
McCarthy et al. Journal of Mathematics in Industry           (2020) 10:28 
https://doi.org/10.1186/s13362-020-00096-y

R E S E A R C H Open Access

Quantifying the shift in social contact
patterns in response to non-pharmaceutical
interventions
Zachary McCarthy1,2, Yanyu Xiao3, Francesca Scarabel1,2,4, Biao Tang1,2, Nicola Luigi Bragazzi1,2,
Kyeongah Nah1,2, Jane M. Heffernan5, Ali Asgary6, V. Kumar Murty7,8, Nicholas H. Ogden9 and
Jianhong Wu1,2*

*Correspondence: wujh@yorku.ca
1Fields-CQAM Laboratory of
Mathematics for Public Health
(MfPH), York University, Toronto,
Ontario, Canada
2Laboratory for Industrial and
Applied Mathematics, York
University, Toronto, Ontario, Canada
Full list of author information is
available at the end of the article

Abstract
Social contact mixing plays a critical role in influencing the transmission routes of
infectious diseases. Moreover, quantifying social contact mixing patterns and their
variations in a rapidly evolving pandemic intervened by changing public health
measures is key for retroactive evaluation and proactive assessment of the
effectiveness of different age- and setting-specific interventions. Contact mixing
patterns have been used to inform COVID-19 pandemic public health
decision-making; but a rigorously justified methodology to identify setting-specific
contact mixing patterns and their variations in a rapidly developing pandemic, which
can be informed by readily available data, is in great demand and has not yet been
established. Here we fill in this critical gap by developing and utilizing a novel
methodology, integrating social contact patterns derived from empirical data with a
disease transmission model, that enables the usage of age-stratified incidence data to
infer age-specific susceptibility, daily contact mixing patterns in workplace,
household, school and community settings; and transmission acquired in these
settings under different physical distancing measures. We demonstrated the utility of
this methodology by performing an analysis of the COVID-19 epidemic in Ontario,
Canada. We quantified the age- and setting (household, workplace, community, and
school)-specific mixing patterns and their evolution during the escalation of public
health interventions in Ontario, Canada. We estimated a reduction in the average
individual contact rate from 12.27 to 6.58 contacts per day, with an increase in
household contacts, following the implementation of control measures. We also
estimated increasing trends by age in both the susceptibility to infection by
SARS-CoV-2 and the proportion of symptomatic individuals diagnosed. Inferring the
age- and setting-specific social contact mixing and key age-stratified epidemiological
parameters, in the presence of evolving control measures, is critical to inform
decision- and policy-making for the current COVID-19 pandemic.
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1 Introduction
In response to the current COVID-19 pandemic, interventions aimed at controlling lo-
cal transmission such as school and non-essential business closures, physical distancing,
contact tracing, enhanced surveillance and diagnostic testing have been adopted through-
out many nations of the world [1]. The efficacy of these measures and their influence on
the trajectory of local epidemics has been quantified in a series of mechanistic modelling
studies [2–5], as well as in systematic reviews and meta-analyses [6–8]. Additionally, key
factors associated with demographic heterogeneities such as age-dependent social con-
tact mixing and susceptibility to infection and their implications on transmission patterns
of COVID-19 have been explored in prior works [9–11]. While there has been increas-
ing utilization of age- and setting-specific contact mixing patterns to inform COVID-19
pandemic public health decision-making, rigorously quantifying their variations during
a pandemic intervened by changing public health measures presents a significant chal-
lenge in the absence of time and resources to conduct a high-quality contact survey (e.g.,
as in prior work [11–13]). Moreover, a methodology for identifying such age- and set-
ting (workplace, household, school and community)-specific contact mixing patterns us-
ing readily available data is in great demand and has yet to be established. Such contact
mixing patterns are key for the retroactive evaluation and proactive assessment of the ef-
fectiveness of different age- and setting-specific interventions. Further, a comprehensive
modelling approach that integrates key heterogeneities by age/setting and a generalized
intervention package accounting for evolving non-pharmaceutical interventions, diagnos-
tic testing, contact tracing, and case isolation may be utilized for a broad spectrum of risk
assessment, preparedness planning, reopening measures, scenario analysis and interven-
tion evaluation.

Understanding age- and setting (workplace, household, school and community)-specific
transmission is fundamental for retrospectively assessing the effects of non-pharmaceu-
tical interventions on transmission, and essential for planning (smart) relaxation of mea-
sures while protecting the most vulnerable populations. The interruption of contact routes
(through interventions such as physical distancing, the closing of schools, workplaces and
community gathering places) naturally shifts contact patterns among different settings.
We may thus expect to observe an increase in transmission in some settings. Understand-
ing these changes is critical to avoid unwanted increases in transmission amongst vul-
nerable portions of the population. Since many of the non-pharmaceutical intervention
measures taken to counteract the spread of COVID-19 are unprecedented and highly dis-
ruptive to personal life, their effects are not completely understood and largely depend on
the adherence of individuals and their behavior. Hence, retrospectively assessing the con-
sequences of interventions provides important tools to evaluate the effectiveness of such
measures, and to prospectively inform the expected outcomes of relaxations [11, 14] and
possible reintroduction of intervention measures in the event of resurgence.

In addition to contact mixing patterns, recent attention has been given to age-specific
epidemiological and clinical parameters for COVID-19 [9, 10, 15], as they allow one to
assess which portions of the population may be key drivers of the epidemic or which por-
tion may be most vulnerable to infection. For instance, children and adolescents are likely
key contributors to the spread of respiratory infections, as they tend to mix assortatively
and have relatively high contact rates [16]. Consequently, school closure is one of the first
non-pharmaceutical interventions considered to mitigate the spread of an emerging res-
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piratory infection. However, if children and adolescents were demonstrated to have low
transmissibility and/or susceptibility, their contribution to infection could be minor de-
spite higher contact rates and highly assortative mixing patterns. In this light, understand-
ing the age-specific contribution to infection in terms of transmissibility and susceptibil-
ity is key for planning interventions [9] and designing effective vaccination strategies and
other pharmaceutical interventions.

Here we propose a general methodology to investigate the age- and setting-specific con-
tribution to the transmission of an infectious disease and illustrate the approach by taking
the COVID-19 epidemic in Ontario, Canada as a case. We develop and utilize a suitable
transformation accounting for the specific demographic profile in Ontario so that for a
given choice of age group divisions, age-specific contact patterns can be constructed from
seminal works on contact mixing [16, 17]. The transmission model we propose accounts
for two key control measures for communicable diseases, diagnosis of cases as a result of
symptoms, and isolation through contact tracing [2–5]. By fitting the model output to age-
stratified incidence data, we inform critical parameters including the age-stratified suscep-
tibility to infection. Finally, by incorporating information about the features and timing of
non-pharmaceutical interventions and the consequent shifts in contact patterns, the fit-
ting procedure allows us to quantify such changes and retrospectively inform the effect
of intervention measures on the social contact patterns and the setting of transmission
events. Specifically, in Ontario we consider four key periods of control measure escala-
tion which we denote by distinct phases: phase 0, monitoring and international travel ad-
visories (until March 13); phase 1, public school closure (March 14–17); phase 2, state of
emergency declaration and physical distancing advisories (March 18–23); phase 3, clo-
sure of non-essential workplaces (March 24–May 16). We explore the robustness of our
estimates using several layers of uncertainty analysis.

