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Phylogenetic identification of influenza virus
candidates for seasonal vaccines
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The seasonal influenza (flu) vaccine is designed to protect against those influenza viruses predicted to circulate
during the upcoming flu season, but identifying which viruses are likely to circulate is challenging. We use fea-
tures from phylogenetic trees reconstructed from hemagglutinin (HA) and neuraminidase (NA) sequences, to-
gether with a support vector machine, to predict future circulation. We obtain accuracies of 0.75 to 0.89 (AUC
0.83 to 0.91) over 2016–2020. We explore ways to select potential candidates for a seasonal vaccine and find that
the machine learning model has a moderate ability to select strains that are close to future populations.
However, consensus sequences among the most recent 3 years also do well at this task. We identify similar can-
didate strains to those proposed by the World Health Organization, suggesting that this approach can help
inform vaccine strain selection.
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INTRODUCTION
Seasonal influenza (flu) epidemics cause substantial serious illness
and mortality every year despite preventive efforts. The extent of
morbidity and mortality in a given year reflects the degree of
genetic drift or shift in the dominant strain of influenza virus and
the efficacy and coverage of vaccination. Influenza A virus has two
glycoprotein spikes on its virion surface: hemagglutinin (HA) and
neuraminidase (NA), which have opposite functions (1). HA binds
to oligosaccharides containing terminal sialic acid (SA) and initiates
the infectious cycle. NA removes terminal SA from oligosaccharides
and completes the infectious cycle (1). Studies have shown that the
interaction between receptor binding and receptor destroying is im-
portant in viral transmission (1, 2). HA contains epitopes that are
vital to induce B cells to produce neutralizing antibodies. Therefore,
the epitope sites on the surface of HA are a determining factor af-
fecting viral mutation and recombination mechanisms (3, 4). Mu-
tations that occur on the surface of HA also allow influenza viruses
to evade host population immunity, resulting in seasonal flu epi-
demics. NA is the second most abundant glycoprotein on the
surface of the virus and has a crucial role in viral infection by
binding to SA receptors. SA moieties trigger the release of
nascent virions and facilitate the spread of influenza viruses (5–7).
Together, these proteins are used to classify influenza into its sub-
types, e.g., H3N2.

Vaccination is an important approach in controlling influenza,
limiting its potentially serious complications (8) and reducing the
severity of influenza-associated illness (9). For vaccination to be
successful, the specific viruses included in seasonal flu vaccines
need to be similar to those influenza viruses that will circulate in
the upcoming season. Seasonal flu vaccines are not always effective,
and this effectiveness varies with several factors, including the pa-
tient’s medical history and age, the current types of circulating in-
fluenza viruses, and the degree of similarity between circulating
viruses and those included in the vaccine (10, 11). Recent studies

have shown that the effectiveness of flu vaccines in reducing the
risk of becoming infected during the influenza season has ranged
from 40 to 60% across all ages (12–17). During the 2018–2019 in-
fluenza season, overall adjusted vaccine effectiveness against all in-
fluenza virus infection associated with medically attended acute
respiratory illness was 47% [95% confidence interval (CI) = 34 to
57%] (12). In general, current vaccines are more effective against
influenza B and influenza A(H1N1) than influenza A(H3N2)
viruses. This is due in part to the fact that genetic changes occur
in influenza A(H3N2) viruses more frequently than in other types
(10), but factors such as differences in glycosylation, immune im-
printing, preexisting immunity in a population, and additional
strain-specific factors could also moderate effectiveness. Vaccina-
tion has been shown to decrease the number of influenza-related
illnesses, hospitalizations, and deaths substantially each year;
however, there remains scope for improvement in both the immu-
nogenicity and efficacy of flu vaccines.

Phylogenetic trees capture patterns of descent among groups of
organisms and should, in principle, capture information about
fitness (18, 19). The tree’s branch lengths reflect either the time
or the genetic distance between branching events, while its shape
specifies the patterns of relatedness, ancestry, and descent among
the organisms (18, 20, 21). Phylogenetic trees have become essential
tools in phylodynamics and infectious disease: They are used to es-
timate the basic reproduction number (22), parameters of transmis-
sion models (23), and aspects of underlying contact networks (24–
27) to predict the short-term growth and fitness of influenza virus
trees (18, 19, 21) and, in densely sampled datasets, even to infer
person-to-person transmission events and timing (28–31).

