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ABSTRACT

Superspreading events and overdispersion are hallmarks of the COVID-19 pandemic. However, the specific roles and influence of established
viral and physical factors related to the mechanisms of transmission, on overdispersion, remain unresolved. We, therefore, conducted mecha-
nistic modeling of SARS-CoV-2 point-source transmission by infectious aerosols using real-world occupancy data from more than 100 000
social contact settings in ten US metropolises. We found that 80% of secondary infections are predicted to arise from approximately 4% of
index cases, which show up as a stretched tail in the probability density function of secondary infections per infectious case. Individual-level
variability in viral load emerges as the dominant driver of overdispersion, followed by occupancy. We then derived an analytical function,
which replicates the simulated overdispersion, and with which we demonstrate the effectiveness of potential mitigation strategies. Our analysis,
connecting the mechanistic understanding of SARS-CoV-2 transmission by aerosols with observed large-scale epidemiological characteristics of
COVID-19 outbreaks, adds an important dimension to the mounting body of evidence with regard to airborne transmission of SARS-CoV-2
and thereby emerges as a powerful tool toward assessing the probability of outbreaks and the potential impact of mitigation strategies on large
scale disease dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089347

I. INTRODUCTION

Superspreading events and overdispersion are now well-
established characteristics of the COVID-19 pandemic, similar to
SARS and other outbreaks of respiratory viruses.1 The documented
outbreaks at the Skagit Valley Chorale,2,3 at a restaurant in
Guangzhou,4,5 and at a call center in Korea6 are examples of super-
spreading events, where one infectious index case led to tens of indi-
viduals infected within a few hours, at an order of magnitude higher
than the basic reproduction number 2 � R0 � 3:6 for the original
SARS-CoV-2 variant.7 The term “superspreading” has generally been
ascribed to any event (index case and exposures) that leads to more
than the average number of secondary transmissions and, thus in
probabilistic terms, could refer to any number of secondary cases to

the right of the expectation.1 As such, it has been proposed that super-
spreading events are not exceptional events, but is an expected feature
that emerges from the right-sided tail beyond the basic reproduction
number. When this right-hand tail is further skewed with greater vari-
ability than expected, leading to an uneven distribution, the term over-
dispersion is applied (statistical definition). In the context of
communicable diseases, overdispersion refers to a non-random pat-
tern of clustering, and which often include a large number of zero
cases and a small number of larger outbreaks.8 This pattern of overdis-
persion can be applied at the level of an event or index case (individ-
ual-level variation)8 or in the context of networks (population-level via
onward transmission chains):9 both fall under the broader epidemio-
logical umbrella of heterogeneity. In the context of the former, data

Phys. Fluids 34, 051914 (2022); doi: 10.1063/5.0089347 34, 051914-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

 26 January 2024 00:00:59

https://doi.org/10.1063/5.0089347
https://doi.org/10.1063/5.0089347
https://doi.org/10.1063/5.0089347
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0089347
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0089347&domain=pdf&date_stamp=2022-05-31
https://orcid.org/0000-0003-4109-8633
mailto:swetaprovo.chaudhuri@utoronto.ca
https://doi.org/10.1063/5.0089347
https://scitation.org/journal/phf


suggest that such superspreading events are characterized by overdis-
persion in SARS-CoV-2 transmissions with 10%–20% of index cases
responsible for 80% of secondary cases.10

Understanding the nature and characteristics of superspreading
events is, therefore, key to understanding the SARS-CoV-2 spread.
Agent based modeling by Sneppen et al.11 suggested that non-
repeating, random contacts, such as those in restaurants and bars, are
a dominant contributor to the SARS-CoV-2 spread. Chen et al.12

argued that while social and micro-environmental factors affect trans-
missibility, overdispersion could result from an intrinsic characteristic
of certain viruses. The knowledge gap that remains is the extent to
which each of these factors contributes to the observed distribution of
secondary SARS-CoV-2 transmissions per index case, by connecting
variability in each of the components with our mechanistic under-
standing of SARS-CoV-2 transmission.

Emerging data confirm the importance of airborne transmission
of SARS-CoV-2 by respiratory aerosols.13–17 A large number of small
respiratory droplets (when size <100lm at the point of exhalation
often referred to as aerosols, as suggested by Prather et al.18) can
remain airborne in the liquid or semi-solid state,19 encapsulating the
SARS-CoV-2 virus. As a result, the virus can remain infectious within
the aerosols for substantial length of time.20 Several studies have
analyzed airborne transmission in specific micro-environments.
Bourouiba et al.21 identified that respiratory droplets and aerosols
exhaled during violent expiratory events can travel long distances
co-flowing with the moist air jet. Abkarian et al.22 analyzed exhaled air
flow during speech and how certain phonetics produce a train of puffs.
Chen et al.23 showed that for talking and coughing, a short range
airborne route dominates transmission of respiratory infections.
Analyzing a respiratory droplet/aerosol laden cough jet, modeling by
Chaudhuri et al.19 showed that aerosols (droplet-nuclei) of initial size
less than 50lm pose highest infection risk, and variation in the corre-
sponding viral load could lead to large variation in the number of sec-
ondary infections. Using well-mixed assumptions and the Wells–Riley
model,24,25 Buonanno et al.26 proposed a quantitative risk assessment
for specific micro-environments with asymptomatic infectious cases
and suggested that instead of specific superspreaders, it is a combina-
tion of several factors, including emission and exposure that lead to
highly probable, superspreading events. Using a similar well-mixed
approach, Bazant and Bush27 proposed to restrict the occupancy
number and time spent in a room to mitigate airborne transmission.27

Schijven et al.28 estimated risk of infection resulting from sneezing,
coughing, speaking, breathing, and singing at different viral loads.
Analysis by Bond et al.29 quantified the importance of confinement in
pathogen transport using “effective rebreathed air volume.” Dbouk
and Drikakis30–32 studied the transport and evaporation of virus con-
taminated saliva droplets and looked at how these can be implemented
in practical models. Further details on specific aspects of airborne dis-
ease transmission, including but not limited to aerosols, flow physics,
and respiratory droplet size distribution, could be found in a recent
review and opinion articles.33–37 Yet, to date mechanistic models
describing airborne transmission have not been coupled with real-
world distributions and occupancy information toward understanding
the large scale features of disease dynamics, for example, overdisper-
sion in transmissibility.

The overarching goal of this work is to leverage the mechanistic
underpinnings of the airborne disease transmission to explore event-

level overdispersion of the SARS-CoV-2 spread using real-world
inputs from a large number of social gatherings. The specific goals are:

1. Develop an algorithm based on aerosol dispersion with random-
ized inputs and available occupancy data to generate distribution
of the number of secondary infections per infectious case.

2. Explore if observed patterns of overdispersion in secondary
transmissions could be reproduced via simulations using the
above algorithm.

3. Derive an analytical function (and not a fit), which can describe
the probability density function of the number of the secondary
infections from the dynamics of the problem.

4. Identify the dominant variables that drive overdispersion and
the resulting implications for mitigation measures.

To these ends, an aerosol spread model is solved over a hundred
thousand random social-contact settings, utilizing real-world occu-
pancy and area information coupled with realistic input distributions
of viral-load and ventilation rates to obtain the probability distribu-
tions of the number of secondary infections per infectious case in those
settings. We focus specifically on 103 679 restaurant settings from ten
metropolitan areas in the US, motivated by the finding that these loca-
tions represent important centers of transmission in the early phase of
the pandemic in the US.38 Transmission in such random, non-
repetitive settings represents point source transmission. Emergence of
later variants (delta, omicron) characterized by shorter generation
times with respect to the original variant39,40 highlights the importance
of understanding transmission and overdispersion in point source
transmission settings. We note that the simulation in this paper
addresses overdispersion in the number of secondary cases generated
per infectious case over a period of about an hour in such hundred
thousand instances, conditional on the presence of one index case at
each location. The analytical expressions developed and validated with
the simulations can address overdispersion over much wider time
scales and contact settings, when coupled with appropriate inputs.
In any case, in this paper, we do not directly address the number of
secondary cases spawned by an infectious case over their entire course
of infection experiencing different types of contact.