2 Methods
2.1 Transmission model
We extended the COVID-19 transmission dynamics model introduced in prior studies
[2–5] to include age structure. The model captures essential epidemic features and key
public health interventions. The population is divided into susceptible (S), exposed (E),
asymptomatic infectious (A), infectious with symptoms (I), and recovered (R) compart-
ments according to the epidemiological status of individuals, and further into diagnosed
and isolated (D), quarantined susceptible (Sq), and isolated exposed (Eq) compartments
based on control interventions involving testing, contact tracing, quarantine and isolation.
In particular, the model accounts for contact tracing, where a proportion, q, of individuals
exposed to the virus are quarantined. The quarantined individuals can either move to the
compartment Eq or Sq, depending on whether they are effectively infected or not, while
the other proportion, 1 – q, consists of individuals exposed to the virus who are missed
from contact tracing and, therefore, move to the exposed compartment E once effectively
infected, or stay in the compartment S otherwise. Furthermore, the population is strat-
ified into n age groups, where the social interactions between age groups are described
via a contact matrix, C, which incorporates information about age-specific contacts in
different settings, including households, schools, workplaces and the general community.
We assumed that the susceptibility and diagnosis rates depend on the specific age group,
whereas all remaining parameters are constant across age groups.
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The model reads

S′
i = –

n∑

j=1

(
βiCij + q(1 – βi)Cij

)
Si(Ij + θAj)/Nj + λSqi,

E′
i =

n∑

j=1

βiCij(1 – q)Si(Ij + θAj)/Nj – σEi,

I ′
i = σ�Ei – (δIi + γI)Ii,

A′
i = σ (1 – �)Ei – γAAi,

S′
qi =

n∑

j=1

(1 – βi)CijqSi(Ij + θAj)/Nj – λSqi,

E′
qi =

n∑

j=1

βiCijqSi(Ij + θAj)/Nj – δqEqi,

D′
i = δIiIi + δqEqi – (α + γD)Di,

R′
i = γI Ii + γAAi + γDDi

(1)

for each age group i = 1, . . . , n, where Ni (Nj) denotes the total population in age group
i (j). Additionally, we allowed several parameters to be time-dependent during phase 3, to
account for a gradual adaptation of the society to the stricter physical distancing measures.
The transmission dynamics in an age-stratified population is illustrated in Fig. 1 with all
model compartments and parameters defined in Tables 1 and 2, respectively. The model
parameter definitions are also provided in the subsequent section.

Figure 1 Flowchart of the transmission model. Schematic diagram of the transmission model accounting for
a generalized package of control measures. For the construction of the mathematical model, see Methods
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Table 1 List of compartments in the transmission model for COVID-19 in Ontario, Canada

Model variable Description

Si Susceptible population
Ei Exposed population
Ii Symptomatic infected population
Ai Asymptomatic infected population
Sqi Quarantined susceptible population
Eqi Quarantined exposed population
Di Diagnosed population
Ri Recovered population

The index i refers to the age groups i = 1, 2, 3, 4, 5, 6. Hence, there are six model variables for each stage, one for each age class i.

Parameter definitions The susceptibility to infection βi (i.e., the probability of a suscepti-
ble individual being infected upon contact with an infectious individual) and the diagnosis
rate from the symptomatic compartment δIi were assumed to be age-specific. We assumed
the age-dependent susceptibility to infection and the diagnosis rates to be constant for
each age class during phases 0–3.

The incubation period 1/σi = 1/σ , the quarantine period 1/λi = 1/λ, the modification
factor for asymptomatic transmission θij = θ , the recovery rates γAi = γA, γDi = γD, γIi = γI ,
the disease-induced death rate αi = α, the ratio of symptomatic infections �i = �, and the
quarantine proportion and diagnosis rates, qi = q and δqi = δq, were assumed to be equal
for all age groups. All age-independent parameters are listed in Table 2. Most parameters
were assumed to be constant through all the escalation phases, except for the quarantine
rate, which was assumed to be exponentially increasing in phase 3, in order to capture the
intensification of contact tracing effort from the public health system. We set

q(t) =

⎧
⎨

⎩
q0, t < T2, (phase 0–2),

(q0 – qb)e–rq(t–T2) + qb, t ≥ T2, (phase 3),

where q0 is the constant quarantine proportion prior to March 24, qb is the maximum
quarantine proportion after March 24 and rq represents the exponential rate of increase.

In addition, we assumed time-dependent contact rates in phase 3, to capture the gradual
adaption of physical distancing in various locations during this period. To capture the
change in contact patterns during different phases of escalation of physical distancing, we
defined the social contact matrix C piecewise as follows:

C(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C0, TS < t < T0, (phase 0),

C1, T0 < t < T1, (phase 1),

C2, T1 < t < T2, (phase 2),

C3(t), T2 < t < T , (phase 3),

where TS , T0, T1, T2 and T mark as the start date of phase 0, 1, 2, 3 and the end date of
phase 3 (before the de-escalation phases). The contact matrix in phase 3 was assumed to
be time-dependent, to describe a gradual adaptation of the society to adhere to the stricter
measures enforced.

Each matrix C0, C1, C2, C3(t) was constructed as a linear combination of the setting-
specific contact matrices. Specifically, let CH , CW , CC , CS denote the baseline contact
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Table 2 List of parameters used in the transmission model for COVID-19 in Ontario, Canada

Definition Mean (Std) Source

Parameter
pH1 Relative increase of the weight of the contact matrix for

household settings from phase 0 to phase 1
0.1320 (0.0866) Estimated

pC1 Relative increase of the weight of the contact matrix for
community settings from phase 0 to phase 1

0.0685 (0.0642) Estimated

pH2 Relative increase of the weight of the contact matrix for
households from phase 1 to phase 2

0.2832 (0.1807) Estimated

pC2 Relative decrease of the weight of the contact matrix for
community settings from phase 1 to phase 2

0.3283 (0.1575) Estimated

pH3 Final relative increase of the weight of the contact matrix
for household settings in phase 3

0.0436 (0.0593) Estimated

pW3 Final relative decrease of the weight of the contact
matrix for workplace settings in phase 3

0.5921 (0.0820) Estimated

pC3 Final relative decrease of the weight of the contact
matrix for community settings in phase 3

