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Genomic epidemiology offers high
resolution estimates of serial intervals
for COVID-19

Jessica E. Stockdale 1 , Kurnia Susvitasari 1, Paul Tupper1,
Benjamin Sobkowiak 1, Nicola Mulberry1, Anders Gonçalves da Silva2,4,
Anne E. Watt 2, Norelle L. Sherry 2, Corinna Minko3, Benjamin P. Howden 2,
Courtney R. Lane2,5 & Caroline Colijn1,5

Serial intervals – the time between symptom onset in infector and infectee –

are a fundamental quantity in infectious disease control. However, their esti-
mation requires knowledge of individuals’ exposures, typically obtained
through resource-intensive contact tracing efforts. We introduce an alternate
framework using virus sequences to inform who infected whom and thereby
estimate serial intervals. We apply our technique to SARS-CoV-2 sequences
from case clusters in the first two COVID-19 waves in Victoria, Australia. We
find that our approach offers high resolution, cluster-specific serial interval
estimates that are comparable with those obtained from contact data, despite
requiring no knowledge of who infected whom and relying on incompletely-
sampled data. Compared to a published serial interval, cluster-specific serial
intervals can vary estimates of the effective reproduction number by a factor
of 2–3. We find that serial interval estimates in settings such as schools and
meat processing/packing plants are shorter than those in healthcare facilities.

Whole-genome sequence (WGS) data is rapidly becoming a funda-
mental tool in public health laboratories (PHL) around the world1–3.
WGS data carry enormous benefits for outbreak investigations:
identifying transmission events that were not detected during epi-
demiological study4 and revealing the impact of border control
measures5, especially where data are shared across jurisdictional
boundaries3. However, the information content of genomic data
alone can be limited, as experienced during the SARS-CoV-2
pandemic6,7. Often, genomic data are combined with epidemiolo-
gical data in an ad hoc fashion by plotting epidemiological data on
the tips of phylogenetic trees (derived from genomic data). This
does not lend itself readily to desired PHL reproducibility and
repeatability standards. On the other hand, when genomic surveil-
lance data are systematically linked to epidemiological and clinical

information, genomic epidemiological investigations can better
inform public health action through a contextual understanding of
population demographics, immunisation, clinical impacts, spatial
transmission patterns, and more8,9.

In this work, we develop a framework for the integration of
genomic data, in the form of whole-genome virus sequences, into
epidemiological investigations, particularly when detailed epidemio-
logical data from contact tracing is unavailable. Pathogen sequence
data collected from infected individuals do not directly reveal who
infected whom, but nonetheless can offer a high-resolution view of
transmission. We focus on cluster-specific estimation of the serial
interval, a key measure describing the spread of an infectious disease,
which is defined as the length of time between the onset of symptoms
in a primary and secondary case. This is informative of both the speed
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of transmission, aswell aswhen in the infectionprocess transmission is
likely to occur.

Serial intervals are typically inferred from small clusters of indi-
viduals with known contact and times of symptom onset10,11, but the
collection of such data can be resource intensive, and privacy and
reporting considerations limit wide reporting and utilisation. As a
result, estimates of the serial interval applied in practice (underpinning
estimation of other epidemiological quantities such as the time-
dependent reproduction number Rt) are often taken from small stu-
dies, not necessarily from the same location or time as the population
in question. Methods that do not require knowledge of who infected
whom have been developed, but these assume that the population is
fully sampled12,13. When contact tracing data is available, common
approaches are to consider the distribution of observed serial intervals
between contact-traced pairs assumed to represent direct
transmission14, or to monitor the population for index cases who are
infected with the pathogen of interest, and then follow up with close
contacts suchasmembers of their household to find secondary cases15.
Such approaches were extended by ref. 10 to allow for unsampled
intermediate cases, using index case-to-case (ICC) intervals, defined as
the lengths of time between symptomonset of all secondary cases and
the index case in a small population such as a household, boarding
school or closedworkplace. By allowing for up to twounsampled cases
between the index case and a secondary case, Vink et al. take potential
under-reporting into account. However, the limitation on the number
of unsampled intermediates and the onus on the identification of the
index case mean that this approach is most suited to small and closed
populations.

We present a framework that uses virus sequences in place of
direct knowledge of infection pairs, for inference of the serial
interval distribution in incompletely-sampled case clusters. Our
approach does not restrict the number of unsampled intermediate
cases, or make assumptions about the infectious period or latent
distribution. It allows for the possibility of presymptomatic trans-
mission but does assume serial intervals are positive. We incorpo-
rate uncertainty in who infected whom by first sampling a set of
feasible transmission networks given the virus sequences and the
known times of symptom onset, but we require no knowledge of
contact between individuals in the clusters. We then use a mixture
model for estimation of the serial interval, which takes into account
that the outbreak may not be fully sampled and so inferred trans-
mission pairs may not represent direct transmission. While there
exist several algorithms for outbreak reconstruction from genomic
data in the context of sufficient genetic variation to construct well-

resolved pairs or phylogenetic trees, for example, the outbreaker,
TransPhylo, SCOTTI and Beastlier platforms16–19, these have been
focused on densely-sampled outbreak settings where inference of
who infected whom is the primary aim. Our approach is targeted at
broader settings with lower levels of sampling and genetic variation,
where there may not be sufficient information in the data to
reconstruct transmission pathways with high confidence. We,
therefore, use a fast and simple model for pair reconstruction, fol-
lowed by a statistical model that averages over the uncertainty in
who infected whom to estimate the serial interval distribution. To
the best of our knowledge, no existing outbreak reconstructive
models have considered the estimation of serial intervals in this
context. We demonstrate that virus sequences offer a practical
approach for inference of cluster-specific estimates, although our
methods are also appropriate in broader settings, even where
detailed contact tracing data are not available and whilst taking
under-reporting into account.

We investigate the use of virus sequences for the estimation of
serial intervals using SARS-CoV-2 whole-genome sequences and
recorded symptom onset times from Victoria, Australia. We identify a
number of genomically- and epidemiologically-defined SARS-CoV-2
clusters from the first and second waves of the COVID-19 pandemic in
Victoria: with samples collected from 6 January–14 April 2020 and 1
June–28 October 2020. We estimate the serial interval in each cluster,
allowing for comparison both within and between waves. We addi-
tionally compare estimates of the serial interval arising from different
types of cluster, including healthcare facilities and workplaces. We
explore the impact that using cluster-specific serial interval estimates
has on downstream estimates of the time-dependent reproduction
number Rt. We compare our sequence-based approach with an
equivalent method that uses the same model but detailed contact-
tracing information in place of virus sequences, and we validate the
method against simulated outbreaks where the proportion of missing
cases can be controlled.