Recent advances in genome sequencing technology mean that it
is now feasible to collate large datasets of influenza strains collected
over a long time frame. This, together with development of compu-
tational resources for reconstructing large phylogenetic trees,
enables us to study how a population of influenza viruses changes
over time. In this work, we use topological features of influenza
trees, together with machine learning tools, to find candidate
strains for H3N2 influenza vaccines. We use HA and NA sequences
from 1980 to each of February 2016, 2017, 2018, 2019, and 2020 to
reconstruct influenza virus phylogenetic trees and propose
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candidate strains for the following year’s vaccine. For each influenza
strain (here, each taxon or tip), we assign a set of features extracted
from the shape of the ancestral subtrees of that strain in the recon-
structed HA and NA trees. We then use binary classifiers to classify
the strains as either successful or unsuccessful according to whether
the near-term ancestors of the strain gave rise to a sufficiently large
number of taxa in the coming 4 to 5 years. Using this approach, we
predict which recently observed taxa are likely to be successful
strains. We choose our final candidates for inclusion in the follow-
ing year’s H3N2 vaccine using genetic distances between the taxa’s
epitope sites and those of past taxa. Focusing on data up to 2020, we
compare our proposed vaccine strains for 2020/2021 to those sug-
gested by the World Health Organization (WHO).

MATERIALS AND METHODS
We introduce a method that incorporates trees reconstructed from
both HA and NA gene sequences of influenza virus (H3N2) to
predict vaccine candidates for inclusion in the following year’s sea-
sonal flu vaccine. Our approach is based on the hypothesis that the
fitness (the reproductive rate and capacity of a group of organisms)
of each sequence (a tip of an influenza tree) can be measured using
the topological properties of the ancestral subtrees that it belongs to.

Definitions
Given a phylogenetic tree T, a tip (also called an external node or
leaf ) of T is a node of degree one. An internal node of T is any
non-leaf node of the tree. A rooted tree is a tree in which a particular
internal node, called the root, is distinguished from the others; it is
usually considered to be a common ancestor of all other nodes in
the tree. In a rooted tree T, the parent of a node i is the node pre-
ceding it on the unique path from the root r to the node i; all nodes
of T except its root have a parent. A child of a node i is a node whose
parent is i. A phylogenetic tree is bifurcating if all its internal nodes
have two children. In this work, we use rooted bifurcating phyloge-
netic trees that are reconstructed from either the HA or NA se-
quences of influenza virus A strains (by maximum likelihood). A
subtree of a tree (in general) is any connected subgraph of the
tree. In our rooted trees, each subtree will have a node closest to
the tree’s root. This is the subtree’s ancestor. Here, we use subtrees
that consist of all tips that (i) descend from a given subtree ancestor
and (ii) whose branch length to that ancestor is less than a given
time threshold, α, along with the nodes and edges connecting
these tips. If this subtree has a sufficient number of tips (above
five, in practice) to compute the features that we are interested in
(below), then we consider it to be “relevant.”

Data and tree reconstruction
We downloaded all HA and NA human H3N2 sequences collected
from 1980 to February 2020 from the Global Initiative on Sharing
Avian Influenza Data (GISAID) (32). From these, we created 10 da-
tasets: containing HA or NA sequences from 1980 to each of Feb-
ruary 2016, 2017, 2018, 2019, and 2020 to reconstruct 10 trees (5 HA
trees and 5 NA trees, one each per year). We included only HA and
NA sequences with lengths of at least 1701 and 1400, respectively.
The number of sequences included in each dataset is shown in
Fig. 1. We used the standard “augur” pipeline of nextflu (33) to
align the sequences to the A/Wisconsin/67/2005 reference se-
quence. We manually removed sequences (<0.1%) with large

numbers of insertions/deletions (more than half the sequence
length) from the alignment. We used IQ-TREE2 (34) to first esti-
mate the best-fitting nucleotide substitution model and then to re-
construct the approximated maximum likelihood tree. We run IQ-
TREE with default settings. IQ-TREE2 is appropriate for recon-
structing rooted trees. Last, we converted the trees to timed trees
using the software “least squares dating” (35).

In total, our 2020 dataset included 29,571 tips before March
2017. These tips are used for training and testing. The remaining
3 years of tips (March 2017 to February 2020 and equivalently for
the other experiments) are used for the vaccine candidate prediction
task: We call these “recent tips.” We did not use tips before 2010 for
training or testing on the trees reconstructed from sequences up to
February 2020 (and we did not use tips before 2009 for the 2019
experiment, and so on) because there were far fewer sequences
available in comparison to more recent years. This adds a level of
uncertainty in tip response variables (“successful” or not) for tips
before 2010. In addition, the pre-2010 tips had fewer relevant sub-
trees, on average, than the tips from more recent years, so the
removal of these from testing and training datasets also helps
reduce bias. For the 2020 experiment, after removing the past
tips, outliers (25 tips), and duplicated tips (234), we used the re-
maining 26,418 tips for training and testing our models (and sim-
ilarly for the other years), as described in the following sections.

We additionally downloaded all 57,339 human H3N2 influenza
protein sequences collected between March 2016 and October 2020
from GISAID (32). These protein sequences were not used in the
tree building or modeling tasks but were used solely for evaluating
the success of our vaccine proposal approach (see the “Epitope dis-
tance for vaccine proposal” section).