0.7888 (0.1697) Estimated

rH Exponential increase in household contact rate 0.0379 (0.0532) Estimated
rW Exponential decrease in workplace contact rate 0.4711 (0.0853) Estimated
rC Exponential decrease in community contact rate 0.1019 (0.0461) Estimated
βi Probability of transmission per contact, age-dependent Table 4 Estimated
q0 Fraction of quarantined exposed individuals phase 0–2 0.1187 (0.0645) Estimated
qb Maximum fraction of quarantined individuals exposed 0.7272 (0.0583) Estimated
rq Exponential increase in quarantine fraction 0.0282 (0.0022) Estimated
σ Transition rate of exposed individuals to the infected

class
1/5 [18]

λ Rate at which the quarantined uninfected contacts were
released into the wider community

1/14 [5]

� Probability of having symptoms among infected
individuals

0.7036 [2]

δIi Transition rate of symptomatic infected individuals to
the quarantined infected class

Table 4 Estimated

δq Transition rate of quarantined exposed individuals to the
quarantined infected class

0.3409 (0.1137) Estimated

γI Removal rate of symptomatic infected individuals 0.1957 [2]
γA Removal rate of asymptomatic infected individuals 0.139 [5]
γD Removal rate of quarantined diagnosed individuals 0.2 [19]
α Disease-induced death rate 0.008 [19]
θ Modification factor of asymptomatic infectiousness 0.0275 [2]

Initial values
Si(0) Initial susceptible population Table 4 Data [20]
Ei(0) Initial exposed population Table 4 Estimated
Ii(0) Initial symptomatic infected population Table 4 Estimated
Ai(0) Initial asymptomatic infected population Table 4 Estimated
Sqi (0) Initial quarantined susceptible population 0 Assumed
Eqi (0) Initial quarantined exposed population 0 Assumed
Di(0) Initial diagnosed population Table 4 Incidence data
Ri(0) Initial recovered population 0 Assumed

For the estimated parameters, we report the mean and standard deviation of the fitting results of the 1000 bootstrap
realizations. For non-fitted parameters, the source is reported.

matrices quantifying the daily contact rate of physical and nonphysical contacts in house-
hold, workplace, community and school settings. The superscripts H , W , C, S associated
with contact matrices and model parameters will be used to refer to household, work-
place and community settings, respectively. The entries of the contact matrices are the
number of daily social contacts of a single individual in age class i with individuals in
age class j (units contacts/day as defined by those contacts believed to be relevant for the
spread of respiratory illnesses) [16]. In what follows, pk

l > 0 denotes the relative increase
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(or decrease) in the weight of the daily individual contact rate matrix in setting k from
intervention phase l. That is, the superscript k can be H , W , C or S to associate param-
eters with household, workplace, community or school settings, respectively. Note that,
because of the different nature of contacts in different settings, a decrease in contact in
one setting does not necessarily mean an equal increase in a different setting in terms of
either weight or numbers (and vice versa). In fact, each escalation phase could change the
contact patterns both qualitatively and quantitatively, and contacts lost in one setting do
not necessarily shift completely to another. For this reason, we did not assume a specific
relation between the coefficients pk

l in each phase, allowing contact patterns in each set-
ting to change independently. In the following, the contact matrix in each escalation phase
is defined and discussed individually.

Phase 0: monitoring and international travel advisories We assumed the contact mixing
in the absence of physical distancing and mandatory closures is the linear combination of
the four setting-specific matrices, each with an equal weight of 1:

C0 = CH + CW + CC + CS.

Phase 1: public school closure The phase 1 mixing matrix is given by:

C1 =
(
1 + pH

1
)
CH + CW +

(
1 + pC

1
)
CC + 0CS.

Here pH
1 is the percent increase in the weight of the household contact matrix from phase 0

to phase 1. Similarly, pC
1 is the percent increase in the weight of the community contact

matrix from phase 0 to phase 1. In the remaining equations, the school contact matrix is
no longer written explicitly to simplify their appearance.

Phase 2: physical distancing advisories The phase 2 mixing matrix is given by:

C2 =
(
1 + pH

2
)(

1 + pH
1
)
CH + CW +

(
1 – pC

2
)(

1 + pC
1
)
CC .

Here pH
2 is the percent increase in the weight of the household contact matrix from phase 1

to phase 2. Also, pC
2 is the percent reduction in the weight of the community contact rate

matrix from phase 1 to phase 2 due to physical distancing advisories and closures.

Phase 3: closure of non-essential workplaces During phase 3, we allowed the coefficients
of each setting-specific matrix to be time-dependent (either exponentially increasing or
decreasing), to capture the gradual adaptation of society to the new more restrictive mea-
sures. Specifically, we assumed that workplace and community contacts were gradually
decreasing, whereas household contact was gradually increasing, possibly with different
rates. The phase 3 mixing matrix is given by:

C3(t) =
[(

1 + pH
3
)

– e–rH (t–T2)pH
3
](

1 + pH
2
)(

1 + pH
1
)
CH

+
[
pW

3 e–rW (t–T2) +
(
1 – pW

3
)]

CW

+
[
pC

3 e–rC (t–T2) +
(
1 – pC

3
)](

1 – pC
2
)(

1 + pC
1
)
CC ,
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where pH
3 is the maximal percent increase in the weight of the household contact matrix

from phase 2 to phase 3. pW
3 and pC

3 are the maximal percent reduction in the weight of the
workplace and community contact matrix, respectively, from phase 2 to phase 3 resulting
from the closure of non-essential workplaces.

Age group subdivision We stratified the population of Ontario into n = 6 age groups,
comprised of ages 0–5, 6–13, 14–17, 18–24, 25–64, 65+, which broadly represent chil-
dren (ages 0–5), elementary and middle school (ages 6–13), high school (ages 14–17),
university (ages 18–24), workforce (ages 25–64) and seniors (ages 65+), and we ascribe the
indices i = 1, 2, . . . , 6 to these classes (Table 3). We considered six age groups since most
physical distancing measures taken in Ontario have been formulated and implemented
corresponding to these six age-groups.

Initial conditions The initial susceptible populations were fixed as the total population
of each age class in Ontario, Canada which were obtained from Statistics Canada [20].
We considered the initial fitting date (t = 0) to be February 26, which marks the date at
which sustained case accumulation began in Ontario. Therefore, we supposed there were
initially no recovered individuals, that is Ri(0) = 0 for each age class i. The initial diagnosed
populations were fixed as the numbers of cumulative cases for each class till February 26.
Similarly, we set Sqi(0) = Eqi(0) = 0 for each age class i. Since the confirmed cases for the
three youngest age groups (ages 0–17) are zero for at least one week after February 26, we
set Ei(0) = Ai(0) = Ii(0) = 0 for i = 1, 2, 3, while we estimated the conditions for i = 4, 5, 6.
All the initial conditions for model (1) are listed in Table 2 and Table 4.