Results
Estimation of the serial interval using pathogen sequences
We introduce a new framework for serial interval estimation, using
pathogen sequences froma transmission cluster of interest to inferwho
infectedwhom, whilst taking uncertainty and incomplete sampling into
account. A schematic diagram of the method is shown in Fig. 1, and
further details are provided in Methods. Whereas existing approaches
use contact data to infer the transmission tree, we use a set of pathogen
sequences along with cases’ symptom onset times to sample a set of

Fig. 1 | Model schematic. Description of the overall methodology pipeline. After
sequencing, cases are clustered either genomically or epidemiologically. The serial
interval is estimated in each cluster, by repeatedly sampling plausible transmission
networks from among a set of plausible transmission pairs, estimating the serial

interval in eachnetwork and combining the estimates. The serial interval estimation
takes into account that each cluster is not fully sampled. A full description of each
stage is provided in Methods.
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plausible transmission networks, accounting for indirect transmission,
and thereby estimate the serial interval. This is intended to be applied at
the level of relatively broad clusters, where we see sustained transmis-
sion but are not necessarily able to sample every case.

After sequencing and clustering our cases, we first create a
‘transmission cloud’ per cluster. That is, a set of all plausible trans-
mission pairs (infectee/infector pairs) in the cluster, who meet pre-
determined criteria for genomic distance and distance between
symptom onset times. From the cloud, we obtain a set of plausible
transmission networks by repeatedly sampling an infector for each
infectee with probability inversely proportional to their genomic and
symptom onset time distance. We take incomplete sampling into
account by fitting a mixture model for the serial interval to each sam-
pled transmissionnetwork; this incorporates thatwhen i is the sampled
infector of j, transmission from i to j may have been direct, indirect
through an unknown number of unsampled intermediate cases, or i
and j may have both been infected by the same unsampled individual
(coprimary infection). We combine the serial interval estimates from
themixturemodel across all sampled networks in the cluster, to obtain
a final cluster-specific estimate of the serial interval distribution.
Overall, we assume that the serial interval follows aGammadistribution
withmean μ and standard deviation σ. We further assume that sampled
infector i and infectee j are separated by some m unsampled indivi-
duals, 0 ≤m <∞, where m follows a geometric distribution with para-
meter π. Then, π can be thought of as a sampling probability within an
identified transmission chain. A proportionw of transmission pairs are
of this type, with the remaining proportion (1 −w) being of coprimary
type: i and j were infected by the same unsampled individual. Para-
meterw is therefore also related to the cluster case ascertainment rate,
in thatwe failed toobserve i and j’smutual infector.Weusemaximuma
posteriori estimation (MAP) toobtain estimates of the parameters (μ,σ,
π, w) from the mixture model, with prior distributions on π and w to
incorporate our knowledge on the rate of population sampling and
thereby constrain the estimation procedure.

All serial interval analysis is performed using R version 4.1.0. The
code is available at github.com/jessicastockdale/genomicSIs20.

Validation against simulated data
Before estimating the serial interval in real data, we validate our
approach using simulated outbreaks with known serial interval dis-
tribution. We simulate an influenza-like outbreak with R0 = 2 and serial
interval ~Γ(μ = 4.5, σ = 2), using the outbreaker package in R21 to gen-
erate symptom onset times and pathogen sequences. We run 10
experiments in which we increasingly down-sample the simulated
outbreak, by retaining a proportion p = 1.0, 0.9, . . ., 0.1 of infected
cases, to explore the impact of incomplete sampling on our estimates.
Full details of the procedure are given in Methods, and further simu-
lation studies in which we explore the ability of our method to dis-
tinguish serial intervals with different mean and under different prior
distributions are included in the Supplemental Materials.

Results of the simulation study are shown in Fig. 2. In all experi-
ments, we find that our method is able to estimate the mean serial
interval well, but with increasing uncertainty as the proportion of cases
decreases. The results are similar for the serial interval standard devia-
tion, with some upward bias for low p. The sampling proportion p in our
experiments is not exactly equivalent to either the true sampling prob-
ability π or proportion non-coprimary w being estimated in the model,
however, they are closely related. This is found in our model estimates,
with increasing π and w estimates under higher p. Again, our estimates
have higher uncertainty as the amount of down-sampling increases.

SARS-CoV-2 whole-genome sequencing and clustering, Victoria,
Australia
We estimate the serial interval in transmission clusters from the first
(6 January–14 April 2020) and second (1 June–28 October 2020) waves

of the COVID-19 pandemic in Victoria. The data comprise genomic
sequence, sequence sampling date and symptom onset date for each
sampled case. See Methods for full details on the sequencing and
clustering procedure. Sequences are clustered genomically in the first
wave and epidemiologically in the second wave: the epidemiological
clustering procedure does not use any detailed demographic or con-
tact data; we group cases associated with exposure sites defined by
public health, including schools, healthcare and workplaces. The
genomic clustering procedure in wave 1 was found to have strong
concordance with an epidemiological clustering approach for this
data6, with a median of 100% of cases in each epidemiologically-linked
group being in a single genomic cluster.

A total 1242 samples from 1075 patients were sequenced during
the wave 1 study period. This corresponds to 80.7% of identified
COVID-19 cases in Victoria during that time period. Of the 903 samples
passing quality control and de-duplication, 312 were identified as
belonging to a genomic cluster with at least 15 cases, for a total of ten
wave 1 clusters. A 15,665 samples from 14,075 patients were sequenced
during the wave 2 study period, corresponding to 83.9% of identified
VictorianCOVID-19 cases.Of the 5745 cases passingquality control and
de-duplication and with association to at least one exposure site, 3875
were identified asbelonging to a clusterwith at least 15 cases. There are
a total of 94 wave 2 clusters, although, for our main analysis, we focus
on ten primary exposure site clusters comprising the largest two
clusters associated with each of aged care facilities, healthcare facil-
ities, housing, schools, andmeatpacking/meat processing plants.Note
that wave 2 casesmay be associatedwithmore than one exposure site,
in which case they will be included in more than one cluster.