II. ALGORITHM

A semi-analytical framework based on turbulent diffusion of
infectious aerosols exhaled by an infectious, asymptomatic (or pre-
symptomatic) individual is coupled with a dose response model41 to
compute the number of secondary infections inside a room of speci-
fied dimensions and ventilation rate. This is described in detail in
Sec. III. Using random samples of viral load, volume flow rate of
ejected respiratory liquid, air changes per hour (ACH) generated from
correspondingly observed distributions, along with real world occu-
pancy and area data from SafeGraph, and exhaled aerosol size distri-
bution, we use the algorithm depicted in Fig. 1 to generate the
probability density function (pdf) of the number of secondary infec-
tions per infectious case.

The algorithm runs over Ns iterations where Ns¼ 103 679 corre-
sponding to the number of full service restaurants in ten US cities,
available from SafeGraph data, used for generating a pdf at the end;
i being the iteration index. The restaurants serve as proxy for non-
repeating, random, social contact settings and are referred to as points
of interest (POI). First, at each such an indoor micro-environment of
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the POI, the volume of the mucosalivary fluid ejected per unit time
due to speech and breath (random sample obtained from a truncated
normal distribution whose mean is evaluated from the exhaled respira-
tory droplet volume size distribution, vsd) multiplied with a random
sample from the log-normal viral load distribution is fed into the code

to generate the number of virions emitted per unit time. The reader is
requested to refer to the Appendix for details on the truncated normal
distribution of the volume flow rate of ejected mucosalivary liquid.
This is used in the turbulent diffusion solutions shown in Eqs. (4)–(7)
in Sec. III, which establishes the spatio-temporally resolved virion con-
centration field. Random samples of exposure time, speaking time,
ACH, and area of the point of interest (POI), along with virus half-life,
which is calculated separately, also act as input parameters for the
solver. The resulting virus concentration field is used in the dose
response model (with a specified dose response constant) to obtain
probability of infection fields. Next, these probability fields are multi-
plied with the POI specific population density data (from SafeGraph)
to obtain the number of secondary infections: Z. Once the iteration
index reaches Ns, the iteration ends and the pdf of Z is calculated
using Z values from every iteration. Note that the random variable—
the number of secondary infections at specific POIs or individual
infectivity is denoted by Z, while the sample-space variable corre-
sponding to Z is denoted by Z. Pdf of Z, i.e., probability density func-
tion, defined as probability per unit distance in the sample space of
Z,42 is a convenient mathematical tool to describe overdispersion, irre-
spective of the specific number of events or samples. Furthermore,
pdfs are amenable to analytical descriptions. Fundamentally, any long
tailed pdf represents an inherently overdispersed random variable,
because the long tail represents finite (but could be small) probability
of an event where Z � mean of Z, while any pdf other than that rep-
resented by a delta function represents heterogeneity. In view of these,
in this paper, the analysis of overdispersion will be addressed using
both simulated and analytical pdfs ofZ.

Three key inputs—particle size distribution, viral load distribu-
tion, and occupancy information are described in Sec. III; details of the
rest of the inputs: ventilation rate distribution, speech time, and expo-
sure time distributions can be found in the Appendix. A table summa-
rizing the important parameter values, distributions, and sources can
also be found there (Table I).

III. MATERIALS AND METHODS

In this section, first we describe the model to obtain the proba-
bility of infection resulting from inhalation of infectious aerosols
generated from speaking and breathing, in an indoor, confined, and
ventilated micro-environment. Next, we connect this model to an
algorithm—a first of its kind to our knowledge that accepts random-
ized inputs from distributions of viral load, exhaled aerosol size distri-
bution, ventilation rate, speech, and exposure time corresponding to
specific inputs of the number of people occupying specific indoor
areas. The occupancy information is obtained from a large SafeGraph
dataset of full-service restaurants from ten major US cities. The restau-
rants serve as our study setting for time-limited, point source trans-
mission via mostly non-repeating, random contacts, in contrast to
households or workplaces where repeated contacts are made with the
same individuals and over longer periods of time. In this work, we
focus on disease spread by asymptomatic infectious cases (asymptom-
atic at the time of disease spread, therefore including presympto-
matics) under the assumption that individuals with symptoms would
not be engaged in indoor dining. Hence, we consider only speech and
breath as the mechanisms by which respiratory aerosols are ejected
into specific micro-environments. The algorithm developed for this
work is shown in Fig. 1.

FIG. 1. The algorithm for estimating the distribution of secondary infections Z.
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TABLE I. Input parameters.

Symbols Definitions Values References

Ns Total number of random samples used 103 679 Total number of data points from restaurants over
ten US cities

q Viral load—log-normal distribution
with mean l and standard deviation r

l¼ 13.839 4 and r¼ 3.630 1
for original variant

Data from Ref. 57

ACH Air change rate (ACH)—measure of
amount of air replaced in a room per
unit time per unit volume of the room,

log-normal distribution

lACH ¼ 0:7701;
rACH ¼ 0:7554

Indoor ventilation rate is typically log-normally
distributed. Parameters obtained from measured
ACH distribution in restaurants from Ref. 59

_Qls Volume of respiratory liquid ejected
during speaking per unit time

h _Qlsi ¼ 2:222� 10�6ml=s;
r _Qls
¼ 3:078� 10�6 ml=s

Data from Refs. 36 and 66–69 were used to
determine the normal distribution parameters

N Susceptible population at a given POI
from SafeGraph data, exponential

distribution

� ¼ 7:707 SafeGraph occupancy and area datasets

s Exposure time of a susceptible
individual to the ejected aerosols,

log-normal distribution

ls ¼ 0; rs ¼ 0:4 Distribution chosen such that average exposure
time corresponds to the occupancy time over
which the seven day averaged SafeGraph data

are obtained.
ts Duration of speaking of the infected

individual, uniform distribution
0:25s � ts � 0:5s Estimated such that ts � 0:5s to ensure the

speaking time is shared between infectors and
susceptibles

Ds;0 Initial droplet diameter distribution
(log-normal)

10�2lm � Ds;0 � 102lm Range used by P€ohlker et al.36

Di Mean geometric diameter of a mode
of expiratory event (b—breath,

s—speech)

ðD1Þb¼0:07lm;ðD2Þb¼0:3lm,
ðD1Þs¼0:07lm;ðD2Þs¼0:3lm;
ðD3Þs¼1:00lm; ðD4Þs¼10lm;

ðD5Þs¼96lm

Input parameter in the log-normal fit function
for respiration PSDs provided by P€ohlker et al.36

(Table VI)

Ai Number concentration at Di ðA1Þb¼7:7cm�3; ðA2Þb¼1:1cm�3;
ðA1Þs ¼9:8cm�3; ðA2Þs¼1:4cm�3;
ðA3Þs¼1:7cm�3;ðA4Þs¼0:03cm�3;

ðA5Þs¼0:17cm�3

Input parameter in the log-normal fit function
for respiration PSDs provided by P€ohlker et al.36

(Table VI)

ri Modal geometric standard deviation ðr1Þb¼ 0:9; ðr2Þb¼ 0:9, ðr1Þs¼ 0:9;
ðr2Þs¼ 0:9; ðr3Þs¼ 0:9; ðr4Þs¼ 0:98;

ðr5Þs¼ 0:97

Input parameter in the log-normal fit function
for respiration PSDs provided by P€ohlker et al.36

(Table VI)
_V Volume of air exhaled in an expiratory

event (b—breath, s—speech)
_V s ¼ 194:4cm3s�1;

_Vb ¼ 100cm3s�1
Characteristic values used for calculations in

P€ohlker et al.36 (Table I)
_Vb Inhaled volume of air 100cm3s�1 Inhalation and exhalation volume during one breath

cycle considered to be equal. Value for exhalation
volume obtained from P€ohlker et al.36 (Table I)

H Room height 3m
u� Friction velocity 0:03ms�1 Chosen from the range of values used in Ref. 64.