2.2 Data
We used prior results and data to construct the baseline social contact matrices for On-
tario, Canada. We retrieved the age-stratified population estimates for Ontario in year
2019 and Canada in year 2006 from Statistics Canada [20]. As part of the POLYMOD
project, social contact surveys in eight European countries were conducted between May

Table 3 Details of the age groups used in transmission model (1) for COVID-19 in Ontario, Canada

Age range (years) 0–5 6–13 14–17 18–24 25–64 65+
Age class index (i) 1 2 3 4 5 6
Age class population (Ni) 877,614 1,245,978 641,784 1,411,604 7,879,605 2,509,962

The age class population (Ni ) refers to the population counts in year 2019.

Table 4 Age-specific model parameter estimates in Ontario, Canada (mean and standard deviation)

Parameter Age class

0–5 6–13 14–17 18–24 25–64 65+

δIi 0.0866 (0.0619) 0.1212 (0.0587) 0.1137 (0.0611) 0.0486 (0.0274) 0.3460 (0.0087) 0.3981 (0.0841)
βi 0.0185 (0.0055) 0.0164 (0.0039) 0.0248 (0.0062) 0.0916 (0.0031) 0.1393 (0.0059) 0.5023 (0.0249)
Ei(0) 0 0 0 6 (1.0852) 6 (0.9363) 6 (0.7158)
Ai(0) 0 0 0 6 (0.6351) 6 (0.6590) 5 (0.6838)
Ii(0) 0 0 0 3 (0.0313) 10 (0.5206) 10 (0.8171)
Di(0) 0 0 0 1 5 1
Si(0) 877,614 1,245,978 641,784 1,411,604 7,879,605 2,509,962

The initial conditions Di (0) and Si (0) are fixed (not estimated), as well as Ei (0), Ai (0) and Ii (0) for age groups i = 1, 2, 3.
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2005 and September 2006 to quantify age-specific contact heterogeneity [16]. Country-
specific data on household structures, labor-force participation rates, and school enrol-
ment were utilized to project the European social contact data to contact rates representa-
tive of 152 countries, including Canada [17]. We utilized the projected setting (household,
workplace, community and school)-specific contact matrices for Canada [17] in this study
and adapted them to represent mixing in Ontario.

To proceed with model fitting, there are several additional data sources utilized within
this study. While in this case study data specific to Ontario was utilized, we note this ap-
proach is based on a general methodology that can be applied broadly. First, we utilized
the timeline of interventions taken by the government of Ontario, Canada. The escala-
tion of physical distancing measures in Ontario consisted of three major steps: public
school closure (from March 14), declaration of state of emergency, with closure of public
venues and events and physical distancing advisories (from March 18), and closure of non-
essential establishments (from March 24). On May 16, selected non-essential activities had
resumed, marking the end of the non-essential establishment closure in Ontario. Second,
we utilized the age-stratified cumulative confirmed positive tests in Ontario, Canada. We
obtained this data of the age-specific cumulative cases of COVID-19 in Ontario from the
Ontario Ministry of Health, which was made available to us through the Ontario COVID-
19 Modeling Consensus Table. Third, the age-structured demographic data specific to
Ontario is available publicly by Statistics Canada [20]. These main sources of data enabled
the fitting of mathematical model and all subsequent analyses.

2.3 Contact mixing matrices
We established the setting-specific contact matrices in the household, workplace, com-
munity, and school in Ontario, Canada denoted CH , CW , CC , CS , respectively (Fig. 2).
We derived these mixing matrices from the Canada-specific contact matrices [17]
through a series of transformations to account for the Ontario demographic profile
and the desired age group division, then utilized these as baseline contact patterns in
the absence of physical distancing measures. The details, including the specific defini-
tions and mathematical formulation of the baseline contact matrices, are included in
Appendix A: Baseline contact matrices.

2.4 Model fitting procedure
To estimate model parameters, we fit the mathematical model to age-stratified cumulative
incidence data. We first informed model (1) with several parameter values from existing
studies (Table 2) and also the established social contact matrices. We then run model (1)
forward from time t = Ts (chosen as February 26, corresponding to the date at which sus-
tained case accumulation began in Ontario) to time T (chosen as May 16, the date of first
easing of restrictions), and determined parameters which minimize the least square error
against the age-stratified cumulative incidence. In other words, we estimated parameters
associated with model (1) by fitting to six lists of time series data representing cumulative
incidence according to age class. To obtain confidence intervals for the estimated parame-
ters, we used a bootstrap method to generate 1000 cumulative incidence time series from
a Poisson distribution with mean given by the reported data and fitted the model to each
dataset. We assumed a Poisson error structure in the newly reported cases to address noise
in this time series data (for context of this topic, see [21]).
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Figure 2 Heatmaps of estimated social contact matrices in Ontario, Canada. Age-specific contact mixing in
the absence of physical distancing interventions in Ontario (A) Households, (B) Workplaces, (C) Schools,
(D) Communities and other locations and (E) contact mixing in all four settings combined

2.5 The control reproduction number
The control reproduction number Rt describes the average number of secondary cases
that one random infected individual produces during its infectious period, under the con-
trol measures (diagnosis and quarantine). We obtained the control reproduction number
of model (1) using the next generation method [22]. Rt is the spectral radius of the next
generation matrix K(t). The (time-dependent) next generation matrix for the parameters
considered in this paper (i.e. with βi and δIi both age specific) is

[
K(t)

]
ij =

(
1 – q(t)

)
AjβiCij(t)Ni/Nj

for i, j ∈ {1, 2, . . . , n} where Aj = ρ

δI,j+γI
+ θ (1–ρ)

γA
.

2.6 Infectious contacts
We compared the estimated values for the mean infectious contact, i.e., the mean number
of contacts per day that result in an infection with a homogeneous mixing model of similar
scope [2]. In the age-structured model (1) each contact contributes differently to trans-
mission; hence, the mean contact rates estimated from the age-structured model in each
phase are not directly comparable with the contact rate obtained by fitting a homogeneous
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model, as done in previous work [2]. For the homogeneous model, this is computed as βc,
where c and β denote the contact rate and probability of infection upon contact previously
estimated, respectively [2]. For the age-structured model, we considered the combination
1
N

∑
i βiNi

∑
j Cij(t), which accounts for the age-stratified susceptibility to infection.

2.7 Contact rates and infections acquired in each setting
The setting-specific contact rate was computed based on each estimated setting-specific
contact matrix and population profile in 2019 for Ontario. The mean connectivity, or the
number of daily contacts averaged over all individuals in the population with mixing ma-
trix C, is defined as

〈k〉 =
1
N

∑

i,j

CijNi.

The all-setting social contact rates were calculated from the sum of the setting-specific
contact rates. For the details of the terminology, definitions, and methods associated with
the contact mixing matrices, see Appendix: Baseline contact matrices.