Phylogenetic trees, produced from the entire set of sequences in
eachwave using a customworkflow for building fast SARS-CoV-2 trees
available at github.com/MDU-PHL/kovid-trees-nf, are shown in Fig. 3.
Whilst some epidemiological wave 2 clusters align well with clades on
the tree, we note the low variation inmany sequences close to the root
and that many clusters span the entire tree. This is indicative of the
difficulty in genomically clustering these cases, but also highlights the
broad utility of methods which can effectively combine genomic and
epidemiological data sources. The ten primary clusters in each wave
are summarised in Table 1, and symptom onset curves are shown
in Fig. 4.

Serial intervals in Victorian COVID-19 clusters
We apply our methodology to the Victorian SARS-CoV-2 data by esti-
mating the serial interval in each of the ten primary wave 1 and wave 2
clusters shown in Table 1, as well as the remaining 84 wave 2 clusters.
We sample 100 transmission networks per cluster, and perform an
additional analysis in which we pool the sampled networks in each
wave, to obtain aggregated whole-wave serial interval estimates. We
assume a Beta(12, 11) distributed prior for parameters π and w in all
analyses, with a mean of 0.52 and a standard deviation of 0.1. This is
informed by the proportion of identified Victorian COVID-19 cases
during the study period that were sampled and sequenced with suffi-
cient quality (57%), combined with a prior belief of a high case finding
rate, motivated by detailed case follow-up and high source-acquisition
in Victoria at the time22. Note that π represents the within-
transmission-chain sampling probability, rather than the overall sam-
pling probability in the cluster or population at large: it only concerns
cases thatwerenot identifiedor sequencedbutdid infect otherswithin
the cluster. We did not assume any prior knowledge of the serial
interval distribution parameters μ and σ.

Our mean estimates of the serial interval range from 2.64 days
(B47) to 6.74 days (B43) in the primary clusters. The overall mean
across all wave 1 clusters is 4.65 days, and across all wave 2 clusters is
5.17 days, though there is considerable variation between and within
clusters, causing considerable uncertainty when combining across
them. Figure 5 shows the cluster-specific means and 95% confidence
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Fig. 2 | Simulation study results. a Mean estimates (points) and 95% confidence
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thicker black line shows the true serial interval distribution. 1000 transmission
trees were sampled from an outbreak with a final size of n = 807.
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intervals of the model parameters: serial interval mean μ and standard
deviation σ, the sampling probability within identified transmission
chains π, and the proportion of non-coprimary transmission w.
Althoughmost of the cluster confidence intervals overlap, those in the
aforementioned clusters B47 and B43 are completely disjoint. How-
ever, a statistical test for if the 20 primary serial interval means are
feasible from the same population serial interval distribution did not
reveal any significant difference in our cluster-specific estimates (see
Supplemental Materials Section S3). Figure 6 shows the mean gamma-
distributed serial interval estimated in each cluster, allowing for a
comparison of the mean and standard deviation together.

Full results are included in Table S3 in the Supplemental Materials,
presented alongside several published estimates of the COVID-19 serial
interval in Table S2 for comparison. Our estimates are not substantially
changed by varying the number of transmission networks sampled
(Fig. S2), or by preferentially sampling infectors by genomic distance
alone rather than genomic and time distance (Table S4). They are in
general agreement with others from wild-type (non Variant of Concern
[VOC]) SARS-CoV-2, though with wider uncertainty (Fig. S14). However,
the majority of these published estimates did not take uncertainty in
who infected whom, or coprimary/indirect transmission into account.

Estimates of the parameters concerning sampling, π and w, are
controlled relatively strongly by their prior distributions (prior mean
0.52, overall posteriormean0.59 forπ and 0.55 forw, Fig. 5). However,
wedoobserve someclusters pushing against this,most notably cluster
B53, in which the data suggest a lower sampling rate (π =0.47). A
sensitivity analysis to these assumed prior distributions, included in
the Supplemental Materials Section S2, reinforces that π and w are
influenced by changes to their prior, but our serial interval estimates
are robust to moderate changes in these sampling rate priors (on the
order of a 20% chance to the prior mean or 50% to the prior standard
deviation). We further quantify the influence of the priors on π and w
by calculating the Kullback-Leibler (KL) divergence between the pos-
terior andprior (the likelihood information) andbetween theposterior
and likelihood (the prior information)23 for all wave 1 clusters, shown in
Figure S10. We again find that the priors are influential on our esti-
mates of π and w (though this approach is not able to assess the
onward impact to estimating the serial interval), with around 75% of
the π and w posterior influence coming from the prior and 25% from
the likelihood, under our KL statistic. The likelihood is more influential
in clusterswith a larger number of identified cases (A2, A7), suggesting
that with higher genomic surveillance, more data and therefore larger

Fig. 3 | Phylogeny of wave 1 (left) and wave 2 (right) Victorian SARS-CoV-2 data. Trees are built from the entire set of sequences in each wave, with primary clusters
selected for serial interval analysis coloured and labelled. Clusters are defined genomically in wave 1 and epidemiologically in wave 2.
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clusters, our estimates would be less reliant upon a predetermined
prior sampling distribution.

Estimation of effective reproduction number Rt

To contextualise the effects of using cluster-specific serial intervals in
downstream analyses, we compare estimates of the effective repro-
duction number Rt (also known as the time-varying reproduction
number) using our cluster-specific serial intervals and literature-based
serial intervals. Rt can be interpreted as the expected number of sec-
ondary cases causedby an index case at time t, and its calculation relies
on the assumption of an underlying serial interval distribution. We use
the R package EpiEstim24 to estimate Rt on a weekly sliding window in
each cluster, using both the cluster-specific serial interval distribution
estimated in this work and a Γ(μ = 6.3, σ = 4.2) distribution as estimated
for SARS-CoV-2 by ref. 25.

Results of the Rt comparison are shown in Fig. 7; any difference in
Rt in these figures arises solely from the difference in the underlying
serial interval distribution. Although some clusters remain largely
unaffected, for some clusters, the estimate of Rt differs by up to a
factor of 2 or 3. This occurs primarily in early cluster estimates of Rt,
highlighting how even small amounts of uncertainty in the underlying
transmission model should be treated carefully when obtaining initial
estimates. But even towards the middle or end of cluster outbreaks,
the choice of the serial interval can be the difference between an
estimate of Rt < 1 and Rt > 1 (e.g. A10), which has clear implications for
epidemic control.