Figure 464 shows that all values in the range have
overlapping deposition velocity curves in the higher
particle size range, which determines the average

deposition velocity value
T Ambient temperature 294:7K Recommended typical indoor condition by ASHRAE
RH Relative humidity 0.5 Recommended typical indoor condition by ASHRAE
UVindex Strength of ultraviolet radiation 0 Recommended typical indoor condition by ASHRAE
t1=2 Half-life of airborne virus within

aerosols
32:07min Based on above parameters at standard indoor

conditions, from Refs. 20 and 51 estimated
using the DHS calculator

rv Dose response constant 1/1440 copies Obtained from Ref. 28
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A. Aerosol dispersion from an infectious case

We use the standard, turbulent diffusivity based closure42 to
model the spatio-temporal evolution of ensemble averaged infectious
aerosol concentration ca (the number of aerosol particles per unit vol-
ume of air associated with emissions from the infector), as shown in
Eq. (1). This approach was used by Drivas et al.43 to model indoor
concentration fields from point sources. Venkatram and Weil44 have
also shown that gradient transport based turbulence models work
reasonably well in indoor environments.

The turbulent diffusivity DT in Eq. (1) is a function of the air-
change rate a and the area of the space given by A. The second term
on the RHS is a sink term that accounts for removal of particles by
ventilation (a is the air change rate) and by deposition, while wd is the
deposition velocity andV being the volume of the indoor space

@ca
@t
¼ DT

@2ca
@x2
þ @

2ca
@y2
þ @

2ca
@z2

 !
� aþ wdA

V

� �
ca: (1)

We treat the infectious case as a continuous point source. The
initial condition is caðx; y; z; 0Þ ¼ 0 with reflection boundary condi-
tions at six walls. Since the virus remains embedded inside the infec-
tious aerosols and they are non-volatile, the ratio of the number of
virions to the number of aerosol particles in any given volume of air
can be assumed to remain constant post-ejection. To retain analytical
tractability of the solution, in this work, we consider fast evaporation
and a constant, post-evaporation, aerosol volume-averaged wd; see
Refs. 19, 23, and 45 for detailed evaporation and deposition consider-
ations of respiratory droplets. Therefore, the ensemble averaged con-
centration of virus RNA copies per unit volume of air c is proportional
to ca, or

c ¼ caN a: (2)

The average number of virions within an aerosol particle, N a, is the
constant of proportionality. Using the identity equation (2), we can
immediately convert Eq. (1) into an evolution equation for c, as shown
as

@c
@t
¼ DT

@2c
@x2
þ @

2c
@y2
þ @

2c
@z2

 !
� aþ wdA

V

� �
c: (3)

While one can use more complex approaches to model turbulent
mixing and aerosol dispersion, the advantage of the relatively simple,
yet sufficiently robust and accurate, diffusivity based closure is the ana-
lytical tractability and the inexpensive solution it offers. As will be seen
later, such an attribute is pivotal to generating the large number of
realizations of the c field, utilized in this work. Indeed, direct numerical
simulation or large eddy simulation based computational fluid dynam-
ics (CFD) could produce high fidelity solutions for one specific micro-
environment at high computational cost similar to the studies by
Pendar and P�ascoa46 who looked at the fluid dynamics and transport
characteristics of a sneeze within an indoor location, and Zheng
et al.47 who studied the transmission of aerosolized viruses within a
densely populated urban area. Other viable techniques like the
Lagrangian particle model coupled with a continuous random walk
model used by Wang et al.48 to simulate the droplet dynamics of
expelled droplets also exist as alternatives. However, it is evident that
for the 100 000 micro-environments investigated here, such techniques

cannot be used. Investigating such a large number of cases behooves
application of a robust reduced order model for aerosol dispersion.
The robustness of the present reduced order model used is proven by
the comparison with experimental results as in Ref. 49 as well as the
comparison with experimental and CFD results given by Hathway
et al.50 These will be discussed later in further details. As such, for a
continuous point source Qx0;y0;z0 at ðx0; y0; z0Þ, the solution of the
concentration field cðx; y; z; t0Þ at time t0 was given by43

cðx; y; z; t0Þ ¼
ðt0
0

Qx0;y0;z0e
� aþwdA

Vð Þt

ð4pDTtÞ3=2
RxRyRzwðtÞdt (4)

with wall reflection terms for i; j; k 6¼ 0

Rx ¼
X1
i¼�1

e�
ðxþ2iL�x0Þ2

4DT t þ e�
ðxþ2iLþx0Þ2

4DT t

h i
; (5)

Ry ¼
X1
j¼�1

e�
ðyþ2jW�y0Þ2

4DT t þ e�
ðyþ2jWþy0Þ2

4DT t

h i
; (6)

Rz ¼
X1
k¼�1

e�
ðzþ2kH�z0Þ2

4DT t þ e�
ðzþ2kHþz0Þ2

4DT t

h i
: (7)

L,W, andH are the length, width, and height of the room, respectively.
Here, we have introduced a virus survivability function wðtÞ in the
solution, as in Ref. 19

wðtÞ ¼ ð1=2Þt=t12 ;
t1
2
¼ f ðT;RH;UVindexÞ:

(8)

Based on the experiments by Dabisch et al.20 and calculations from
DHS,51 for T ¼ 21:78C, RH¼ 0.50, UVindex¼ 0, i.e., typical ASHRAE
recommended indoor air conditions, for SARS-CoV-2, half-life comes
out as t1

2
¼ 32:07 min. Here, T is the temperature, RH is the relative-

humidity, and UVindex is the ultra-violet index inside the room of
interest. The SARS-CoV-2 virus half-life reduces monotonically with
temperature and non-monotonically with relative humidity52 like
other enveloped viruses, as shown by Marr et al.53

The above solution given in Eqs. (4)–(7) [without wðtÞ] was vali-
dated by Cheng et al.49 who released CO from a point source andmea-
sured its spatiotemporal dispersion characteristics inside typical built
environments. Indeed aerosols deposit (accounted for in this paper)
unlike CO, but since their motion is predominantly controlled by tur-
bulent diffusion inside a room (turbulent diffusivity DT � molecular
diffusivity of CO or effective diffusivity of aerosol particles), the valida-
tion exercise is highly relevant. They suggested the following correla-
tion among turbulent diffusivity, area of room, and air change rate:

DT ¼ L20 � ð0:52� ACH þ 0:32Þ=3600; (9)

which is used for the present study as well. Here, L0 is given as
ðA�HÞ1=3, ACH is the air changes per hour, and therefore,
a ¼ ACH=3600. The model described through Eqs. (1)–(9) was fur-
ther compared with the experimental and computational results pro-
vided by Hathway et al.50 for central point source bioaerosol
dispersion within a ventilated room. The model used shows qualitative
and quantitative match within the uncertainty limits. The detailed
comparison is provided in the Appendix.
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Denoting s as the time duration of the event under consider-
ations, the ensemble averaged number of infectious virions, generated
from both speech and breath of the infected individual located at
x0; y0; zo, that is inhaled at x; y; z0 up to time s is denoted
N vðx; y; z0; sÞ, and it is given by

N vðx; y; z0; sÞ ¼
ðs

0
cðx; y; z0; t0Þ _Vbdt

0: (10)

While infectious aerosol emissions from breathing take place over the
entire time duration of the event, emissions from talking are assumed
to occur only for a time ts < s (see the Appendix for details). This is
accounted for in our calculation of the corresponding time-varying
virus concentration field. _Vb is the average volume of air inhaled per
second. The local probability of infection due to infectious aerosols
produced by speaking and breathing Psþbðx; y; z0; sÞ is calculated
using the dose-response model originally proposed by Haas.41 The
dose-response constant is chosen as rv ¼ 1=1440 based on the estima-
tions by Haas54 and Schijven et al.28 for the original SARS-CoV-2
variant

Psþbðx; y; z0; sÞ ¼ 1� e�rvN vðx;y;z0;sÞ: (11)

The number of secondary infections Z within a room is, thus,
given by

Z ¼
ðL
0

ðW
0

qpPsþbðx; y; z0; sÞdxdy: (12)

Here, qp is the susceptible population density (assumed to be uni-
form), estimated as qp ¼ n=A at the given point of interest (POI). POI
is a term used in SafeGraph dataset and in Ref. 38 referring to a spe-
cific business location like a restaurant. A is the indoor area of that
POI. In this paper, we place one infectious case at each POI.
Therefore, Z is a measure of individual-level infectivity as well. Here, n
is the number of susceptible individuals present at a given POI, i.e.,
n ¼ np � 1, where np is the total number of people present at that
POI.