Subtree extraction and features
To compare tips in our influenza trees, we use a set of features
defined on subtrees, including both tree shape and patterns in the
branch lengths. These topological features are summarized in
Table 1. We normalize values of each property to reduce depen-
dence on subtree size. The features associated with each tip are
derived from the topological features of all relevant subtrees on
the path from that tip to the root of the tree. We call this the “rele-
vant path”; It is uniquely defined for each tip. To find the relevant
subtrees in the HA trees, we first extract all subtrees and then trim
those tips that occurred more than α = 3 years after the ancestral
node of each subtree. The relevant subtrees are those trimmed sub-
trees with at least five tips. We exclude from our datasets any tips
that do not have any relevant subtrees on their relevant paths.
Among 66,881 HA tips in the dataset ending February 2020, for
example, 500 are excluded. The procedure for extracting subtrees
and computing features for the NA trees is the same as the HA
trees, with the exception of the 3-year cutoff. Because of the differ-
ent structures of the NA and HA trees, trimming NA subtrees after 3
years results in a much larger proportion of tips with no relevant
subtrees on their relevant paths. As a result, we trim the subtrees
of the NA trees after 4 years (see the Supplementary Materials for
more details). In addition to the topological features, for the H3N2-
HA datasets, we also consider a feature derived from the epitope
sites of the tips of the subtree. We define the epitope distance
between any two sequences as the genetic distance between the
epitope sites of the two sequences. Then, for each subtree, we con-
sider the mean epitope distance between the tips of the subtree and

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Hayati et al., Sci. Adv. 9, eabp9185 (2023) 3 November 2023 2 of 12

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 09, 2023



all sequences with dates before the subtree. This is the epitope
feature. We use the locations of known antigenic epitopes as men-
tioned in (36), namely, 72 sites in the HA1 subunit of HA.

Previous studies have found that in fixed-size populations, in-
creasing fitness results in increased asymmetric branching and
long terminal branch lengths, and this indicates that fitness leaves
traces in genealogical trees (19, 21). Tree structure has been used
previously to predict growth using influenza virus trees. Neher
and colleagues (18) used the local branching index, a measure of
the total branch length surrounding a node, in their predictive
model. Hayati and colleagues (19) used a set of features, including
asymmetry, small shape frequencies, measures of local branching,
and features derived from network science, that capture global
structure of the subtrees in their predictive model. In this work,
we expand on this repertoire of tree features by adding weighted
network features (37), spectral properties of subtrees (38), and di-
versification rate, which is the reciprocal sum of the branches from a
tip to the root of a tree (39). In total, for each accepted subtree of the
HA and NA trees, we compute 39 topological features. We add one
epitope feature for subtrees of the HA tree, which results in a total
set of 79 features. The feature set therefore incorporates information
from both the HA and NA trees, integrating this information at the
level of individual strains.

After computing the features of the subtrees of the HA and NA
trees, we define the features of each tip based on the features of the
subtrees on the tip’s relevant path. We calculate the kth feature of a
tip t; gkt , as a weighted sum of the kth features of t’s relevant subtrees

gkt ¼
X

x[p
f kx e

� dðt;xÞ=D ð1Þ

where t is a tip, p is the relevant path, x are the ancestors of the rel-
evant subtrees for tip t, fx is a feature of the subtree descending from
x, and d(t, x) is the path length from tip t to node x. D is a scalar
parameter with value D = 5 × (median of tree edge lengths) chosen

by tuning. This approach somewhat mirrors the definition of local
branching index, which uses a sum of exponentially discounted
lengths (18). In other words, subtrees that are far from the tip con-
tribute exponentially less to the tip’s features than subtrees that are
close to the tip. The tip feature computation process is summarized
in Fig. 2.

Success and training approach
The success of each tip is defined by the success of its relevant sub-
trees in both HA and NA trees. We call a subtree of sizem successful
if its root has a total of more than m tip descendants in the time
frame of 4 (HA) or 5 (NA) years from the root of the subtree. To
compute the labels of the tips (0 denoting unsuccessful and 1 denot-
ing successful), we first compute the weighted sum of the labels of
the relevant subtrees of each tip. We call these values “relevant
labels,” and the weights for computing the weighted, tip-level
labels are the same as those used for computing the features of
each tip. We denote the median of the weighted labels among all
the tips on the HA and NA trees as μHA and μNA, respectively. A
tip is defined as successful if its weighted label derived from both
the HA and NA trees is greater than both μHA and μNA. In other
words, for a tip to be labeled as successful, the relevant subtrees
for the tip, in both HA and NA, must be such that when appropri-
ately weighted and summed in Eq. 1, it has a success signal from
both medians.

Our approach, using subtrees on paths from the tips to the root,
induces similar feature sets and labels in sibling and closely related
tips. This makes for a challenging training approach, as we cannot

Fig. 1. Volume of data used in each experiment (year).Wedownloaded all avail-
able hemagglutinin (HA) and neuraminidase (NA) human H3N2 sequences collect-
ed between 1980 and February 2020 from the GISAID (32). These sequences are
divided into 10 datasets: Across five experiments (“Year”), we include either HA
(red) or NA (blue) sequences with minimum lengths of 1701 and 1400, respective-
ly, collected between 1980 and February of the respective year.