Serial intervals by the exposure site category
We estimate the serial interval in the full set of 94 wave 2 clusters,
categorised by exposure site type and shown in Fig. 8. Estimates of the
mean serial interval range from 1.97 to 9.54 days, though many of the
largest estimates have considerable uncertainty. We have limited

observations for several exposure site types, but the results suggest
some patterns by exposure type beginning to emerge: with meat
packing/meat processing plants and schools among the shorter serial
intervals and healthcare facilities and housing among the longer. Aged
care facilities have the widest range of mean serial intervals, with one
cluster in particular (B82) having significantly shorter mean serial
interval than the rest (Supplemental Materials Section S3). In the
supplementary analysis, our statistical test reveals that packing and
meat processing plants have statistically significant shorter serial
intervals than the other categories (Supplemental section S3 and
Fig. S8). As in the primary clusters, sampling proportion π and pro-
portion non-coprimary w do not greatly diverge from their prior dis-
tributions. There are several exceptions, such as clusters B53, B71 and
B82, all with π ≤0.5, suggesting a lower rate of case acquisition.

Comparison to contact-defined clusters
The method introduced in this work is not limited to analyses using
genomic data. We compare our genomic approach against an analysis
that applies the same serial interval estimation procedure to contact-
sampled transmission networks from contact-defined clusters. Here,
we define case clusters as the connected components of a network
created from contact tracing data. Rather than sampling transmission
networks using viral sequences, we preferentially sample infector-
infectee pairs with known direct contact as indicated by contact tra-
cing. Full details and results are included in the Supplemental Mate-
rials, Section S5. We obtain 13 contact-defined wave 1 clusters, of a
comparative size to the genomic clusters (Fig. S11).

We find that contact-cluster-specific estimates of the mean serial
interval range from3.02 days to 7.71 days, with an ‘all clusters’ estimate
of 5.04 days (Fig. S12). Although direct comparison is difficult due to
the fact that the genomic and contact-based clusters do not entirely
overlap, the estimated serial intervals are similar whether we use
genomic sequences or contact data to cluster and build the trans-
mission networks. This is especially true in those pairs of clusters
which are most similar under the two clustering methods, sharing at
least 50% of the same cases; presented here in Fig. 9. We see good
agreement among estimates for the serial interval mean and standard
deviation. The cluster with themost significant disagreement (C13/A2)
was associated with several instances of international travel from dif-
ferent continents, leading to local transmission (cluster 70 in ref. 6).
We estimate that the contact-defined clusters have a higher sampling
proportion and lower proportion coprimary than their corresponding
sequence-defined cluster. This is logical, given that we used larger
prior means for π and w, as not all contact-traced cases were suc-
cessfully genomically sequenced.

Discussion
Estimates of the serial interval are key to understanding disease
spread, and underlie estimation of other quantities, such as the time-
dependent reproduction number. Current methods for serial inter-
val estimation are best suited to small, contained populations with
high sampling, and require detailed contact studies, which can be
resource intensive. However, there is a growing demand for wide-
scale epidemiological analyses across populations, and as such,
these are often undertaken using estimates of the serial interval
from small, early outbreaks in a different location or time than the
population under study. Serial intervals are known to contract dur-
ing disease outbreaks26, as well as be impacted by whether symptom
onset is caused by effects of the virus or host immune response27,
but they may also be changed under different pathogen strains,
population mixing or control strategies. In this work, we sought to
explore cluster-specific estimates of the serial interval within two
waves of the COVID-19 pandemic in Victoria, Australia, through the
introduction of a new approach using viral sequences in place of
detailed contact data.

Table 1 | Epidemiological details of the primary Victorian
SARS-CoV-2 clusters

Wave 1 Cases Onset date range

Cluster A1 29 2020/02/18 - 2020/04/01

Cluster A2 61 2020/02/28 - 2020/04/02

Cluster A3 21 2020/02/28 - 2020/04/05

Cluster A4 28 2020/02/29 - 2020/03/29

Cluster A5 19 2020/03/08 - 2020/03/31

Cluster A6 24 2020/03/10 - 2020/04/09

Cluster A7 59 2020/03/10 - 2020/04/06

Cluster A8 29 2020/03/10 - 2020/03/28

Cluster A9 30 2020/03/10 - 2020/04/06

Cluster A10 18 2020/03/15 - 2020/04/05

Total 318 2020/02/18 - 2020/04/09

Wave 2 Cases Onset date range

Cluster B6 20 2020/06/14 - 2020/07/26

Cluster B7 59 2020/06/14 - 2020/07/28

Cluster B13 115 2020/06/18 - 2020/08/27

Cluster B17 142 2020/06/27 - 2020/08/19

Cluster B24 59 2020/07/04 - 2020/08/20

Cluster B33 117 2020/07/07 - 2020/08/19

Cluster B43 111 2020/07/12 - 2020/08/02

Cluster B47 157 2020/07/13 - 2020/09/26

Cluster B53 19 2020/07/15 - 2020/07/28

Cluster B54 44 2020/07/15 - 2020/08/29

Total 818* 2020/06/14 - 2020/09/26

*Note: wave 2 cases may appear in multiple clusters.
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Our estimates of the COVID-19 serial interval are similar to those
found from detailed contact studies, despite requiring no knowledge
of contact between cases and working with incompletely-sampled
data. Our results have wider uncertainty than many published esti-
mates, but the majority of these estimates focused on small popula-
tions with known contact pairs and did not take potential under-
reporting into account. Although therewas variation in our 20 primary
cluster-specific estimates, this was not found to be statistically sig-
nificant overall, under a null hypothesis that all cluster-specific mean
serial intervals were identical. We found indication, however, that
clusters occurring in sites associatedwith longer-term contact, such as
healthcare and aged care, tended to have longer serial intervals than
sites attended for shorter lengths of time, such as meat packing or
meat processing plants, though more data would be required to con-
firm this. Although the parameters concerning sampling rate were
relatively strongly controlled by a prior distribution, some clusters
suggested higher/lower amounts of sampling: such findings could be
used to monitor developing outbreaks, especially if the approach was
integrated into routine genomic surveillance in real-time. We found
that using cluster-specific serial intervals in the estimation of the time-
dependent reproduction number as compared to a literature-based
estimate changed Rt by up to a factor of 2–3, particularly early in
outbreaks. This highlights how variable estimates of the reproduction
number can be, particularly when calculated from small outbreaks in
specific settings, and suggests caution should be taken when applying
existing parameter estimates to analyses of new outbreaks. Although
conceptually and methodologically quite different, this approach
shares goals with the work of ref. 28 who estimate Rt from viral
sequence data using a birth-death skyline model, via estimating time-
varying transmission, recovery and sampling rates in BEAST229. Unlike
our approach, their focus is on the reconstruction of the phylogeny
without consideration of symptom onset times or the serial interval.
Nonetheless, an interesting extension could be to compare estimates

of Rt from both methods. Overall, our findings highlight a need for
repeated estimation of parameters concerning infection and trans-
mission, both to obtain a consensus and to track whether values are
changing in time.