B. Particle size distribution of exhaled aerosols

The particle size distributions at the source of the expiratory
events, speaking and breathing, are obtained from the review by
P€ohlker et al.36 A multimode log-normal fitting has been found to
describe the corresponding distribution reasonably well. The number
size distribution (nsd) for exhaled aerosol particles for different expira-
tory events can be described using a single function with event specific
constants. The general form for the distribution can be expressed as

dg
dDs;0

¼ log10ðeÞ
Xn
i¼1

Ai

Ds;0
exp � ln ðDs;0=DiÞ

ri

� �2 !
; (13)

where g is the number concentration of particles, D0 is the particle
diameter at ejection, i.e., at time t¼ 0, and Ds;0 is the corresponding
sample space variable. Moreover, Ai and ri are constants that depend
on the mode and type of the expiratory event. For further details, the
reader is referred to the Appendix. Figure 2 shows the number and
volume size distributions that are used in the simulation for the speak-
ing and breathing events. The volume size distribution (vsd) is inte-
grated over Ds;0 to obtain the volume of the exhaled respiratory liquid
per unit volume of air for the given expiratory event. This term when
multiplied with the volume flow of air per unit time gives us the mean
volume flow rate of ejected respiratory liquid. (A truncated normal
distribution is assumed for it, and more details can be found in the
Appendix.) A random sample of this volume flow rate multiplied with
the individual viral load q yields the ejected number of virions (RNA
copies) emitted per unit time, i.e., the source term Qx0;y0;z0 of Eq. (4).
Here, we choose particles only with Ds;0 < 100 lm as the larger ones
will settle in less than 10 s even after accounting for evaporation.19 A
detailed description of the particle deposition velocity calculation is
presented in the Appendix.

C. Viral load distribution

Viral load (q) has been associated with infectivity and, thus, the
number of secondary infections for a given setting.55,56 Analyzing
respiratory droplets and aerosol laden cough jets, Chaudhuri et al.19

FIG. 2. Aerosol number size distribution (NSD) on top and volume size distribution (VSD) on bottom for speaking and breathing as expressed in Eqs. (B3) and (B5), respec-
tively, from Ref. 36 as a function of the initial particle diameter sample space variable Ds;0, i.e., at the moment of exhalation.
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showed that the corresponding number of infected individuals could
vary by orders of magnitude due to variation in the viral load. Chen
et al.10 analyzed a large number of SARS-CoV-2 viral load databases
and suggested that the viral load is an important contributor to hetero-
geneity in secondary infections. They also showed that the viral load
distributions were similar for symptomatic and asymptomatic stages
of infection. This point was further amplified by direct measurements
of Yang et al.,57 who showed that viral load distributions are nearly
identical among hospitalized (symptomatic) and asymptomatic popu-
lation. In this paper, we utilize measurements of viral load in asymp-
tomatic (including presymptomatic) population from Ref. 57 as an
input into the algorithm shown in Fig. 1. According to Ref. 57 at the
time of saliva collection, the infected individual was either asymptom-
atic or presymptomatic. The pdf of lnðqvÞ (qv is the sample space vari-
able of q) is shown in Fig. 3(a). We generate and use samples of q
from this log-normal distribution in our calculations.

D. Occupancy and area of different points of interest
from SafeGraph data

Two of the important inputs in the simulation are the areas of
different points of interest (POI) and the number of people occupying
them during each time period of interest. These data were obtained
from SafeGraph—a company that collects anonymous data from
mobile devices. For our simulation, data that are available from indi-
vidual confined spaces, rather than that from a collection of several
indoor spaces, were felt to be most appropriate. Hence, we used
SafeGraph data for areas of full service restaurants (POI) over ten cities
in USA, namely, Atlanta, Chicago, Dallas, Houston, Los Angeles,
Miami, New York City, Philadelphia, San Francisco, and Washington
D.C. The SafeGraph-tabulated area for each restaurant is multiplied
by 0.5 to convert the total area of a given restaurant to the correspond-
ing sitting area since the dining area is estimated as 50% of the total
restaurant area. (Based on typical restaurant design guides,58 change in
this factor does not qualitatively change the observations.) The occu-
pancy information in these POIs between hours 12:00–13:00 and
18:00–19:00 over seven days starting from March 1, 2020 is obtained
from the datasets created by Chang et al.38 who developed a mobility

network based SEIR model using the SafeGraph data. These two time
periods represent typical lunch and dinner times and, hence, highest
occupancy periods of any day. The pdf of the averaged number of sus-
ceptible individuals in restaurants (total occupancy minus one)
between hours 12:00–13:00 and 18:00–19:00 over ten US cities is
shown in Fig. 3(b). Also, shown in the figure is an exponential fit and
the corresponding fitting parameter.

IV. RESULTS AND DISCUSSION
A. Spatial distributions of the particle concentration
for fixed conditions

First, we present the spatial distribution of the airborne virus con-
centration (RNA copies/m3 of air, virions are encapsulated within
aerosols of initial size 0.01–100lm) with the source at x ¼ 2:5m and
y ¼ 2:5m from the origin (at the bottom left corner) for a specific
micro-environment: a 10m� 10m� 3m room, after 15min of aero-
sol exhalation by speech and breath. In Fig. 4, the first column (a, c,
and e) presents results with a constant viral load q ¼ 109 copies/ml,
but with increasing ACH. Note that the third row represents a case
without wall reflections and, hence, can simulate outdoor conditions.
The second column of Figs. 4(b), 4(d), and 4(f) represents a constant
but five times higher viral load of q ¼ 5� 109 copies/ml. The results
demonstrate strong inhomogeneity of the virus concentration and also
show that the contours scale linearly with q for the same ACH due the
linear nature of the governing equation (3). Using the dose response
model [Eq. (11)], the corresponding contours of probability of infec-
tion are shown in Fig. 5. It could be found that indeed near unity prob-
ability of infection (from speech and breath) Psþb are found near the
source, and there is decay with distance from the source. The subscript
sþ b indicates infection caused by exhaled aerosols due to speech (s)
and breath (b) from the infected individual. Increasing ACH invariably
reduces virus concentration for a given q. However, the reduction in
the probability of infection may not be proportional to the reduction
in the virus concentration due to the non-linearity involved in the
dose response. Interestingly, the simulated outdoor conditions shown
in Figs. 4(e) and 4(f) show much smaller virus concentration both
near and far from the source with respect to the confined cases.

FIG. 3. (a) Viral load pdf for asymptomatic (including presymptomatic) population based on the histogram data from Ref. 57. The red line shows a normal distribution with l
and r given by 13.84 and 3.63, respectively, and (b) pdf of the number of susceptible individuals in full service restaurants at ten US cities from SafeGraph data.
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This can be attributed to the inherently higher ACH inside the volume
of interest but primarily due to the absence of confinement, which
allows the virus concentration to freely decay with space.

B. Statistical distributions of secondary infections
generated from realistic input distributions

A simulation based on the algorithm presented in Fig. 1 is run
for each data point available from the predefined SafeGraph dataset,
resulting in a sample size of Ns¼ 103 679. We place one infected indi-
vidual at each POI, at random locations within its premises. As such,
most inputs, including viral load, ACH, exposure time, speaking time,
volume of ejected respiratory liquid per unit time, and source location
(x0, y0), are randomized. ACH is generated from a log-normal distribu-
tion with a median ACH¼ 2.16 h�1, such that lACH ¼ 0:7701;
rACH ¼ 0:7554 based on measurements by Bohanon et al.59 The
room height H¼ 3 m, the height of the source (seated) z0 ¼ 1 m,
indoor conditions (T ¼ 21:7oC, RH¼ 0.50, UVindex¼ 0), and dose
response constant rv ¼ 1=1440 [see Eq. (11)] are held constant. The
resulting distribution of the number of secondary infections—pdf of Z
is presented in Fig. 6. An analytical solution gðZÞ to be derived in
Sec. IVC is also shown in the figure.