Fig. 2. The procedure for computing the features of each tip.We compute n =
79 features (f1x ; f

2
x ; ::f

n
x ) for each accepted subtree x. Then, the feature set of a tip t

(g1t ; g
2
t ; ::g

n
t ) is given by the weighted sum of the features of the relevant subtrees.

Blue triangles indicate relevant subtrees for the tip marked “tip.” Relevant subtrees
are located on the path from the tip to the root (this is the relevant path). The
weights of the subtrees are reduced according to their distance to the tip, d(t,
x). Gray triangles indicate that the full tree continues into the future, and the
nodes on the path from a tip t to the root can have descendants that are not in
t’s relevant subtrees.
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Table 1. Brief definition of the tree shape statistics. Here, ri and si are the number of tips of the left and right subtrees of an internal node i. n is the number of
tips of a subtree. ni is the number of nodes at depth i,Mi represents the height of the subtree rooted at an internal node i, and Ni is equal to the depth of node i. A
ladder in a tree is a set of consecutive nodes with one tip child. We represent the set of all internal nodes of a tree asI, the set of all tips (or external nodes) asL,
and the root of a subtree as r. In “generalized branching next,”we chosem = 2. Skewness and kurtosis are two measures to describe the degree of asymmetry of a
distribution (63). The tree shape statistics induced by betweenness centrality, closeness centrality, and eigenvector centrality are defined as the maximum values
of each centrality over all the nodes of a tree, and distances are in units of number of edges (without branch lengths). The network science properties were
computed in R using the treeCentrality package (64), and the tree-wide summaries were primarily obtained using the phyloTop package (65).

Name Description Reference

Properties from network science

Betweenness centrality Maximum number of shortest paths through nodes (66)

Weighted betweenness As above, but with weighted edges (37)

Closeness centrality Maximum total distance to all other nodes (66)

Weighted closeness As above, but with weighted edges (37)

Eigenvector centrality Maximum value in Perron-Frobenius vector (66)

Weighted eigenvector As above, but with weighted edges (37)

Diameter Largest distance between two nodes (67)

WienerIndex Sum of all distances between two nodes (68)

Mean tips pairwise distance Average distance between 2 tips (19)

Maximum tips pairwise distance Maximum distance between 2 tips (with branch lengths) (19)

Spectral properties

Minimum adjacency Minimum adjacency matrix eigenvalue >0 (38)

Maximum adjacency Maximum adjacency matrix eigenvalue (38)

Minimum Laplacian Minimum Laplacian matrix eigenvalue >0 (38)

Maximum Laplacian Maximum Laplacian matrix eigenvalue (38)

Numbers of small configurations

Cherry number Number of nodes with two tip children (69)

Normalized Pitchforks 3 × (number of nodes with 3 tip descendants)/n (70)

Tree-wide summaries

Normalized Colless imbalance 1
n3=2
P

i[I<frgjri � sij (71)

Normalized Sackin imbalance 1
n3=2
P

i[LNi (72)

Normalized maximum height The maximum height of tips in the tree/(n − 1) (65)

Maximum width Maximum number of nodes at the same depth (73)

Stairs1 The portion of imbalanced subtrees (74)

Stairs2 The average of minðsi ;riÞmaxðsi ;riÞ
over all internal nodes (74)

Maximum difference in widths maxi(ni + 1 − ni) (73)

Variance The variance of internal node depth (75)

I2 P
i[I<frg
riþsi.2

jri � si j
jriþsi � 2j

(75)

B1
P

i[IM� 1i (75)

B2 P
i[L

Ni
2Ni

(75)

Normalized average ladder The mean size of ladders in the tree/(n − 2) (65)

Normalized ILnumber Number of internal nodes with a single tip child/(n − 2) (65)

Branching speed The ratio of the number of tips to the height of the tree (19)

Measures from edge length

Branching next index Mean of indicator: Does the next branching event descend from this node (19)

Generalized branching next Number of next two branching events descending from this node (19)

Skewness The skewness of the internal branch lengths (19)

Kurtosis The kurtosis of the internal branch lengths (19)

Diversification rate The reciprocal sum of the branches from a tip to the root of the tree (39)
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uniformly randomly divide each dataset into training and testing
sets. To ensure that the training and testing sets are not dependent
because of relatedness, we take two approaches. In the first (results
in the main text), we choose one large clade of the tree to test the
model and train on the remainder of the tree. For each experiment
culminating in years 2016, 2017, 2018, 2019, and 2020, we choose a
test clade such that there is an approximate 10 to 20% ratio between
training and test datasets (see Fig. 3B). In the second approach
(results in the Supplementary Materials), we train our model on
the “past tips” (before August 2016 in the tree reconstructed from
sequences up to 2020; see the Supplementary Materials for full
details) and test on those tips that remain, i.e., those sampled
between the past tips and the recent tips. We include a gap of 4
months between the training and testing set in this approach to
avoid dependency between tips in different sets.