There are several limitations of our methodology. Due to the
assumption of gamma-distributed serial intervals (required for the
construction of the mixture model), we assume serial intervals are
strictly positive. Although this does not preclude presymptomatic
transmission, as has been widely noted for COVID-1911 and can still
result in positive serial intervals, there is evidence of negative serial
intervals for COVID-1914 and for other diseases. An extension of our
model could allow for this. In our supplementary simulation study, we
further found this assumption limits themethod’s ability to infer serial
intervals with mean 1 day. However, this is infeasibly short for many
diseases, including COVID-19, see, e.g. the published estimates in
Table S2. We perform transmission tree sampling from a cloud of
plausible infector-infectee pairs, allowing for indirect and coprimary
transmission, in order to take into account uncertainty in who infected
whom from the genomic data. Although we do this in a probabilistic
way, that aims to approximate the judgement applied in public health
(cases closer in pathogen sequence and in time aremore likely to infect
one another), the tree sampling could be improved by incorporating
additional epidemiological data, e.g. known pairs from contact tracing
or relative Ct values, if this were available. It may be possible to do this
by incorporating existing methodologies for the sampling of trans-
mission trees, such as the outbreaker or TransPhylo platforms16,17, but
these are not well positioned to estimate serial intervals as the
underlying transmissionmodels do not consider the time of symptom
onset. Lastly, the coprimary transmission model could be extended to
include further unsampled intermediate cases, matching the non-
coprimarymodel. This was not a priority in this work, as the high level
of sampling makes such scenarios increasingly unlikely, but could be
impactful in settings with a larger proportion of unsampled cases. If
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such settings did occur in the data studied here, in reality, the impact
would be that our serial intervals are overestimated.

Our approach requires prior knowledge of the population
sampling rate. This ties in to an innate identifiability problem with
the estimation of serial intervals using anymodel, in that short serial
intervals with low sampling may be indistinguishable from long
serial intervals with high sampling. However, the sensitivity analysis
of our prior assumptions revealed that our serial interval results are
robust to moderate deviations from the sampling rate priors
(approximately, mean ± 20%, standard deviation ± 50%). None-
theless, the sampling-related prior distributions for π and w should
be chosen carefully, using knowledge of surveillance and sequen-
cing in the population of interest. Due to the potentially complex
relationship between the proportion of cases sequenced and the
parameters π andw (also affected, e.g. by population structure), our
simulation study exploring prior choice in section S2 suggested that
diffuse priors may be preferable. Another broad challenge in esti-
mating serial intervals is how to incorporate asymptomatic cases, as
these individuals naturally will not have a time of symptom onset. In
this analysis, we removed all cases with no symptom onset time, and
so our serial intervals can be thought of as representing transmis-
sion to symptomatic cases, with potentially-asymptomatic unsam-
pled intermediates. Although asymptomatic cases have been
identified as transmitters of SARS-CoV-230 albeit at a reduced rate,
many studies have not differentiated between true asymptomatic
cases and cases who were asymptomatic at the time of transmission

but later developed symptoms (presymptomatic, these individuals
would be included in our analysis).

A major benefit of the methodology we have presented here is
that genomic data can offer a high-resolution view of transmission at a
large scale, where collection of contact-tracing data may be expensive
or infeasible. During the COVID-19 pandemic, many public health labs
undertook routine sample collection and sequencing from a high
proportion of identified COVID-19 cases. Whereas, contact tracing
teams can be overwhelmed by high caseloads, and contact data col-
lection/sharing is challenging. Our approach could be used beyond
serial interval estimation, for example, to compare differences in
transmission of COVID-19 VOC, between settings, or between times
under particular non-pharmaceutical interventions (NPI). If used in
real-time, it could suggest clusters to focus resources upon, for
example, those which suggest a lower sampling rate, more rapid
transmission, or substantially different or uncertain serial intervals.
Our method is not restricted to use on small clusters: one could esti-
mate the population level serial interval, although this would be more
computationally demanding. Although reconstruction of the true
transmission chain is not our primary aim, rather we consider the
space of plausible chains, there is also an opportunity to further
explore the genomically-defined sampled transmission networks: for
example, to consider patterns of transmission by age, vaccine status or
other factors, andwhether these change over time. As indicated by the
secondary contact-based analysis, the estimation model presented
here, which is novel in and of itself, is not limited to situations in which
genomic data are used to identify potential pairs. If contact data is
available, it can be used to build or inform the collection of feasible
transmission networks, and thereby estimate the serial interval dis-
tribution.Our estimationmodel extends theworkof ref. 10 by allowing
for any number of unsampled intermediate cases and removing the
focus on the cluster index case. In this work, we explored how either
genomic or contact data alone can teach us about transmission, but in
practice, a combination of data sources may result in the best
estimates.

More widely, this research enhances the contributions that virus
sequences can make to understanding transmission dynamics. To
date, phylodynamics has typically operated at the large scale of global
phylogeography31,32 and estimation of the past population dynamics of
pathogens at the whole-population scale33,34. Genomic epidemiology
has, in contrast, had a high level of focus on establishing who infected
whom or otherwise analyzing person-to-person transmission16,17. Our
work establishes an intermediate regime for genomic epidemiology:
transmission analysis at the level of small to intermediate groups, in
settings where there is insufficient information to identify individual
transmission events with high confidence. Ourmethod behaves well in
settings with low transmission divergence (low number of mutations
separating transmission pairs)35, as demonstrated in this work. We
would expect stronger performance as the amount of sequence var-
iation increases relative to the length of the serial interval, due to
increased resolution in the transmission tree sampling, but conversely,
our approach is also applicable in settings with longer serial intervals
so long as there is sufficient variation in the sequences. Overall, in
order to fully harness genomic information, linkage to epidemiological
data is helpful – here, times of symptom onset make the link to serial
intervals, and exposure sites help to refine clusters. Particularly when
this linkage is done at early stages rather than in a post hoc manner,
analysis can be automated, relies less on human interpretation, and
therefore can be incorporated into routine public health monitoring,
in real-time if desired.