We computed the infections acquired in each setting by using the estimated model pa-
rameters (Tables 2 and 4) and model (1). Specifically, the infections acquired in each set-
ting were tracked in time as the sum of the inflow to the exposed (E) and exposed quaran-
tined (Eq) compartments. We added four additional compartments to the mathematical
model, one each for workplace, school, household and community setting, and using the
estimated model parameters and setting-specific contact matrices, solve the system of or-
dinary differential equations to assess the infections acquired in each setting.

2.8 Uncertainty analysis
The robustness of our estimates is explored with several layers of uncertainty analysis.
First, we quantified parameters in terms of the uncertainty in reported cases by assuming a
Poisson error structure and fit model (1) to 1000 corresponding realizations. The resulting
uncertainty in the model fit is expressed in terms of uncertainty in the estimated model
parameters. Second, we assessed the empirical distributions of several of the key estimated
parameters. The empirical distributions of the age-specific susceptibility to infection and
the estimated weights associated with the contact matrices were constructed to investigate
the robustness of these estimates.

3 Results
3.1 Model fitting
Through model fitting, we estimated the age-independent parameters (Table 2) and age-
dependent parameters (Table 4). The model fit with quantified uncertainty against the age-
stratified cumulative incidence data is shown in Fig. 3 and with all age classes combined in
Fig. 4. By estimating the weights associated with the setting-specific contact matrices, we
identified the mixing patterns in all four phases of escalation (Fig. 5) as well as the mean
individual contact rate (Fig. 6). The fitted parameters allowed us to estimate the effective
reproduction number (Fig. 7) and the mean infectious contact (Table 5), for which we
provide comparison with a homogeneous mixing model of similar scope [2].
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Figure 3 Cumulative incidence according to age class. Cumulative incidence according to age class (circles)
and best fitting transmission model (line), with 95% confidence interval (gray region). The red circles represent
data from February 26 to May 16 (fitted). The blue circles represent data May 17 to June 1 (not fitted).
Cumulative incidence shown for (A) ages 0–5, (B) ages 6–13, (C) ages 14–17, (D) ages 18–24, (E) ages 25–64
and (F) ages 65+. For an explanation of the increase in reported cases after May 16, see
Appendix B: Caution in interpretation

3.2 Setting-specific social contact mixing
We estimated the age-specific contact mixing profile for each phase of escalation (Fig. 5).
We estimated the mean contact rate (i.e., the average number of contacts per day of one
random individual with the total population) in the absence of physical distancing mea-
sures to be 12.27 per day per person in Ontario. This contact rate was assumed during
phase 0, which corresponds to the beginning of the epidemic in Ontario where no major
physical distancing advisories were in effect (Fig. 6(A)). Figure 6 shows the breakdown of
contact rates by their respective setting (school, workplace, household, and general com-
munity). Relative to the pre-intervention value, the total increase of household contacts
was 13% after school closure, 45% after the additional physical distancing measures, and
51% on May 16 after the closure of non-essential businesses (Table 6). Measures following
the closure of non-essential businesses were estimated to have an impact of 59% reduc-
tion in the total workplace contacts and 85% community-related contacts as of May 16
(Table 6 and Fig. 6). Table 6 shows a complete summary of the estimated shifts in terms
of the mean daily contact rate in Ontario. We also depicted the empirical distributions of
the weights of the phase- and setting-specific contact matrices (Fig. 8).

3.3 Infections acquired in workplace, household, community and school settings
We quantified the number of cumulative infections acquired in each setting and age group
(Fig. 9). During phase 0, the cumulative infections were estimated to primarily result from
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Figure 4 Cumulative incidence of all age classes combined. Cumulative incidence of all age classes (circles)
and best fitting model (line), with 95% confidence interval (gray region). The red circles represent data from
February 26 to May 16 (fitted). The blue circles represent data May 17 to June 1 (not fitted). For an explanation
of the increase in reported cases after May 16, see Appendix B: Caution in interpretation

Figure 5 Age-specific contact mixing pattern estimated for each escalation phase. Shown are the heatmaps
of contact matrices for all settings (workplace, school, community, and household) combined. The intensity of
the color of an entry corresponds to the magnitude of the contact rate between the intersecting age classes.
The row of the matrix represents the contactor age class and the column represents the age class of the
contactee. Heatmaps depicted for contact mixing in (A) phase 0, (B) phase 1, (C) phase 2 and (D) the end of
phase 3 on May 16



McCarthy et al. Journal of Mathematics in Industry           (2020) 10:28 Page 14 of 25

Figure 6 Mean contact rate during four escalation phases of physical distancing measures. We considered
four phases of escalation in Ontario: phase 0, monitoring and international travel advisories (until Mar 13);
phase 1, public school closure (Mar 14–17); phase 2, physical distancing advisories (Mar 18–23); phase 3,
closure of non-essential workplaces (Mar 24–May 16). The contact mixing matrices are constant for phase 0, 1
and 2 and the contact mixing is modelled as time-dependent for phase 3. (A) The mean contact rate from
phase 0 (12.27), 1 (11.42) to 2 (10.92) including the setting breakdown; (B) The time-dependent mean contact
rate by setting for phase 3

Figure 7 Estimated effective reproduction number Rt . The solid line represents the estimated mean Rt value
and the shaded region depicts the 95% confidence interval. Rt declines below 1 between April 5 and April 12
following the implementation of a package of non-pharmaceutical interventions

community contacts, followed by contacts at workplaces and households (Fig. 9). The
community contacts played the primary role in contributing effective transmissions till the
early stage of phase 3, when the infections from household contacts eventually took over
the primary role (Fig. 9). Households are the locations where the highest number of infec-
tions were estimated to occur among all age groups by May 16 (Fig. 10). Communities were
the second most popular location to gain infections for age groups of individuals younger
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Table 5 Mean infectious contact during different escalation phases

Model Mean infectious contacts

Phase 0 Phase 1 Phase 2 Phase 3 (May 16) Phase 3 (asymptotic)

Homogeneous model [2] 1.7011 1.4866 1.1825 0.3957 0.3232
Age-structured model 1.4558 1.4386 1.3541 0.6806 0.7555

Calculated from the age-structured model (1) and resulting from the homogeneous modelling analysis in prior modelling
work in Ontario [2].

Table 6 Estimated mean daily contact rate by setting and escalation phase

Setting Daily contact rate
pre-interventions
(contacts/day)

Running daily contact rate (change relative to
pre-intervention)

Phase 1 Phase 2 Phase 3 (May 16)

School 1.52 0 (–100%) 0 (–100%) 0 (–100%)
Workplace 3.66 3.66 (0%) 3.66 (0%) 1.49 (–59%)
Community 4.14 4.42 (+7%) 2.97 (–28%) 0.64 (–85%)
Household 2.95 3.34 (+13%) 4.29 (+45%) 4.45 (+51%)
Total 12.27 11.42 (–7%) 10.92 (–11%) 6.58 (–46%)

Estimates of the mean individual daily contact rate and its change relative to pre-intervention values in Ontario, Canada.