Classification
We compare several binary classification tools: support vector ma-
chines (SVMs) with a range of kernel choices (40), random forests
(41), and gradient boosting (42). Among the different binary clas-
sification tools used, an SVM with a polynomial kernel had the best
performance (see the Supplementary Materials). Methods were im-
plemented in R, with the packages e1071 (43), randomForest (41),
and caret (44). Outliers can affect the training process; we use the
local outlier factor algorithm (45) implemented in the DMwR
package (46) in R to identify and remove outliers.

To carry out a sensitivity analysis on the performance of the
SVM classifier, we repeat the experiment on the dataset of

sequences up to February 2020, including the same test clade, and
geographically downsample the dataset by two methods. In the first,
we randomly select 10, 20, and 50% of all sequences collected from
each continent. In the second, we downsample sequences propor-
tional to the population per continent in 2019 (47). Our dataset con-
tains the fewest sequences proportionally from Africa (N = 1047),
which contains 17.2% of the world population. Therefore, we set
the total size of the downsampled dataset to (1047/0.172) 6087 se-
quences and randomly select sequences from each continent pro-
portional to their share of world population. Each analysis is
repeated 100 times per sampling percentage, randomly selecting dif-
ferent sequences using the given method and rerunning the predic-
tion model to produce receiver operating characteristic (ROC)
curves. We also calculate the proportion of successful sequences
in each downsampled analysis that are predicted to be successful
using the full dataset.

Epitope distance for vaccine proposal
To select candidate vaccine strains from among the sequences iden-
tified as successful by the SVM with polynomial kernel, we compare
three methods using epitope distance, as well as the consensus
amino acid sequence among successful strains. The consensus se-
quences are found by assigning the amino acid code at each site
that is found at the highest frequency within the successful
strains. For the methods using epitope distance, we first calculate
the epitope distances between the successful (i.e., our model classi-
fies them as successful) sequences and all other sequences in the
dataset that were sampled in the 5 years before the sampling of

Fig. 3. Input and performance of the support vector machine. (A) ROC curve showing the performance of support vector machine (SVM) with a polynomial kernel on
trees reconstructed from sequences up to February 2016, 2017, 2018, 2019, and 2020. For each tree, we extract one subtree for testing themodel and use the remainder of
the tree for training our model. See the Supplementary Materials (table S3) for more details on accuracy calculation. (B) Tree reconstructed from influenza sequences from
1980 up to February 2020. Orange highlight shows the test subtree. Tips are colored by date: yellow for “past” tips sampled before March 2017 and purple for tips
sampled after March 2017, labeled “recent” and used to predict the successful tips that are more probable to circulate in the next (2020/2021) flu season.
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the successful sequences. We then use these distances to determine
the vaccine candidates.

We define the set of successful sequences as S. Then, the epitope
distance H(s, R) between a successful tip s ∈ S and the set of se-
quences from the prior 5 years R is defined as the mean of the dis-
tances h(s, r) from s to all sequences r in R

Hðs;RÞ ¼
1
jR j

X

r[R

hðs; rÞ

Here, h is restricted to the epitope sites in the HA sequence ac-
cording to (36).

We consider three scenarios for using these distances H(s, R), s
∈ S to select final vaccine candidates. In the first scenario
(“epitope-furthest-from-previous”), we choose the successful se-
quences that are most distant to the set of tips from the prior 5
years as the final vaccine candidates [i.e., we find the set of s that
maximizes H(s, R)]. The motivation here is that the most distinct
sequences may be the best candidates, as humans’ immune systems
will not have developed antibodies against them. In the second sce-
nario (“epitope-nearest-to-previous”), we choose the set of success-
ful sequences that are the least distant to the set of tips from the
prior 5 years [we find the set of s that minimizes H(s, R)]. This
can be motivated by the fact that it is more probable that sequences
from fast growing clades will persist into the future. In the third sce-
nario (“epitope-central-to-previous”), we select the set of successful
sequences that are closest to the median distance to the set of tips
from the prior 5 years [we find the set of s that are closest to the
median of H(s, R)]. We might expect for this scenario to result in
a set of sequences that are different enough from past sequences to
avoid preexisting immunity, while still being likely to be situated in
growing clades.

To assess the performance of our candidate selection approach
for each season (2016–2020), we compute both the epitope and full
amino acid hamming distances between the vaccine candidate se-
quences and the following season’s circulating sequences. To eval-
uate these approaches further, we compute these distances between
the following season’s circulating sequences and the WHO vaccine
candidates for each year and a consensus sequence derived from all
circulating strains in the previous 3 years (“Consensus-from-all”).

For this task, we used 57,339 protein sequences collected from
March 2016 to October 2020, divided by flu season March to Feb-
ruary. For the final year in the study period, i.e., proposal of the 2021
influenza vaccine, we only used sequences from March through
October 2020. However, given the low number of flu cases detected
in the Northern Hemisphere 2020/2021 flu season during the
COVID-19 pandemic (48), this should not come at great loss of
diversity.