Methods
Simulation study
In the simulation study, with results presented in Fig. 2, we simulate an
influenza-like outbreak using the outbreaker package in R21, that
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simulates transmission treeswith associated symptomonset times and
pathogen genomic sequences. To explore the impact of incomplete
case sampling, we run experiments in which we mask an increasing
proportion of infected hosts from the serial interval estimation pro-
cedure. That is, we run ourmethod with 100%, 90%, ..., 10% of infected
cases only, chosen at random. The outbreaker simulator assumes a
simple SIR outbreak in which symptom onset and onset of infec-
tiousness occur together, and hence the serial interval is exactly equal
to the generation time. We simulate the outbreak with a susceptible
population size of 1000, R0 = 2, mutation rate (per site per day) 10−4

and case importation rate 0.01 per day. The true serial interval dis-
tribution used for simulation is Γ(μ = 4.5, σ = 2). This results in an out-
break of final size 807.

In the simulation study, we provide our method with the
symptom onset time and pathogen genomic sequence from each
sampled case, but hide the true transmission tree. For each experi-
ment, in which a proportion p = 1.0, 0.9, . . ., 0.1 of infected cases are
included, we first construct a transmission cloud of feasible trans-
mission pairs, by taking all pairs with genomic distance <0.0001 (see
‘Sampling transmission networks’ below). This distance is chosen to
be approximately as stringent as our Victorian COVID-19 analysis,
given the simulated mutation rate. We sample a larger number of
transmission networks (1000) than in the Victorian analysis (100), to
reflect the larger population size, that may lead to a larger space of
plausible networks. From the sampled networks, we obtain MAP
estimates of the model parameters (μ, σ, π, w), using the same

approach as for the Victorian COVID-19 outbreaks, described in full
below. We use beta distributed prior distributions on π and w that
represent moderate knowledge of the sampling rate, as this is the
situation in which our method is intended to be most suitable. That
is, the prior mean is set between 90–110% of included proportion p
(varied across experiments), with the prior standard deviation set to
0.1. We note that p is not exactly equivalent to either π or w, the
relationship will depend on the structure of the sampled network.
We do not use priors for μ or σ.

Victorian SARS-CoV-2 whole-genome sequencing and clustering
The remainder of the Methods describes the analysis of the Victorian
SARS-CoV-2 clusters. All samples were routinely sequenced as part of
public health operations. We provide a brief description of the
sequencing and genomic clustering procedure below, for full details,
see ref. 6. Whole RNA was extracted from samples obtained from
nasopharyngeal swabs, and positive samples for SARS-CoV-2 were
identified by RT-qPCR. Positive samples underwent tiled amplicon
sequencing using ARTIC primers (v1 and v3)36,37. Amplicons were pre-
pared for sequencing on an Illumina sequencer using the NexteraXT
library prep protocol following the manufacturer’s instructions.
Sequencing reads were mapped to the Wuhan-Hu-1 reference
sequence (Genbank MN908947.3 [https://www.ncbi.nlm.nih.gov/
nuccore/MN908947]) and consensus sequences generated using the
iVar pipeline38. Consensus sequences were kept for downstream ana-
lyses if they met the following criteria: ≥95% genome recovered, ≤25
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SNPs from the reference genome, and ≤300 ambiguous bases. The
data comprise genomic sequence, sequence sampling date and
symptom onset date for each sampled case, in addition to some epi-
demiological information for wave 2 as described below.

Wave 1 clustering. A total 1242 samples from 1075 patients were
sequenced during the wave 1 study period: 6 January–14 April 2020.
The wave 1 genomic clustering procedure is as described in ref. 6. Of
903/1242 samples passing initial quality control and de-duplication,
737 were identified as belonging to a genomic cluster, for a total of 76
clusters with at least two cases. The clustering of the samples was
based on a maximum-likelihood phylogenetic tree containing a
single sequence per patient built using IQtree39 applying a
GTR+Γ4 substitution model. Using the ClusterPicker tool40, clusters
were defined as having at least two samples with the inferred ancestral
node having at least 95%bootstrap support and themaximumdistance
within the cluster of 0.0004 expected substitutions/site. The 76 clus-
ters had strong concordance to epidemiologically-defined clusters (a
median of 100% of cases in each epidemiologically-linked group were
in a single genomic cluster, but genomic clusters were wider: with a
median of 43% of cluster cases in a single epidemiological group)6. We
focus onall genomic clusterswith at least 15 cases for the serial interval
analysis. After removing sequences with <95% genome recovered or
with missing symptom onset time (three cases), the wave 1 data
comprise a total of ten wave 1 clusters containing a total of 312 cases.

Wave 2 clustering. Even when pathogen samples are routinely col-
lected, genomic clustering can have computational challenges and

lead to large, uncertain clusters, particularly when the transmission is
widespread in a community and many cases are sampled. In this con-
text, the concept of what constitutes a cluster is less clearly defined,
and tree- or sequence-based clustering can lead to infeasibly large
clusters. This is especially true for SARS-CoV-2, for which sampled
genetic diversity hasbeen described as remarkably low41, evenmore so
during periods of lockdown and limited international travel42, leading
to challenges in phylogeny building and sub-classification43. Public
health experts may also be interested in transmission not simply
among genetically linked isolates, but within particular locations or
groups of people, for example, schools and hospitals. Driven by these
factors, for the wave 2 analysis, we derive clusters epidemiologically
rather than genomically: choosing all cases associated with particular
exposure sites defined by public health.

A total 15,665 samples from 14,075 patients were sequenced
during the wave 2 study period: 1 June–28 October 2020. Epidemio-
logical data, including detailed demographic, risk factor and contact
tracing data, were collected for each case through an interview con-
ducted by the Victorian Department of Health, and these data were
used to determine locations of possible transmission, known as
exposure sites. In our primary analyses, we use only the exposure site
information (which cases attended which sites) to define the wave 2
clusters,wedonot useanydemographic or contactdata.Weperforma
secondary analysis in which we re-estimate the serial intervals without
the viral sequences but given full knowledge of the contact data.