Figure 8 Empirical distributions of model parameters associated with the contact matrices. Empirical
distributions of the weights of the contact matrices obtained from the fitting results of the 1000 bootstrap
realizations. Panels (A)–(H) correspond to the distributions for the model parameters (A) pH1 , (B) p

C
1 , (C) p

H
2 ,

(D) pC2 , (E) p
H
3 , (F) p

W
3 , (G) pC3 and (H) rc

than 17 and older than 65 (Fig. 10). The age classes composed of young children and indi-
viduals aged 65 and above were estimated to gain relatively few infections from workplace
contacts, while the working group (ages 25–64) acquired a similar number of infections
from workplaces compared to households (Fig. 10). The estimated infections from school
setting contacts were relatively few due to the early closure of schools at the beginning
of phase 1 (Fig. 10). Overall, the workforce age class (aged 25–64) consistently was esti-
mated to acquire a higher number of infections at workplaces, communities and schools
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Figure 9 Cumulative infections acquired in workplace, households, community and school settings for all
age groups. Community contacts initially contributed to more infections than contacts from remaining three
locations, while household contacts played a dominant role in contributing new infections after the closure of
non-essential workplaces on March 24. Due to the closure of schools at the beginning of phase 1 on March
14, no more new infections occurred at the school setting (shown in the sub-panel). Estimated mean values
are represented by solid lines and the 95% confidence interval (CI) by surrounding shaded regions. CIs based
on fitting results to 1000 realizations of the cumulative reported case data in Ontario, Canada

Figure 10 Cumulative infections by age group and setting. Households were the primary location for the
estimated transmission for all age groups, while communities or workplaces were the secondary location for
different age groups

compared to other age groups (Fig. 11). This was followed by individuals aged 18–24 in
workplaces and schools (Fig. 11(A)(D)), while households and communities were settings
of considerable transmission for the senior age group (aged 65+), shown in Fig. 11(B)(C).

3.4 Age-specific susceptibility to infection and diagnosis probability
We estimated the age-stratified probability of diagnosis for symptomatic individuals and
susceptibility to infection (Table 7). More precisely, the susceptibility to infection in our
model refers to the probability of infection upon contact with an infectious individual. We
also depicted the empirical distributions of the age-specific susceptibilities corresponding
to the uncertainty analysis conducted (Fig. 12). The estimated age-specific susceptibilities
are robust to error in the reported case counts, which can be observed from their respec-
tive empirical distributions (Fig. 12).
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Figure 11 Cumulative infections by setting and age class. Model-estimated cumulative infections acquired in
(A) Workplaces, (B) Household, (C) Community and other locations and (D) Schools

Table 7 Age-specific model parameter estimates in Ontario, Canada: Percentage of symptomatic
individuals diagnosed, and susceptibility to infection

Parameter Age class

0–5 6–13 14–17 18–24 25–64 65+

Percentage of symptomatic individuals diagnosed 31% 38% 37% 20% 64% 67%
Susceptibility to infection 1.9% 1.6% 2.5% 9.2% 13.9% 50.2%

Percentage of symptomatic diagnosed individuals and susceptibility (i.e., probability of infection upon contact, βi ). The
reported values are obtained from the mean of the fitting results of 1000 bootstrap realizations. The fraction of symptomatic

diagnosed individuals is calculated from
δI,i

δI,i+γI
, where δI,i and γI denote the diagnosis and recovery rate, respectively.

4 Discussion
We estimated that the susceptibility to SARS-CoV-2 infection increases with age, which is
consistent with findings from prior works [9, 11]. From our estimates, younger age groups
(17 and below) have relatively low susceptibility to infection (less than 3%) compared to
the senior age class (65+), with a probability of 50.2% to be infected upon contact (Ta-
ble 7). Further, we estimated the senior class to be the most susceptible to infection (Ta-
ble 7). This comes in addition to the relatively high vulnerability of the senior age group
[10, 15, 23, 24], and provides further support to the necessity of protecting these individu-
als. The relatively lower susceptibility of younger children suggests that they may not have
been a major driver of the COVID-19 epidemic in Ontario until May 16, if their trans-
missibility was comparable to the remaining age groups, confirming the existing literature
[25–27]. We urge caution in interpreting these results, as in light of emerging data, that
rapidly increased cases among non-seniors in Ontario indicate that mixing among these
age groups and less abidance to physical distancing measures has been evident (for de-
tails see Appendix B: Caution in interpretation). Also, our findings of susceptibility are in
line with a retrospective cohort observational study conducted in mainland China, which
computed a secondary attack rate among household contacts of 12.4–17.1%, with a lower
risk of developing the infection among the younger subjects with respect to the elderly
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Figure 12 Empirical distributions of the age-specific susceptibility. Estimated parameters obtained from the
fitting results of each of the 1000 bootstrap realizations. Empirical distribution of the estimated age-specific
susceptibility for ages (A) ages 0–5; (B) ages 6–13; (C) ages 14–17; (D) ages 18–24; (E) ages 25–64 and (F) ages
65+. See Methods for the details

[28]. We also estimated an overall increasing trend with age in the probability of diagnosis
among symptomatic individuals (Table 7). This finding is both logical and consistent with
prior findings [15], as the severity of illness due to COVID-19 has been found to increase
with age and cases requiring medical attention may be more likely to be captured by the
virologic surveillance system. Finally, our results are in line with the findings of the exist-
ing modeling studies [29–32] that have found that a timely and stringent implementation
of non-pharmacological interventions are effective in curbing the spread of the ongoing
outbreak, if they are enforced until the virus transmission has been significantly reduced.

In this study, we estimated a 46% (12.27 to 6.58) decrease in the mean individual con-
tact rate following the implementation of a series of government interventions in Ontario
(Table 6). Studies which also estimated the social contact rates during the COVID-19 era,
consisted of contact surveys where participants were asked to provide details about the
number and locations of their social contacts. Findings from these studies indicate that
physical distancing measures have led to the reduction of daily social contact rates in
China [11, 33], Luxembourg [13], and the UK [12], with varying degrees of reduction.
The age-stratified contact matrices, in the presence of government interventions, were
identified in three studies [11, 12, 33] and their implications explored in terms of impact
on the basic reproduction number [12] and model-based analyses [11, 33]. In agreement
with our study, the estimated contact mixing patterns following the implementation of
interventions had closely resembled the household mixing pattern (Fig. 5) [11, 33]. The
estimated average number of daily contacts per participant before and during lockdown,
were from 7.9 to 2.2 (72.2% reduction) in Shenzhen, 10.8 to 2.8 (74% reduction) in the UK,
9.5 to 2.2 (76.8% reduction) in Changsha, 18.8 to 2.3 (87.8% reduction) in Shanghai, 17.5 to
3.2 (81.7% reduction) in Luxembourg, to 14.6 to 2 (86.3% reduction) in Wuhan [11–13, 33].
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It is possible that the survey-based approaches underestimate the contact rate, as there is a
risk of bias from sources such as selection and recall bias. Also, participants may not wish
to disclose their true number of contacts during government interventions. These fac-
tors may explain differences between the estimates from the two methodologies. Even so,
with the data-driven approach presented in this study or the survey-based approach, it has
been estimated that a substantial decrease in the individual contact rate occurred follow-
ing the implementation of government interventions, with a shift to household contact.
Overall, through the reduction in social contact rate and alteration of the mixing patterns,
model-based analyses indicate interventions have been effective in mitigating transmis-
sion [11, 33].

