value of 0.021. 

Fig. 8. Average excess risk (probability of infection) experienced per agent 
from 10,000 simulation runs. Each row in the heatmap denotes one of 16 
unique scenario configurations. Each cell shows the final excess risk value re-
ported per agent at the end of the simulation, representing the expected risk 
experienced through the simulation run-time. Scenario run-time of 210 h 
was used. 
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generated heatmap of average final excess risk in Fig. 8, which can be re- 
contextualized to relative excess risk by comparing to the population IPR 
of 0.021. In this context the agent-average result for nomask-novax of 
0.015 represents a 75% increased risk of infection which is two orders of 
magnitude larger than the <1% increased risk associated with n94- 
mrna. These results and their corresponding information illustrated in 
Figs. 4, 5 and 8 will appear as part of a decision support interface, and 
insights such as these can guide policy to improve public health and 
reduce clinical resource strain. 

6. Conclusions and future work 

Our study highlights the utility and insights provided by localized 
agent-based modeling techniques, as well as the importance of config-
urability for widespread adoption. Offering a highly configurable and 
localized agent-based model to facility administrators for assisting in 
decision support can greatly improve the quality and effects of epidemic 
and pandemic response, without requiring the explicit input of epide-
miologists and other domain experts. Our results demonstrate the style 
of analysis and insights possible with this proof of concept and offer a 
strong foundation for future exploration and development. 

This study offers three broad avenues for future development: the 
application and validation of our technique on real-world LTCF data; the 
development of a formal machine reasoning driven decision support 
system; and the explicit development of various disease profiles for 
further simulation. Validating our proof of concept is the next critical 
step towards eventual adoption and deployment of the technology for 
real-world applications and environments. Our work with the Brenda 
Strafford Foundation will potentially see their LTCFs used as a pilot 
deployment for our framework. Development of a decision support layer 
above the simulation outputs is also necessary for real-world use. The 
use of machine reasoning for this decision support system will provide a 
higher level of interpretability and transparency over conventional 
machine learning techniques. Lastly, developing additional disease 
profiles which are available as part of the core framework will be very 
useful to facilities such as LTCFs where disease outbreaks pose a high 
risk to the patient cohort and the cost of improper epidemic manage-
ment is very high. 
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