Genome-wide association study
We use treeWAS (49) to conduct genome-wide association studies
(GWAS) to identify single-nucleotide polymorphisms (SNPs) that
were associated with successful sequences in the 2020/2021 dataset.
We conduct this analysis separately for the NA and HA sequences.
We use the “terminal” option in treeWAS to identify correlation
between the successful strain phenotype and the presence of
SNPs, with significance thresholds corrected for multiple testing.

RESULTS
Classifier performance and features
We use our chosen SVM with a polynomial kernel to predict suc-
cessful sequences among the recent tips (those sampled after March
2017) of the trees reconstructed from sequences up to February
2020. This provides a set of sequences that we would expect to
have been more likely to circulate in the following 2020/2021 flu
season. We also perform this prediction for the other datasets
(2016, 2017, 2018, and 2019).

The performance of the model is found to be good. Figure 3A
shows ROC curves for each of the experiments 2016 to 2020, with
“area under the curve” (AUC) between 0.83 and 0.91. The accuracy
of the classifier is between 75% (2017) and 89% (2020). The influ-
enza tree and its subtree used for testing in the 2020 experiment are
shown alongside in Fig. 3B. The model performance is similar for
the second approach to dividing into train/test datasets; results are
included in the Supplementary Material.

The performance of the SVM model is found to be robust to
downsampling the data in two ways: first, to explore sensitivity to
the overall data volume and second, to explore sensitivity to geo-
graphic sampling differences. Reducing the dataset of sequences
up to February 2020 by 50% results in very good model perfor-
mance overall (fig. S5B), with median AUC = 0.88 (SD ± 0.01)
and median accuracy = 0.88 (SD ± 0.01). Even when including
only 10% of the dataset in the SVM classification, we find that the
model performance remains high (fig. S5D), with median AUC =
0.9 (SD ± 0.03) and median accuracy = 0.82 (SD ± 0.03). Model per-
formance is also good when downsampling by population rather
than the number of sequences collected, which accounts for poten-
tial sampling bias [median AUC = 0.88 (SD ± 0.02), median accu-
racy = 0.79 (SD ± 0.01); fig. S5A]. We find a high concordance
overall between the successful strains identified in the full dataset
and the strains predicted to be successful with each downsampling
approach (fig. S6).

We used feature selection, repeating on the downsampled cases
to explore robustness, and found no consistent signal, indicating
that some features contribute more heavily to the predictions than
others (see the Supplementary Materials). This can happen when
features contribute overlapping information, and this is the case
here: Figure 4 shows the pairwise correlations among the tip-level
features in our data. There is a high level of duplicated information,
resulting in feature selection methods not being able to consistently
rank features. For example, the maximum width feature and the di-
vergence rate feature are positively correlated and naturally show
very similar patterns of correlation with the other features in the
data. Some of the network science features are correlated, e.g., the
“maxAdj” and “eigenvector” features. The epitope features were not
correlated with the others, suggesting that they are an independent
line of evidence. In a related study in 2020, we found that including
epitope and tree features together resulted in the strongest perfor-
mance (19). However, recently, Barrat-Charlaix et al. (50) found
that mutations at the epitope sites in (36) fixed in the population
less often than would be expected under neutral drift.

Vaccine selection
Among the set of sequences identified by the SVM as likely to be
successful, we choose several to propose as candidates for inclusion
in a potential 2020/2021 flu vaccine. We first compare the three
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epitope distance approaches for candidate proposal described in the
“Epitope distance for vaccine proposal” section, across all experi-
ments 2016 to 2020. While the epitope features did not come up
as consistently important in the classification, for vaccination,
they may be relevant because of their antigenic signal, and the
epitope distances provide one rationale for filtering the large
number (3962) of sequences to a smaller set of candidates. We
then ask whether our predicted successful strains are antigenically
close to the sequences circulating in the following season. We
compare four approaches to choosing sequences informed by our
machine learning results to two other approaches: the consensus se-
quence (“consensus from all”) and the WHO-selected strains from
the given year. Barrat-Charlaix et al. (50) recently found that con-
sensus strains are as close or closer to future populations than
strains with a high local branching index, motivating the compari-
son to consensus strains. Figure 5 shows the epitope and amino acid
distances (epitope site–only amino acid Hamming distance and
whole-sequence amino acid Hamming distance, respectively).