As each physical distancing intervention may cause a shift in contact patterns, for in-
stance by increasing the time that individuals spend at home, estimating the relative in-
crease or decrease of the setting-specific daily contacts in each escalation phase enables
the assessment of the expected shift of the infection towards different subpopulations
and the contribution of contacts in each setting to the spread of infection. We estimated
an effective decrease in contacts in the workplace and community settings; meanwhile,
the household contact has increased by 51% from the pre-intervention phase to the end
of lockdown phase on May 16 (Table 6). Therefore, additional household transmission
should be taken into account by decision-makers when planning and implementing in-
terventions, especially in light of the relatively high contact rates of seniors in household
settings.

Estimates of the age- and setting-specific social contact patterns during escalation of
physical distancing, together with a deeper understanding of the age-specific suscepti-
bility, allow to investigate different scenarios for reopening the economy, including busi-
nesses and schools [30–32]. These estimates provide needed tools to simulate scenar-
ios of staged reopening or reopening targeted to specific subgroups, such as resuming
of partial school classes, selected business sectors, etc. Additionally, this framework may
be used for scenario analysis such as rotating workforce strategies, where the workforce
is divided into groups with different working schedules. The specific choice of the age
group subdivision in this study is motivated by age targeted intervention, in the spirit of
assessing gradual resumption of schools and workplaces. Further, this framework can be
used to incorporate vaccination of different age classes in the event an efficacious vac-
cine comes to light and identify optimal distribution strategies. Although we have fo-
cused primarily on age-stratified contact mixing, susceptibility and symptomatic diag-
nosis probability in this study, we also used the modelling framework to quantify key
control parameters related to the efficacy of contact tracing efforts (for the details, see
Appendix C: Control parameter assessment).

This study and its data sources have several limitations. For our analyses, we primarily
used cumulative incidence data, which is subject to several forms of error that may result
in inaccuracies and biased estimates. Additional sources of error in our study may result
from the specific circumstances in Ontario, in which a disproportionate number of health
care workers were affected by COVID-19 and outbreaks had occurred in long-term care
homes. For a discussion of these details, see Appendix D: Limitations in incidence data.

5 Conclusions
The methodology introduced and illustrated in this study aims to provide the much-
needed tools for intervention evaluation in terms of inferring the age- and setting-specific



McCarthy et al. Journal of Mathematics in Industry           (2020) 10:28 Page 20 of 25

contact mixing in rapidly evolving circumstances, without the time and resources required
for survey-based approaches. The data-driven, model-based approach can provide in-
sights in almost real time based on incoming data, which is key to inform decision- and
policy-making in an emergency situation, such as the current pandemic. We also note that
the necessary surveillance data for COVID-19 and demographic data for analyses is readily
and publicly available in many regions worldwide. Similarly, the age- and setting-specific
mixing matrices utilized within are available in 152 countries [17]. Hence, the method-
ology can be readily adopted in many regions worldwide and could yield insights of the
transmission risk and the effectiveness of different age- and setting (workplace, school,
community, and household)-specific interventions.

Appendix A: Baseline contact matrices
To establish a contact matrix representative of contact mixing in Ontario, we utilized the
projected Canadian matrices [17] and further adapted the matrices for modelling pur-
poses. Several of the requirements for the target contact matrix to be suitable for integra-
tion in the transmission model (1) are:

i. Modified age group subdivisions (6 age groups);
ii. Reciprocity condition is satisfied;

iii. Accounts for the specific age structure of Ontario, Canada, in 2019;
iv. Mean connectivity is representative of individual mean contact rate in Ontario,

Canada;
v. Represents contact mixing in distinct social settings (household, workplace,

community and other locations, school).
The topics of reciprocity and mean connectivity are discussed further in prior work
[34]. Briefly, social contact survey data is subject to over-representation and under-
representation of age groups, reporting error, etc.; hence, estimated population-level con-
tacts are generally not symmetric. However, as contacts must be reciprocal, the number
of total contacts from age group i to j must be identical to those contacts from group j to i.
Also, the mean connectivity of each contact matrix, or the average number of contacts
per individual in the population, should be preserved during the transformations within
the same year. We introduced a series of transformations which address items (i)–(v). We
then utilized the resultant contact matrices in the simulations of the transmission model
(1) to quantify the age-specific contact mixing in Ontario.

Method Denote the reference contact matrices, which are representative of social con-
tact mixing in Canada in year 2006, CH , CW , CC , CS for household, workplace, commu-
nity and school settings, respectively. The entries of the contact matrix are the number
of daily social contacts of a single individual in age class i with individuals in age class j
(units contacts/day as defined by those contacts believed to be relevant for the spread of
respiratory illnesses) [16]. We utilized CRef to obtain a matrix representative of contact
mixing in Ontario, Canada to satisfy the properties (i)–(v) above. The subsequent process
is applied separately to each of the setting-specific reference contact matrices.

Reciprocity correction We corrected each setting-specific reference matrix CRef for reci-
procity to ensure that contacts between age classes at the population-level (extensive scale)
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were reciprocal. Specifically, we ensured symmetry of the population-level contacts and
returned back to the individual-level contact scale. Let Eij = CRef

ij Ni represent the exten-
sive scale contact matrix between age class i and class j, where Ni represents the popula-
tion of age class i in Canada in year 2006. To ensure the symmetry of matrix E, and thus
population-level contacts, we applied the transformation Eij → 1

2 (Eij + ET
ij ). We then con-

verted from population-level total contacts to the individual-level contact scale to redefine
CRef

ij := Eij
Ni

. The resultant CRef has now been corrected for reciprocity.
We then adjusted each reference matrix CRef , for Canada, to the matrix C, for Ontario,

according to the demography of Ontario using an established method [34]. To accom-
plish this, we projected the reference contact matrix CRef to the target matrix C using the
transformation

Cij = CRef
ij

N ′N ′
j

Nj
∑

i,j CRef
ij

N ′
i N ′

j
Nj

, (2)

where Nj (Ni) and N ′
j (N ′

i ) are the number of individuals in age class j (i) in Canada and On-
tario in 2006, respectively. Also, N and N ′ are the total numbers of individuals in the refer-
ence year Canada and Ontario in 2006, respectively. Equation (2) may be interpreted as an
adjustment of the contact rate based on the ratio of the target population density of avail-
able contactees in Ontario and density of contactees in the reference setting in Canada.
Since this transformation adjusted the matrix from the country setting to a provincial set-
ting within the same year, we also normalize the matrix to have a mean degree (or mean
connectivity) of 1 during the transformation in order to preserve the mean connectivity.
After the transformation, we rescale the matrix C to the original degree of CRef by multi-
plying the mean connectivity

〈k〉 =
1
N

∑

i,j

CRef
ij Ni.