Of the 10,642/15,665 samples passing quality control and de-
duplication, 7116 were identified as associated with at least one
exposure site. Of these samples, we remove 1371 cases with missing
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Fig. 9 | Comparison betweenmodel parameter estimates from contact-defined
(C#) and sequence-defined (A#) wave 1 clusters, with size as defined in Fig. S11
and Table 1, respectively, and 100 sampled transmission networks. Mean esti-
mates of (μ, σ,π,w) shown aspoints, and95%confidence intervals asbars. Eachpair

of clusters share at least 50% of the same cases: clusters C4 and A10 share ~70% of
cases, C6 and A1 share ~67% of cases, C13 and A2 share ~71% of cases, and C27 and
A7 share ~51%of cases. The level of sampling (π,w) is not expected tobe the same in
paired genomic and contact clusters.
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symptom onset time. This provides a total of 623 clusters with at least
two cases. Recall that cases may be associated with more than one
exposure site, and somay be included inmore than one cluster. In our
primary analysis, we focus on ten exposure site clusters—we select the
largest two clusters associated with each of the aged care facilities,
healthcare facilities, housing, schools and meat packing/meat pro-
cessing plants. We perform additional analysis on all wave 2 clusters
with at least 15 cases. We remove a further 2 clusters which contain
more than 15 cases but have a limited signal of transmission (five or
fewer plausible infector-infectee pairs). This results in a total of 94
wave 2 clusters comprised of a total of 3875 cases.

Phylogenetic reconstruction. Phylogenies are produced from the
entire set of sequences in each wave, using a custom workflow for
building fast SARS-CoV-2 trees available at github.com/MDU-PHL/
kovid-trees-nf. Briefly, sequences are cleaned to remove sites with >5%
missing calls and de-duplicated with GOALIGN44. An approximate
maximum-likelihood tree is built using FastTree45 and the branch
lengths are optimised with RAxML-NG46. Finally, GOTREE44 is used to
repopulate the tree with duplicate sequences.

Sampling transmission networks
In order to estimate cluster-specific serial intervals from viral
sequences and symptom onset times in a cluster (i.e. in the absence of
contact tracing data), we require an approach for obtaining putative
transmission pairs. Given that there will usually be considerable
uncertainty in who infected whom, we sample a set of plausible
transmission networks, accounting for indirect transmission and per-
form parameter estimation across the entire set.

We build a pairwise genetic distance matrix between all aligned
sequences in a cluster using the ape package in R and the TN93model
of evolution (this was found to generate very similar distances to the
GTR+Γ4model used to generate the wave 1 clusters, see Supplemental
Materials Fig. S1). We then create a ‘transmission cloud’, that is, a set of
all plausible transmission pairs in the cluster. We define a plausible
(possibly indirect) transmission pair as two cases in the same clus-
ter who:
1. have observed interval between symptom onsets 0 <T ≤ 35 days
2. have pairwise genomic distance G < 1.1/29903 (where 29,903 is

the alignment length).

We apply a much more stringent genomic distance criterion
(corresponding to ~2 generations of infection) than the onset distance
criterion (corresponding to ~7 generations), to allow the genomic data
to be relatively more informative than the time-based data, and to
minimise input bias towards short serial intervals. Note that our
approachmay result in a casehavingmultiple plausible infectors, or no
plausible infectors: in the second scenario, the case would be con-
sidered as an importation to the cluster from an unsampled case.

From the transmission cloud, we sample a plausible transmission
network by sampling an infector for each infectee from among their
list of plausible infectors. For infectee j, a plausible infector i is selected
with higher probability if the genomicdistance and/or thedifference in
symptom onset time between i and j is lower. The sample weighting
s(i, j) is given by

sði,jÞ= ∣Gi,j � Gmax∣
Gmax

+
∣Ti,j � Tmax∣

Tmax
, ð1Þ

where Gi,j is the genomic distance between i and j, and Ti,j is the dif-
ference in symptom onset time between i and j. Gmax and Tmax are the
maximum genomic and time distance, respectively, among all plau-
sible pairs in the cluster; their inclusion causes distances Gi,j and Ti,j
close to zero to result in higher sampling probability si,j. The weighting
is normalised to sum to 1 for each infectee j. We repeat this process

N = 100 times to obtain a set of 100 plausible transmission networks
per cluster.

As we do not assume that all cases have a sampled ancestor within
their cluster, a sampled transmission network is not required to be
comprised of a single transmission tree; there can be several distinct
sub-trees, each spawned by an unsampled case. The result is that we
only perform serial interval estimation on those inferred transmission
pairs with sufficient confidence.

Serial interval estimation
After sampling a set of plausible transmission networks per cluster, we
proceed to estimate the serial interval in each network, and finally
combine these for a single cluster estimate. Our approach seeks to
estimate the parameters of the true underlying serial interval dis-
tribution, that is, the serial interval arising from direct transmission
between a pair of individuals. However, we account for the fact that
observed serial intervals in data with incomplete sampling may com-
prise a mixture of direct transmission (i→ j), indirect transmission
(i→ x→ j, for any number of unsampled x) and coprimary transmission
(x→ i, x→ j, for unsampled x).

In this description, we assume that a plausible transmission net-
work has already been sampled from the data as above, and so trans-
mission between a sampled infector-infectee pair (i, j) is considered
certain (even if that transmissionmay be direct, indirect or coprimary).
We apply themethodology described in this section independently for
each sampled network, in order to incorporate uncertainty in the
network.

Let T 0 be the true serial interval distribution of the disease under
consideration, so that T 0

ij is the serial interval arising from direct
transmission between any case i and case j.We assume thatT 0

ij ∼ Γðμ,σÞ,
for mean μ and standard deviation σ. Note that we assume, therefore,
that the serial interval is strictly non-negative. This is the quantity we
are interested to make inference about, by estimation of μ and σ.

Now, let Tij denote the observed time interval between the
symptom onsets of a particular case i and case j. If there is direct
transmission from i to j then Tij =T

0
ij . However, if we allow for under-

reporting in the data, i.e. theremayhavebeenunsampled intermediate
cases between i and j, then Tij is the convolution of multiple serial
intervals. It is also possible that both i and j were infected by the same
unsampled host, which we call coprimary transmission. Although we
allow for a theoretically infinite number of unsampled intermediate
cases between cases i and j, in the coprimary case, we assume that a
single unsampled host must have infected both i and j.

More formally, we assume that the serial interval distribution is a
mixture of two transmission paths: coprimary and non-coprimary
(direct or with unsampled intermediates).

Non-coprimary transmission. Sampled infector i and infectee j
are separated by m unsampled intermediate hosts, 0 ≤m <∞
(m =0 corresponds to direct transmission). Then, the observed inter-
val Tij is the sum of m + 1 i.i.d. gamma-distributed intervals,
Tij ∼ Γððm+ 1Þμ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm+ 1Þ

p
σÞ. The value of m is unknown but can be

considered to follow a Geometric distributionwith success probability
π, where success corresponds to sampling an infected individual andm
is the number of failures. The parameter π then represents a pseudo-
sampling probability, for hosts descending from a sampled infector
only. Taking this into account, the marginal distribution of Tijwill be a
Compound Geometric Gamma distribution, CGG(μ, σ, π). We assume
that a proportion w of observed serials are of this type.