One clear signal is that strains that had the furthest epitope distance
from cocirculating strains are further from the future population
than the other choices (purple bars). Consensus strains do reason-
ably well, but our model does provide some advantage: In 2020, the
consensus among our “successful strains” was closer in both the
epitope and whole-sequence amino acid distances to the future
strains than the WHO choice and the consensus sequence, and in
the most recent 3 years, it consistently did well. The WHO vaccine
choice was never the closest to the future population in the whole-
sequence amino acid distance. In 2019, the epitope-central strains
were closer to the future than the consensus strain and the WHO
strain in both distance measures. In 2018, all but the epitope-fur-
thest-from-previous choices were strong in terms of epitope dis-
tance, and the consensus strain was furthest in amino acid
distance. In 2016 and 2017 (where there is also less data), the con-
sensus sequence did better than the consensus-from-successful
strains, but there, our epitope-nearest-to-previous choice did as
well as the consensus sequence overall. However, this choice

Fig. 4. Correlations between features, and comparative model performance when only subsets of the features are used. (A) Feature correlations, in which color
illustrates the Pearson correlation between the tip-based features (computed as in Eq. 1). Blue indicates positive correlation (darkest blue: correlation of 1), and red
indicates negative (darkest red: −1). There is considerable correlation in the data. (B) Comparative performance shown by receiver operating characteristic (ROC)
curves with the full feature set (red), without the epitope features (green), and without the neuraminidase (NA)-derived features (blue). Note, however, that NA
success is used to define the “success” label for a strain [as is the hemagglutinin (HA) tree; see Materials and Methods].
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performed less well for amino acid distances in 2019. In the Supple-
mentary Materials (fig. S7), we show the variability in the distances.

We select 17, 21, 37, 13, and 17 vaccine candidates for the years
2020, 2019, 2018, 2017, and 2016, respectively, from among the suc-
cessful sequences using the epitope-central-to-previous criterion,
which had moderate performance overall in Fig. 5. The strains sug-
gested by the WHO for vaccine inclusion in 2020–2021 are among
the set of successful sequences as predicted by our model, and all
final vaccine candidates suggested by our model are very close to
those suggested by the WHO; they are located in the same subtree
(see Fig. 6).

Genome-wide association study
We conduct a GWAS to identify SNPs in the HA and NA sequences
that are associated with successful sequences in the 2020/2021
dataset. In the NA sequences, we find three significant SNPs that
are correlated with increased presence in the successful sequences
predicted from our analysis in the 2020/2021 dataset. These SNPs
encode a nonsynonymous mutation at position 1015 that results
in the amino acid change N339D and synonymous SNPs at position
237 (codon 79) and position 870 (codon 290). Mutations at codon
356 in NA have been previously reported to be permissive muta-
tions linked to a highly deleterious mutation at codon 336, which

affects viral fitness, although we find no evidence of this association
and our predicted success of sequences (51).

We find no SNPs in the HA sequences that are significantly as-
sociated with presence in successful sequences (fig. S4). Previous
studies have identified seven key amino acid changes in HA that
are involved in major antigenic change in H3N2 (52). While we
do not find evidence of SNPs in these codons that are significantly
associated with the predicted successful sequences, we manually
searched for differences in these amino acid changes between the
predicted successful and not successful sequences. There is no ob-
servable difference between sequences at most sites, although we do
find some heterogeneity in the amino acid sequence at codon 158,
with a higher proportion of successful strain carrying a glycine or
arginine at this position and a lower proportion carrying lysine.

DISCUSSION
In this work, we have trained machine learning models to predict
which sequences are most likely to grow during the upcoming flu
season on the basis of features of phylogenetic trees. We explore
choices for which sequences should be considered for inclusion
in the following year’s flu vaccine. The practical availability and fea-
sibility of prospective vaccine viruses is also a key consideration (53,
54). For example, candidate viruses must be identified in time to be

Fig. 5. Genetic distances between our vaccine candidate sequences and the sequences that circulated during the flu season in which the vaccine would have
been implemented.We use the Hamming distance between amino acid sequences for our genetic distance, calculating themedian distance between both epitope sites
and the full amino acid sequence. Results are shown for each of the four scenarios relevant to candidate selection. We also include distances for the WHO vaccine
candidate sequences from each year and a consensus sequence derived from all strains circulating in the 3 years before the end of the experiment data. “Year” in
the axis refers to the final year of experiment data; vaccine candidate sequences are compared to observed protein sequences from the following flu season (e.g.,
“2016” uses data through February 2016 and is compared to sequences from the 2016/2017 flu season).
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approved for seasonal vaccine development, and some influenza
viruses grow poorly under the conditions that regulators allow for
vaccine production, limiting the available choice. The approach we
have introduced in this work does not incorporate these factors ex-
plicitly, although it motivates our selection of several vaccine can-
didates. We have focused on predictions for the Northern
Hemisphere H3N2 season. There are fewer sequences available
for the Southern Hemisphere, limiting the development of
methods such as this that are specifically tailored to Southern Hemi-
sphere influenza. Our downsampling analyses indicate, however,
that the accuracy is likely to be robust to uniformly lower sequenc-
ing and to differences in sampling in different regions, so our
method may be applicable to Southern Hemisphere dynamics.

In this work, we used sequences (tips, in the trees) as the unit of
prediction, compiling features derived from both HA and NA trees,
despite reassortment. This approach is amenable to including other
data at the sequence level. Influenza virus vaccines typically develop
immunity by causing the host to produce antibodies specific to the
HA protein, although NA also has a crucial role in viral infection in
binding to SA receptors and accordingly facilitating the spread of
influenza viruses (5). Our approach could be expanded to incorpo-
rate strain-specific data for nonphylogenetic sources and/or infor-
mation from trees derived from other segments.