The stretched tailed nature of the simulated pdf is immediately
apparent. This shows that there is small but finite probability of tens of
secondary infections per infected individual. For this simulation, the
meanðZÞs ¼ hZis ¼ 0:14 (where the subscript s represents the simu-
lated result as opposed to an analytical result) obtained from the simu-
lated pdf, indicates that over an exposure time of nearly an hour, on
average less than one person got infected, per infector. The calculated
total number of infections is 12 648 with many of the infections occur-
ring in large superspreading events. As such, only 3.57% of the infected
individuals infected 80% of the population over this time. This could
also be the reason why it is generally difficult to culture the virus from
the air, though that was unequivocally demonstrated by Lednicky
et al.60 High probability of infection, which as shown in the paper, typi-
cally occurs at high viral load, could be correlated with high probability
of virus detection in the air. Direct virus detection from air could,
therefore, necessitate sampling from a large population of infected indi-
viduals. Clearly, the finite probability of Z � hZi recovers the inher-
ently overdispersed nature of SARS-CoV-2 transmission dynamics.
Fitting a negative binomial probability distribution function to the Z-
pdf yields a good fit with dispersion parameter k¼ 0.03. While the fit
quality worsens at the pdf tails, the dispersion parameter is in the same

FIG. 5. Contour plots of the spatially resolved probability of infection Psþbðx; yÞ at
time t¼ 15 min from start of the expiration event (the source located at
x ¼ 2:5m; y ¼ 2:5m) (a) q ¼ 109 copies/ml, ACH¼ 2 h�1, (b) q ¼ 5� 109

copies/ml, ACH¼ 2 h�1, (c) q ¼ 109 copies/ml, ACH¼ 5 h�1, (d) q ¼ 5� 109

copies/ml, ACH¼ 5 h�1, (e) q ¼ 109 copies/ml, ACH¼ 12 h�1, and (f) q ¼ 5
�109 copies/ml, ACH¼ 12 h�1.

FIG. 4. Contour plots of the spatially resolved virus concentration (RNA copies/m3)
at time t¼ 15 min from start of the expiration event (the source located at
x ¼ 2:5m; y ¼ 2:5m) (a) q ¼ 109 copies/ml, ACH¼ 2 h�1, (b) q ¼ 5� 109

copies/ml, ACH¼ 2 h�1, (c) q ¼ 109 copies/ml, ACH¼ 5 h�1, (d) q ¼ 5� 109

copies/ml, ACH¼ 5 h�1, (e) q ¼ 109 copies/ml, ACH¼ 12 h�1, and (f) q ¼ 5
�109 copies/ml, ACH¼ 12 h�1.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 051914 (2022); doi: 10.1063/5.0089347 34, 051914-8

Published under an exclusive license by AIP Publishing

 26 January 2024 00:00:59

https://scitation.org/journal/phf


order as the corresponding values for SARS and measles estimated
by Lloyd-Smith et al.1 However, it is to be noted that we are consid-
ering only infections over a period of about 1 h on average, as
opposed to the entire course of infection; hence, hZi should not be
interpreted as R0. Similarly, the qualitative k value, thus, obtained
should be interpreted with care. Figure 7(a) shows the joint proba-
bility density function (jpdf) of q and Z.

The close correlation of the two random variables across nearly
six orders of magnitude is immediately apparent from this figure.
While correlation may not imply causality in general, it is reasonable
in this case that the extreme variation in viral load is causing a similar
variation in the number of secondary infections with other parameters
controlling the slope and strength of the correlation.

We present the joint probability density function (jpdf) of ACH
and Z in Fig. 7(b). It is apparent that the highest number of infections
Z occurs at lower air exchange rates, as expected; however, the

majority occur at an intermediate air exchange rate of about 1–1.5
ACH, in part because very low and very high air exchange rates are
simply less common. Furthermore, it is also clear that dispersion of Z
and ACH are indeed negatively correlated. The effect of universal, high
ventilation rates, and masks will be taken up later.

C. Analytical pdf of the number of secondary
infections Z: gðZÞ

What leads to the stretched tail pdf of the number of secondary
infections? Can we model it from first principles? These questions are
taken up in this subsection. First, we note that the viral load pdf from
Ref. 57, obtained for asymptomatic individuals (including presympto-
matics), can be well approximated by a log-normal distribution with
parameters l and r given by l ¼ 13:84 and r ¼ 3:63. This is shown
by Yang et al. and also shown in Fig. 3(a). As such, we used the follow-
ing pdf of viral load f ðqvÞ for generating inputs into the simulation:

f ðqvÞ ¼
1

qvr
ffiffiffiffiffi
2p
p e�ðlnðqvÞ�lÞ2=2r2

: (14)

Due to its extremely large [over Oð12Þ] variation, our analysis shows
that viral load q is one of the most dominant variables in controlling
overdispersion of secondary infections Z, as apparent from Fig. 7(a).
This result can also be presented in terms of secondary attack rate—a
more generalized descriptor, defined as ~Z ¼ Z=n, where n is the num-
ber of susceptible individuals present at the given POI over the period
of interest s. ~Z is the sample space variable corresponding to ~Z .
Variation of ~Z with respect to q is shown in Fig. 8(a). Clearly, this plot
reflects the dose-response function [Eq. (11)] on a macro scale given
the dominant influence of q in controlling the probability of infection
and eventually secondary attack rates. Therefore, we propose a func-
tion similar to the dose-response function to model the response of ~Z
to q variation. This is shown below

~Z ¼ 1� e�aq: (15)

We can also write

q ¼ � 1
a
lnð1� ~ZÞ: (16)

FIG. 7. Joint pdf of (a) the viral load and number of secondary infections and (b) the ACH and number of secondary infections.

FIG. 6. Pdf of the number of secondary infections: Z and negative binomial fit.
The analytical function g is given in Eq. (21). gð median viral load l ¼ 13:84;
r ¼ 3:63; a ¼ 1:113� 10�10; Average occupancy � ¼ 7:71Þ. See Eqs. (14) and
(17) for r and a, respectively. Average exposure time hsi ¼ 3914 s, average
speaking time htsi ¼ 1469 s, and average air change rate, hACHi ¼ 2:87 h�1.
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The constant a can be estimated as the inverse of the average
number of virions inhaled per unit volume of mucosalivary liquid
ejected that is required for an infection probability of 1� e�1 ¼ 0:63.
Utilizing mean values of individual input distributions: average room
volume hVi ¼ 6:34� 102 m3, average speaking time htsi ¼ 1469 s,
average exposure time hsi ¼ 3914 s, average air change rate,
hACHi ¼ 2:87 h�1, and deposition parameter based on the average
room area and volume b0 ¼ 0:002 s�1, a can be estimated as

a ¼ rvh _Qlihtsi _Vb

hVi

ðhsi
0

wðtÞe� hACHi=3600þb0ð Þtdt: (17)

The virus survivability function wðtÞ is given in Eq. (8), and
the average volume flow of the exhaled liquid per unit time is
h _Qli ¼ 2:222� 10�6 ml/s. Note that all the hi quantities mention
averages over the distributions used in the present simulation.
Equation (17) yields a ¼ 1:113� 10�10 ml/copies. The comparison of
Eq. (15) and the simulation results are shown in Fig. 8(a).

With the functional form of the pdf of the viral load known
[given in Eq. (14)], we can immediately substitute Eq. (16) into
Eq. (14) to eventually derive the pdf of ~Z using the generalized equa-
tion below

/ð ~ZÞ ¼ f � 1
a
lnð1� ~ZÞ

� � d � 1
a lnð1� ~ZÞ

� �
d ~Z

: (18)

Using the log-normal form of f, we derive the analytical function
below, which could be used to model the pdf of the secondary attack
rate ~Z :/ð ~ZÞ. However, the same method should be applicable to
other functional forms of f, like a Weibull distribution as in Ref. 10
instead of log-normal

/ð ~ZÞ ¼ 1

�j1� ~Zjlnð1� ~ZÞ
	 


r
ffiffiffiffiffi
2p
p e� ln �1

alnð1� ~ZÞð Þ�l
� �2

2r2

:

(19)

Comparison of Eq. (19) with the simulation results is shown in
Fig. 8(b).