Coprimary transmission. In the coprimary case, sampled infector i
and infectee j were in actuality both infected by the same unsampled
case x. Since the serial intervals T 0

xi and T 0
xj are i.i.d. Γ(μ, σ), the

observed interval Tij is the strictly non-negative difference of two i.i.d.
gamma distributions, Tij ∼ ∣T 0

xj � T 0
xi∣. We refer to this as a Folded
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Gamma Difference distribution FGD(μ, σ). This is a folded version of
the Gamma Difference distribution introduced in refs. 47,48, with the
simplification that both gamma distributions have the same para-
meters. The remaining proportion of 1 −w of observed serials are of
coprimary type.

Likelihood
We wish to write down the likelihood of the model described above,
given a dataset Dc,τ = fTi1 ,j1

,Ti2,j2
, . . . ,Tin ,jn

g
c,τ

which contains the
observed time intervals for all n sampled infector-infectee pairs in
network τ for cluster c. Note that any given host can be an infector of
multiple cases and an infectee as well, so some i and jmay refer to the
same individuals.

The log-likelihood of the model parameters given dataset Dc,τ is
given by:

lc,τ ðμ,σ,π,w∣Dc,τ Þ=
Xn

k = 1

log w× f CGGðTik ,jk
∣μ,σ,πÞ

�

+ ð1�wÞ× f FGDðTik ,jk
∣μ,σÞ

�
,

ð2Þ

where fCGG and fFGD are PDFs of the CompoundGeometricGamma and
Folded Gamma Difference distributions, respectively.

Maximum a posteriori (MAP) estimation
Rather than maximising the likelihood expression directly to obtain
estimates of the model parameters, we take a Bayesian approach to
incorporate prior information on parameters π and w, and hence find
maximum a posteriori (MAP) estimates. Given that there may be
considerable uncertainty on the true transmission network as obtained
from viral sequences and symptom onset times alone, but we often
have good prior knowledge of the level of sampling in the population,
the use of priors can help to avoid issues of identifiability in themodel.
We can imagine that, without the restriction of such priors, extremely
short serial intervals with very low levels of sampling would provide a
good fit to any data, even if we think this is impossible in practice.

We assume a beta distributed prior for both π andw, desirable as
it is restricted to the range [0, 1]. The log prior distributions forπ andw
are given by:

qðπÞ∼ logðBeta ðαπ ,βπÞÞ ð3Þ

qðwÞ∼ logðBeta ðαw,βwÞÞ: ð4Þ

Given these prior distributions and the log-likelihood expression
introduced in Equation (2), the log posterior distribution is given by:

pc,τ ðμ,σ,π,w∣Dc,τ Þ= lc,τðμ,σ,π,w∣DcÞ+qðπÞ+qðwÞ: ð5Þ

MAP estimates ðμ̂,σ̂,π̂,ŵÞc,τ , conditional on a sampled transmis-
sion network τ for cluster c, are then found by maximising the log
posterior density in Equation (5). In practice, we numerically optimise
the log posterior density using the optim function in R.

What remains is to incorporate uncertainty in the transmission
network τ. Rather than sampling a single transmission network τ from
the transmission cloud of potential infector-infectee pairs for cluster c,
we sample a set of networks τ1, τ2, …, τN. MAPs ðμ̂,σ̂,π̂,ŵÞc,τi are
obtained for each network τi independently. When fewer than N MAP
estimates are returned from the optimisation, as can occur when
networks are randomly sampled which are not concordant with the
assumed priors and so cause the numerical optimisation to fail, we
sample additional networks until N MAPs are obtained.

The overall MAP for each parameter in cluster c is then calculated
as the mean across all sampled transmission networks, for example:

μ̂c =
1
N

XN

k = 1

μ̂c,τk
, ð6Þ

and similarly for σ̂c,π̂c and ŵc.

Confidence Intervals
We obtain estimates of the standard error ( ŝe ) of MAPs ðμ̂,σ̂,π̂,ŵÞc,τ ,
for a sampled network τ, using the inverse negative Hessian evaluated
at the MAPs, as obtained from the numerical optimisation procedure.
At confidence levelα, this provides anapproximate confidence interval
for μ̂c,τk

of

μ̂c,τk
± zα=2 ŝe ðμ̂c,τk

Þ, ð7Þ

and similarly for σ̂c,τk
,π̂c,τk

and ŵc,τk
.

In order to obtain confidence intervals for the overall cluster
estimates μ̂c,σ̂c,π̂c,ŵc i.e. over the space of all sampled transmission
networks, we must take into account variation both within and
between estimates. The variance of the estimator μ̂c (and equivalently
σ̂c,π̂c, and ŵc) is derived with the law of total variance:

V̂ar ðμ̂cÞ=Eτ ŝe ðμ̂c,τk
Þ2

� �
+Varτ μ̂c,τk

� �
: ð8Þ

So, thefirst term incorporates the average uncertainty in eachestimate
of the MAP (for each sampled transmission network), and the second
incorporates the estimate’s variability between sampled transmission
networks.

This induces a confidence interval for the cluster-level estimates
of

μ̂c ± zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar ðμ̂cÞ

q
: ð9Þ

Inclusion and ethics
Datawere collected in accordancewith the Victorian Public Health and
Wellbeing Act 2008. Ethical approval was received from the University
of Melbourne Human Research Ethics Committee (study number
1954615.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data, comprised of GISAID accession numbers, originating/sub-
mitting laboratories, symptom onset dates and cluster identifiers for
all samples used in this study, are available at github.com/
jessicastockdale/genomicSIs20. Acknowledgments to the submitting
laboratories for the GISAID sequences are available in Supplementary
Data 1.Wuhanreference genome,GenbankMN908947.3 [https://www.
ncbi.nlm.nih.gov/nuccore/MN908947], was used in sequence map-
ping. Contact-tracing data used in the supplementary analysis is col-
lected by the Victorian Department of Health and Human Services
under legislation and is not publicly available to protect participant
privacy. Further release of data is subject to approval by the data
custodian, and completion of a data use agreement which may have
restrictions on publication and dissemination of data. For further
information and to request data used in this analysis, please contact
mdu-general@unimelb.edu.au.

Code availability
The code is available at github.com/jessicastockdale/genomicSIs20.
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