The findings in this paper are subject to several limitations. We
did not explicitly include immunological assay data, as these are not
generally available. We used specific epitope sites from (36) follow-
ing the approach of (55), although a model reflecting the impact of
polymorphisms across more locations in HA and other genes, if
available, might further improve predictions. We also do not have

good estimates of the current global circulating frequencies of
strains. All influenza sequences were downloaded from GISAID;
the likelihood of an infection resulting in a sequence in the data re-
flects geographical differences in testing, sequencing, and deposi-
tion in GISAID. Furthermore, the seasonal flu vaccine is designed
to protect against common influenza viruses (H3N2, H1N1, and B)
that are highly likely to circulate during the upcoming flu season.
Here, we consider the H3N2 subtype and therefore predict only
H3N2 sequences that are likely to spread during the upcoming
flu season.

Recent work by Barrat-Charlaix et al. (50) suggests that despite
signals of strong selection in surface proteins in influenza viruses
(56) and ladder-like phylogenies usually understood to be shaped
by immune selection (57), there is limited evidence that mutation
frequency trajectories are predictable. These trajectories are more
consistent with neutral evolution, in which the fixation probability
is simply the mutation’s frequency. These authors also explore prox-
imity of strains to a future population, and whereas previous work
had indicated that the local branching index could identify fit
strains (18), consensus sequences are just as close (or closer) to
future populations as strains that are fit according to the local
branching index. This is an important result, calling into question
whether neutral evolution is just as good, or better, a model for
H3N2 as a pattern of selective sweeps. In a neutral model, we
should not expect much predictability, and consensus sequences
will be the best predictors of the future population (50). Here, we
trained a machine model to do a task: predict subtree growth
(and moderate growth at that, doubling in size). We then asked
whether the results from that model are informative for the

Fig. 6. Influenza tree reconstructed from sequences up to February 2020, with the subtree including our candidates for vaccine inclusion in 2020–2021 high-
lighted in red. Recent tips are colored yellow/purple on the basis of the prediction of our support vector machine (SVM)model. The highlighted subtree also includes the
World Health Organization (WHO) candidates, as colored in the inset alongside the candidates from our SVM. The suggested vaccines byWHO for 2020–2021 are A/Hong
Kong/45/2019 and A/Hong Kong/2671/2019, and our suggested candidates are listed in this figure.
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broader question of proximity to the future population. These ques-
tions are conceptually related but quite different: A strain could
grow into the future, with subtrees doubling from size 50 to 100
(for example) but remain distant from the majority of (the thou-
sands of) strains in that future. Hence, we would not expect that a
machine learning model tuned to solve the first problem would nec-
essarily perform well at the second, although if it was highly specific
to strains that grew markedly, those strains would be close to the
future population. We found that the machine learning results
were slightly helpful for the broader problem but that consensus se-
quences also do well at being near the broader future population.
This is consistent with the overall evolutionary pattern of H3N2
being well modeled by neutral drift.

The COVID-19 pandemic has caused a notable change in influ-
enza transmission dynamics. Severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, and flu
are immensely different pathogens, but they do have similar behav-
iors in some important areas (58, 59). Because both viruses are
transmitted by the respiratory route, the adoption of nonpharma-
ceutical interventions, such as mandated face masks in public,
school closures, restrictions on movement, enhanced personal
hygiene, and reduced travel, has had a huge impact on influenza in-
fections and transmission (59). It has been argued that these inter-
ventions likely resulted in a more substantial interruption of
influenza transmission than SARS-CoV-2 transmission, in part a
consequence of the lower transmissibility of seasonal influenza
virus [R0 = 1.28, interquartile range: 1.19 to 1.37 (60)] compared
with that of SARS-CoV-2 (R0 = 2 to 3.5) (61). After recognition
of widespread transmission of SARS-CoV-2 by mid-February
2020, influenza activity declined sharply in the Northern Hemi-
sphere. Studies on data from clinical laboratories in the United
States during March to May 2020 showed a 61% decrease in the
number of submitted specimens and a 98% decrease in the percent-
age of positive patient tests for influenza (from a median 19.34 to
0.33% positive tests) (61). Influenza data reported to the WHO from
Australia, South America, and Southern Africa also indicated very
low influenza activity during the 2020 Southern Hemisphere flu
season (June to August 2020) (61). In the 2022–2023 season, influ-
enza levels recovered to levels comparable to previous years (62).
The long-term impact of the pandemic-related disruption to influ-
enza virus transmission during the pandemic is as yet uncertain. Al-
though this may prove problematic for our methodology and
existing approaches for vaccine candidate selection, having a
wider range of tools available, including the tool we have introduced
here that integrates tree-based information from different genes
(and potentially additional information as well), could be increas-
ingly useful.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S5
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