It is evident that Eq. (19) describes the simulation data to
good quantitative accuracy. It is also remarkable that very impor-
tant effects of area, ACH, virus kinetics, and exposure and speak-
ing times could be encapsulated within one constant a. It is to be
recognized that the equation is valid only for ~Z < 1. This is an
inherent feature emanating from the derivative of the functional
form of the dose response model, which yields the 1� ~Z term
in the denominator. Importantly, the equation can describe the
range 0 � ~Z < 1 with high degree of veracity. Now, we can write
Z ¼ Nð1� e�aqÞ using Eq. (15), where N is the sample space vari-
able corresponding to n. For a fixed a, clearly N and 1� e�aq are
independent random variables. Therefore, for any given pdf of N
given by h(N), pdf of Z=N given by /ðZ=NÞ and a known a, and
using the general equation that describe the pdf of the product of
two independent random variables, we can write the pdf of Z
given by

gðZÞ ¼
ð1
0
hðNÞ/ðZ=NÞ 1

N
dN: (20)

Using the exponential distribution for occupancy at different points of
interest: POIs (restaurants in our case) hðN; �Þ ¼ 1

� e
�N
� shown in

Fig. 3(b), we derive for Z < N

gðZÞ ¼
ð1
0

e�
N
��

ln �1alnð1�Z=NÞð Þ�lf g2
2r2

��r
ffiffiffiffiffi
2p
p
ðN �ZÞlnð1� Z=NÞ

dN: (21)

It is to be noted that the constants l; r are properties of the viral
load distribution, � is the constant of the occupancy distribution, and
a encapsulates s; ts;ACH;A;V ; t1

2
, etc., according to Eq. (17). It is

apparent that the pdf gðZÞ is stretched to higher (lower) Z values
when l, r, �, or a increases (decreases). The remarkable match
between this analytical function: g—the analytical pdf of the number
of secondary infections and that obtained from the simulation data

FIG. 8. (a) Scatter plot of the viral load (q) vs secondary attack rate (~Z ). The black dot curve shows Eq. (15) with a ¼ 1:113� 10�10 ml/copies and (b) pdf of ~Z and its
comparison with the analytical result given in Eq. (19).
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has been shown in Fig. 6. We revisit it here for further discussion.
It is evident that the stretched tail of the pdf of Z results from the
two stretched exponential functional of Z and N. This can be veri-
fied by noting that when either r! 0 or � ! 0, the overdispersion
of the number of secondary infections vanishes. The first stretched
exponential arising from the log-normal distribution of viral load
qv and the latter from the exponential distribution of the number
of people at the different POIs. A more rigorous way to show this
is to replace exponential distribution describing h(N) in Eq. (20)
with a Dirac delta function dðN � N0Þ and using its sifting prop-
erty to get

gDðZ;N0Þ ¼
e� ln �1

alnð1�Z=N0Þð Þ�l
� �2

2r2

�r
ffiffiffiffiffi
2p
p
ðN0 � ZÞlnð1�Z=N0Þ

; (22)

where unless N0 � �, the overdispersion in Z is greatly diminished
with respect to the exponential distribution of N. While the near
homogeneous population distribution could be representative of class-
rooms in elementary schools in a city, indoor occupancy of various
social settings is expected to be overdispersed as in the case of restau-
rants. Therefore, in general, it is the joint contribution of overdispersed
viral load and overdispersed occupancy that results in overdispersion
of secondary infection numbers causing superspreading events. This is
shown here with a single equation. The hZi obtained from the analyti-
cal pdf is given by hZi ¼

Ð1
0 ZgðZÞdZ. We find mean and standard

deviation as hZi ¼ 0:12; stdðZÞ ¼ 0:94, respectively, in comparison
to hZis ¼ 0:14 and stdðZÞs ¼ 0:76 from the simulations. The

analytical pdf gðZÞ is expected to be a generalized result and could be
applied for any large number of indoor social-contact settings without
much restriction on their type.

D. Variants and mitigation measures

Finally, we test whether the derived Eq. (21) can describe overdis-
persed transmission associated with a different viral load distribution
equally well. To this end, we generate a viral load distribution for the
d�variant. J€uni et al.61 have provided us with a representative curve
for d�variant viral load vs time based on the data from Ref. 62. Using
this curve, the time-averaged median of the viral load log-normal dis-
tribution was obtained, and hence the parameter l corresponding to
the distribution. Thus, while Fig. 3(a) represents the pdf of the original
variant, the new log-normal distribution characterized by l ¼ 17:97
and r ¼ 3:63 might represent the pdf of viral load of the d�variant
infected individuals. The simulation results in terms of Z-pdf are pre-
sented in Fig. 9(a). The greater transmissibility of the d�variant due to
the higher mean viral load is immediately apparent. In comparison to
the hZi ¼ 0:12 for the original variant, the hZi ¼ 0:98 for d (from
simulations hZis ¼ 0:95 for d). Therefore, just based on viral load,
according to the calculations andmodel, the d�variant could be nearly
8.2� higher transmissible on average with respect to the original vari-
ant, over about an hour of contact. Interestingly, with just increased l,
Eq. (21) can capture the pdf of Z for the d�variant, remarkably well,
alongside the one for the original variant. However, it is to be recog-
nized that viral load and infectiousness potential (using a proxy of

FIG. 9. (a) Pdf of Z and its comparison with the analytical result given in Eq. (21) for original variant (red circle symbols, red bold line) gðl ¼ 13:84; r ¼ 3:63;
a ¼ 1:113� 10�10; � ¼ 7:71Þ and for d�variant (blue square symbols, blue bold line) gðl ¼ 17:97;r ¼ 3:63; a ¼ 1:113� 10�10; � ¼ 7:71Þ and (b) effect of masking,
fixed ventilation rates, vaccines, and reduced occupancy. Solid red and blue lines correspond to the analytical solutions given in Eq. (21) for the original and d�variant, respec-
tively, for hACHi ¼ 2:9 h�1 and without masks, as shown in Fig. 9(a). For fixed ACH¼ 6 h�1, and with masks blocking 50% volume of aerosols during inhalation and exhala-
tion, the dashed red line shows the analytical solution for original variant gðl ¼ 13:84; r ¼ 3:63; a ¼ 2:187� 10�11; � ¼ 7:71Þ while the dashed blue line shows the
analytical result for d�variant gðl ¼ 17:97; r ¼ 3:63; a ¼ 2:187� 10�11; � ¼ 7:71Þ. For fixed ACH¼ 6 h�1, and with masks blocking 90 % volume of aerosols during
inhalation and exhalation, the dotted red line shows the analytical solution for original variant gðl ¼ 13:84; r ¼ 3:63; a ¼ 8:747� 10�13; � ¼ 7:71Þ while the dotted
blue line shows the analytical result for d�variant gðl ¼ 17:97; r ¼ 3:63; a ¼ 8:747� 10�13; � ¼ 7:71Þ. The solid green line: gðl ¼ 17:97;r ¼ 3:63; a
¼ 2:78� 10�11; �v ¼ 4:01Þ shows the effect of 80% vaccination coverage, with 60% vaccine efficacy, with all individuals wearing masks that block 50% of the aerosols
during exhalation and inhalation. The dashed-dotted green line gðl ¼ 17:97; r ¼ 3:63; a ¼ 2:78� 10�11; �v ¼ 2:00Þ shows the effect of 80% vaccination coverage with
60% vaccine efficacy with all individuals wearing masks that block 50% of the aerosols during exhalation and inhalation along with occupancy restriction to 50% of the original
occupancy. The top left inset shows the zoomed in view of the left side of the pdfs. Please refer Table II in the Appendix for detailed values.
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culture-positivity, for example), while monotonic in nature, may not
demonstrate a linear relationship.63 Furthermore, hZi 6¼ R0. Hence,
the enhancement factor, thus, found is valid only within the context of
the assumptions.