We preserve the mean connectivity in this transformation, i.e., the average number of daily
contacts per individual in the population is assumed to be equal in Ontario and Canada
in the same year. We note that an alternative density transformation could also be used,
which relaxes this assumption and allows the mean connectivity to depart from its original
value (for instance, method M2 in [34]). To quantify the setting-specific contact mixing,
we applied this above process, using Equation (2), to the established household, workplace,
community, and school contact matrices for Canada [17].

Method to age-transform contact matrix We outline the process used for generating con-
tact matrices in the desired age subdivision format by utilizing known contact mixing data
and Canadian demographic data. The key concept was to utilize established contact data
which informed a 16 × 16 contact matrix for age groups 0–4, 5–9, 10–14, 15–19, 20–24,
25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75+, and use a
series of property-preserving transformations to generate a desired or target 6 × 6 con-
tact matrix for age groups 0–5, 6–13, 14–17, 18–24, 25–64, 65+. Here, we conducted the
transformation between different age groups for the year 2006. Based on the homogeneous
mixing assumption and a conservation law on contacts received and offered in each age
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group, we calculated the entries of the target 6 × 6 matrix using the following formula

C6
kl =

1
N6

k

16∑

i=1

16∑

j=1

C16
ij Ni

Njl

Nj

Nik

Ni
,

where Njl (Nik) represents the overlapped population in the old age group j (i) and new
age group l (k). And C16

ij and C6
kl are the entries of the contact matrix for the old and new

age structure, respectively. N6
k is the population in age group k for the new age structure.

This transformation preserves the mean connectivity and reciprocity from the previous
transformation.

Method to project contact matrix to different years We now have obtained the contact
matrix among 6 age groups in 2006, and the following transformation projects the contact
matrix to 2019 based on the Canadian demographic data. In what follows, Nj and N ′

j are
the number of individuals in the jth age group in the original (i.e., 2006) and projected (i.e.,
2019) year, N and N ′ are the total population in the original and projected year. Then, we
have

Cprojection
ij = Coriginal

ij
NN ′

j

NjN ′ .

The contactee correction terms of the form
NN ′

j
NjN ′ represents the ratio of contactees in the

projected year to those in the origin year. With the contactee density correction terms,
we expressed all entries of the projected contact matrix in terms of the known, original
contact matrix entries. Equations were kept general to hold true when N may differ from
N ′. The above equation may also be interpreted as an adjustment of the contact rate based
on the ratio of projected population density of contactees and density of contactees in
the original setting. Due to the variations in population profile in different timing, the
average connectivity is not preserved exactly; however is representative of mean contact
rate in Ontario. We note that an alternative series of transformations could be utilized
to preserve the mean connectivity of the Canadian reference contact matrix. Finally, this
transformation preserves the reciprocity.

Results The contact matrices resulting from the series of transformations outlined are
shown in Fig. 2 and are representative of mixing in Ontario. We then utilized the resultant
contact matrices CH , CW , CC , CS in the simulation of transmission model (1) to quantify
heterogeneity in age-specific and setting-specific contact mixing in Ontario.

Appendix B: Caution in interpretation
The predicted trajectory as of May 16 largely underestimated the cases reported in Ontario
as of mid-July (Fig. 3). However, observing the age-stratified model fit vs. cumulative inci-
dence data (Fig. 4), we see that the disparity is among those aged less than 65. The underes-
timation may be due to the relaxation of measures starting from May 16 and/or decreased
abidance to physical distancing measures. For instance, possible culprits include increased
warm weather in Ontario and a national holiday weekend. While our study suggests that
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younger individuals are less susceptible; the observed cases following relaxation suggests
increased transmission among these groups may be due to increased mixing among those
non-senior individuals.

Appendix C: Control parameter assessment
The transmission model accounts for two types of detection routes: contact tracing and
the diagnosis of individuals presenting symptoms. Estimates of the parameters related to
these processes can be utilized to assess the efficacy of interventions implemented and
conduct modelling scenario analyses. Our estimates show that the fraction of infectious
contacts that were effectively traced and isolated increased from 12% before phase 3 to a
limit value of 73% during phase 3 (Table 2). Parameterizing the transmission model with
region- or country-specific demographic and incidence data could also allow a compar-
ative evaluation of interventions between different regions. Furthermore, the evaluation
of the current levels of contact tracing and diagnosis efforts is fundamental for planning
public health policies [2, 3].

Appendix D: Limitations in incidence data
For our analysis we used cumulative incidence data, which is subject to several forms of
error, including underreporting (COVID-19 positive individuals not having their illness
reported) and under-ascertainment (cases not seeking health care), as not all COVID-19
cases are captured by the surveillance system. We note that there may be heterogene-
ity by age in the proportion of individuals seeking health care and testing due to illness,
hence the estimated age-specific parameters are impacted by age-specific reporting rates
and ascertainment rates. Specifically, the severity of illness due to COVID-19 has been
found to increase with age [15] and cases requiring medical attention may be more likely
to be captured by the surveillance system, which is consistent with our findings of di-
agnosis rate increasing with age (Table 7). However, we stress that testing protocols in
Ontario have been variable during the course of the epidemic, altering the scope of indi-
viduals and symptoms that have been tested for COVID-19, hence making it difficult to
obtain robust estimates when those rates are assumed constant over time. Analyzing data
while interventions are in place introduces natural biases: the low relative susceptibility in
younger age groups may be a result of early school closure, which prevented transmission
in younger age groups very early on in the Ontario epidemic. Such an effective contain-
ment measure may not have been possible in settings such as Ontario’s long-term care
homes where the prominent age class is seniors and transmission continued.

Additional sources of error in our study result from the specific situation in Ontario. As
of June 3, 2020, Greater Toronto Area public health units accounted for 66.4% of cases. It
may then be more appropriate to consider modelling in smaller regions or public health
units as cases are not evenly dispersed throughout the province. In addition, as of June 3,
2020, a proportion of 17.7% and 6.3% of all cases were among long-term care home resi-
dents and among health care workers associated with long-term care outbreaks, respec-
tively. Heterogeneity in geographical location or finer granularity to the level of long-term
care homes and hospitals are not captured by the current model.
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