Finally, we explore the effect of adopting uniformly high ventila-
tion rates and masks on the distribution of secondary infections. To
that end, we keep the ventilation rates constant at ACH¼ 6h�1 and
assume that the entire population (including the infectors and suscep-
tibles) is wearing masks that provide 50% reduction by volume of
exhaled aerosols and 50% reduction in the correspondingly inhaled
aerosols. The results are shown in Fig. 9(b).

We observe that such interventions result in significant reduction
in transmissibility for the original variant; reducing the mean to
hZi ¼ 0:05 (from hZi ¼ 0:12 obtained without any interventions)
when the masks are blocking 50% of aerosols during both inhalation
and exhalation events with significant reduction in the extension of the
tail. Such intervention effects remain substantial for the d-variant too,
where hZi ¼ 0:47 (with respect to hZi ¼ 0:98 obtained without any
interventions) though tail remains sufficiently stretched with some shift
in the overall pdf toward lower Z. An even severe reduction in trans-
missibility is observed when the masks are set to block 90% of aerosols
traveling through it, giving us hZi ¼ 0:004 for the original variant and
hZi ¼ 0:078 for the d�variant. Once again, we note that these numbers
are obtained over nearly an hour of exposure time on average. Note
that, in our model, a does not change between the original and the d
variant. Only the l (median viral load) increases, resulting in an increase
in the higher proportion of secondary attack rates close to unity as the
virus strain switches from the original variant to the d�variant. A more
detailed analysis of the influence of individual parameters: mean viral
load, mean occupancy, and mean ventilation rates on the mean and
standard deviation of Z could be found in the Appendix.

Within the scope of the present study—social gatherings in
restaurants, we ask what kind of spread could be expected for the
d�variant given the period of exposure and available occupancy
data in a population where a large fraction is already vaccinated?
This is shown in Fig. 9(b) by the green curves. Using the realistic
ACH distribution and with masks that can reduce both emission
and inhalation of aerosol volumes by 50%, respectively, we do a
basic calculation including the effect of vaccination. Assuming
vaccine efficacy gvac ¼ 0:6 and vaccination coverage efficiency
gcov ¼ 0:8 representing fraction of the population vaccinated, we
estimate the new population of susceptible individuals at a given
POI as nv ¼ ð1� gvacgcovÞn. We do not consider any change in the
viral load or change in distribution of infectious cases. Fitting an
exponential distribution to nv, the new constant: mean occupancy
of susceptibles �v ¼ 4:01. Clearly, from Fig. 9(b), we observe a
significant drop in the number of secondary infections and super-
spreading events. The pdf of the number of secondary infections
with the d-variant with partially effective masks and vaccines is
much less stretched than the original variant without masks or
vaccine. Still the finite risk of superspreading event sustains.
However, with 80% vaccination and 50% reduced occupancy, cou-
pled with masks, a significant reduction in overdispersion is
attained. This behooves the need for rapidly vaccinating the popu-
lation alongside physical intervention measures like high-quality
masks, reduced occupancy, and across the board higher ventila-
tion rates.

V. CONCLUSIONS

Understanding the mechanistic factors that lead to overdisper-
sion in secondary cases has been considered long-standing scientific
problems.We coupled an aerosol mixing model with real-world epide-
miological and viral-biology inputs: exhaled aerosol size distribution
for speech and breath, measured viral load distribution, and realistic
ventilation rate distributions with occupancy information from more
than hundred thousand social contact settings in major US cities to
explore overdispersion in the number of secondary infections per
infector. The simulated results demonstrate that the aerosol transmis-
sion route is consistent with the overdispersed individual infectivity
with viral load variability being the dominant factor that controls sec-
ondary attack rates alongside the ventilation rate, exposure time, and
speaking time. We also derived, for the first time, analytical expres-
sions that accurately described the simulated pdfs of the secondary
attack rates and the number of secondary infections, respectively, and
further elucidated how the quantitative relationship between variabil-
ity in individual-level viral load and event-level occupancy jointly con-
trol the overdispersion. Our findings suggest that even in the context
of airborne transmission, approximately 4% of index cases in indoor
settings would account for 80% of secondary cases, thus highlighting
the importance of understanding and focusing mitigation efforts on
drivers of superspreading events. The findings highlight the impor-
tance of measures to decrease exposures during periods of high viral
shedding (such as via isolation by timely testing to detect periods of
high viral shedding), as well as improving ventilation, and the
increased probability of outbreaks with variants of concern associated
with higher viral loads. Finally, the analytical function further offers an
opportunity to estimate the spatially defined probability of outbreaks
and outbreak size from point-source transmission events given viral
load and occupancy across indoor settings.
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APPENDIX A: COMPARISON WITH EXPERIMENTAL
AND COMPUTATIONAL RESULTS

Hathway et al.50 carried out experiments and CFD simulations
in a 3:35� 4:26� 2:26 m3 room with ventilation. Though the
model is validated with spatial CO measurements12 to add another
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layer of validation, we compared our model with results from Ref.
50 for ACH values of 6 and 12 h�1 with a bioaerosol ejector placed
at the center of the room. Results are compared along three lines at
a height of 1.15m. Our model was normalized using the average
value over all three lines so that they can be compared with the nor-
malized experimental and computational results provided in the
paper. Hathway et al.50 have attributed the large variance in certain
experimental measurements as shown in Fig. 10 (points with large
error bars) to loss of viability during nebulization and sampling. In
spite of that, comparisons in Fig. 10 show qualitative and quantita-
tive agreement at most experimental sampling points, and for the
points with large variance, our results fall within the given range.
As for comparison with the CFD results, the very high peaks at the
center of the Z ¼ 1:67 m line do not appear in our model, which is
purely an artifact of the difference in the turbulence diffusivity
model involved in the two studies.

APPENDIX B: PARTICLE SIZE DISTRIBUTION

From Ref. 36, we have the number size distribution as

w ¼
Xn
i¼1

Ai exp � ln ðDs;0=DiÞ
ri

� �2 !
; (B1)

where they have defined w ¼ dg=dlog10Ds;0 (g is the number con-
centration of particles). Di is the mode mean geometric diameter, ri
is the modal geometric standard deviation, and Ai is the number

concentration at Di. These constants are mode specific parameters,
which have prescribed values for each of the ith modes (refer to
Table VI in Ref. 36 for the values of the constants). For our purpose,
we require the function wD;g ¼ dg=dDs;0

w ¼ dg
dlog10Ds;0

¼
Xn
i¼1

Ai exp � ln ðDs;0=DiÞ
ri

� �2 !
; (B2)

wD;gðDs;0Þ ¼ log10ðeÞ
Xn
i¼1

Ai

Ds;0
exp � ln ðDs;0=DiÞ

ri

� �2 !
: (B3)

It is to be noted that Ai is a number concentration parameter, which
means w would correspond to number of particles per unit volume.
Hence, to obtain the distribution for the total number of particles
ejected per unit time, we have to multiply Eq. (B3) by the total vol-
ume exhaled per unit time _V . The _V values are taken as 360Lh�1

and 700Lh�1 for breathing and speaking, respectively, both of
which fall within the typical range for _V as mentioned in Table I of
Ref. 36. The number size distribution can also be converted to the
volume size distribution through the relation

wD;V ¼
dvg

dDs;0
¼ p

6
Ds;0

3wD;gðDs;0Þ; (B4)

wD;V ¼ log10ðeÞ
p
6

Xn
i¼1

AiDs;0
2 exp � ln ðDs;0=DiÞ

ri

� �2 !
; (B5)

where vg is the volume concentration of particles.

FIG. 10. Normalized concentrations from simulations along three different lines obtained with the model used in this paper (shown using blue solid line) compared to experi-
mental data from Ref. 50 (shown using square markers along with error bars) and CFD results from the same paper50 (shown using gray solid line) for ACH values of 6 h�1

(top row) and 12 h�1 (bottom row) using a central continuous point source of aerosols.
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APPENDIX C: VOLUME FLOW RATE OF RESPIRATORY
LIQUID

_Ql is obtained from integrating the volume size distribution over
the entire range of particle size diameters and multiplying it with the
volume flow rate of air per unit time. It is reasonable to expect this
quantity to vary from one infector to another as we move from one
POI to another. To account for this change, we assume a truncated
normal distribution for the speaking _Qls with the mean value obtained
from VSD of Ref. 36 as h _Qlsi ¼ 2:222� 10�6 ml/s. The standard
deviation value was calculated as r _Qls

¼ 3:078� 10�6 ml/s using simi-
lar particle size distribution plots provided by Johnson et al.66 using
their BLO model for their own data along with the data from Refs.
67–69. It is to be noted that if we leave the normal distribution with its
limits extending indefinitely on both sides of the mean then it would
encompass extremely large and small values for _Qls, which would be
unrealisitic. Hence, we created a truncated normal distribution with
the value of Johnson et al.66 ( _Qls ¼ 1:292� 10�8 ml/s) put as the
lower limit whereas an equal distance (as between Johnson et al.’s
lower limit and P€ohlker et al.’s mean value) is taken toward the upper
limit ( _Qls ¼ 4:433� 10�6 ml/s) from the mean. It is ensured that the
Duguid et al.67 and Loudon et al.68,69 _Qls values fall within that range.
The contribution of breathing toward _Qls is several orders of magni-
tude lower than that of the lower limit of speaking, and as such no dis-
tribution is considered for breathing and instead its contribution _Qlb is
added to the randomly sampled _Qls value.

APPENDIX D: CHARACTERISTIC DEPOSITION
VELOCITY

To obtain a unique characteristic deposition velocity over a sur-
face for the entire range of particle size, we first require a functional
form for the deposition velocity. Lai and Nazaroff64 developed a model
for said deposition velocity on indoor surfaces, which took into
account the effects of Brownian diffusion, turbulent diffusion, and
gravitational settling. They provided a formulation for a quantity b
(wall deposition coefficient) as a function of the particle diameter. This
function can then be put through an averaging operation to obtain a
value for the average characteristic deposition velocity wd as

bavg ¼
wdA
V
¼
ðvdvÞavgAv þ ðvduÞavgAu þ ðvddÞavgAd

V
: (D1)

Here, Av, Au, and Ad are the surface areas of the vertical surfaces,
upward-facing horizontal surfaces, and downward-facing horizontal
surfaces, respectively. The corresponding characteristic deposition
velocities are given by vdv, vdu, and vdd. Lai and Nazaroff64 wrote the
wall deposition coefficient b as a function of the deposition veloci-
ties and the room geometry as

b ¼ vdvAv þ vduAu þ vddAd

V
: (D2)

The deposition velocities can be expressed in terms of the friction
velocity u� and gravitational settling velocity us as

vdv ¼
u�

I
; vdu ¼

us

1� exp �usI
u�

� � ; vdd ¼
us

exp
usI
u�

� �
� 1

: (D3)

I is an integrated quantity (refer to Ref. 64 for detailed formulation)
that depends on the Schmidt number Sc ¼ �=D, where � is the
kinematic viscosity and D is the Brownian diffusivity. Brownian dif-
fusivity can be directly obtained65 from the particle diameter at
equilibrium Ds ¼ Ds;0=5, as

D ¼ kBTCc

3plDs
: (D4)

Here, kB is the Boltzmann constant, T is the absolute temperature
in kelvin, l is the dynamic viscosity of air, and Cc is a slip correction
factor for small particles. For the remaining two unknowns, the fric-
tion velocity and the gravitational settling velocity, the former is an
input variable while the later can be expressed as65

us ¼
qDs

2gCc

18l
; (D5)

where q is the particle density. From Eqs. (D2)–(D5), an average
wall deposition velocity on ith surface (where i ¼ v; u; d), ðvdiÞavg
can be obtained by treating this quantity as the expected value of a
function of a random variable (Ds)

ðvdiÞavg ¼
ð1
�1

vdiðDsÞwD;VðDsÞdDs: (D6)

It is to be noted that this is a volume averaging operation due to
wD;V being defined as a volume size distribution similar to Eq. (B5)
but by using the equilibrium diameter Ds instead. This gives us a
relation for bavg that can in turn be related to the characteristics
deposition velocity wd as

bavg ¼
wdA
V
¼
ðvdvÞavgAv þ ðvduÞavgAu þ ðvddÞavgAd

V
: (D7)

APPENDIX E: EXPOSURE TIME, SPEAKING TIME,
AND ACH

Exposure time s variation was modeled with a log-normal distri-
bution such that median s¼ 1h, (ls ¼ 0;rs ¼ 0:40), and speech
time ts was modeled using a uniform distribution. In particular,
0:25s � ts � 0:5s. These yield the following averages: hsi ¼ 1:0875 h
and htsi ¼ 0:409 h. From the literature, it is found that ventilation
rates in indoor built environments are typically log-normally distrib-
uted. In particular, Bohanon et al.59 measured the ventilation rate in
33 restaurants and found them to be log-normally distributed with a
median 1.8 l/sm2 and standard deviation of 2.1 l/sm2. Following this
measured distribution, for H¼ 3m, we found median ACH¼ 2.16 h�1

and used lACH ¼ 0:7701; rACH ¼ 0:7554 for the ACH pdf.

APPENDIX F: SENSITIVITY OF MEAN AND STANDARD
DEVIATION OF THE NUMBER OF SECONDARY
INFECTIONS

In this sub-section, we explore the sensitivity of the most important
parameters: hACHi; hqi, and hNi. To that end, we explore the effect of
variation one parameter at a time on hZi and standard deviation (Z),
keeping the other two constant. The results are shown in Table II and
Figs. 11(a)–11(c). All three parameters affect hZi and standard deviation
(Z). However, the effect of variation of hqi is strongest on both the
mean and standard deviation of Z, followed by that of hNi, and hACHi.
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TABLE II. Sensitivity of secondary infection number statistics.

hACHi a l R hqi hNi hZi Std (Z)

0.1 1.467 � 10�10 13.839 3.643 7.796 � 108 7.707 0.139 1.022
1 1.329 � 10�10 13.839 3.643 7.796 � 108 7.707 0.131 0.987
5 9.391 � 10�11 13.839 3.643 7.796 � 108 7.707 0.106 0.881
10 6.864 � 10�11 13.839 3.643 7.796 � 108 7.707 0.089 0.808
50 2.158 � 10�11 13.839 3.643 7.796 � 108 7.707 0.046 0.589
100 1.149 � 10�11 13.839 3.643 7.796 � 108 7.707 0.033 0.508
2 1.205 � 10�10 12.672 3.643 2.427 � 108 7.707 0.065 0.697
2 1.205 � 10�10 14.672 3.643 1.793 � 109 7.707 0.199 1.255
2 1.205 � 10�10 16.672 3.643 1.325 � 1010 7.707 0.571 2.268
2 1.205 � 10�10 18.672 3.643 9.789 � 1010 7.707 1.310 3.546
2 1.205 � 10�10 20.672 3.643 7.234 � 1011 7.707 2.599 5.027
2 1.205 � 10�10 21.672 3.643 1.966 � 1012 7.707 3.289 5.594
2 1.205 � 10�10 13.839 3.643 7.796 � 108 1.707 0.029 0.226
2 1.205 � 10�10 13.839 3.643 7.796 � 108 2.707 0.045 0.349
2 1.205 � 10�10 13.839 3.643 7.796 � 108 4.707 0.076 0.589
2 1.205 � 10�10 13.839 3.643 7.796 � 108 6.707 0.108 0.839
2 1.205 � 10�10 13.839 3.643 7.796 � 108 8.707 0.139 1.077
2 1.205 � 10�10 13.839 3.643 7.796 � 108 10.707 0.171 1.324

FIG. 11. Variation of the mean hZi and standard deviation std (Z) with (a) mean air-change rate, (b) mean viral load, and (c) mean occupancy.
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