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Estimating the differences in the incubation-period, serial-interval, and generation-
interval distributions of SARS-CoV-2 variants is critical to understanding their
transmission. However, the impact of epidemic dynamics is often neglected in
estimating the timing of infection—for example, when an epidemic is growing
exponentially, a cohort of infected individuals who developed symptoms at the same
time are more likely to have been infected recently. Here, we reanalyze incubation-
period and serial-interval data describing transmissions of the Delta and Omicron
variants from the Netherlands at the end of December 2021. Previous analysis of
the same dataset reported shorter mean observed incubation period (3.2 d vs. 4.4
d) and serial interval (3.5 d vs. 4.1 d) for the Omicron variant, but the number of
infections caused by the Delta variant decreased during this period as the number of
Omicron infections increased. When we account for growth-rate differences of two
variants during the study period, we estimate similar mean incubation periods (3.8
to 4.5 d) for both variants but a shorter mean generation interval for the Omicron
variant (3.0 d; 95% CI: 2.7 to 3.2 d) than for the Delta variant (3.8 d; 95% CI:
3.7 to 4.0 d). The differences in estimated generation intervals may be driven by
the “network effect”—higher effective transmissibility of the Omicron variant can
cause faster susceptible depletion among contact networks, which in turn prevents
late transmission (therefore shortening realized generation intervals). Using up-to-date
generation-interval distributions is critical to accurately estimating the reproduction
advantage of the Omicron variant.
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Estimating transmission advantages of new SARS-CoV-2 variants is critical to predicting
and controlling the course of the COVID-19 pandemic (1). Transmission advantages
of invading variants are typically characterized by the ratios of reproduction numbers,
Rinv/Rres, and the differences in growth rates, rinv− rres. These quantities are linked by
the generation-interval distributions of the resident and invading variants. For example,
an invading variant with shorter generation intervals—defined as the time between
infection of the infector and the infectee—will exhibit faster epidemic growth (rinv >
rres > 0) even if their reproduction numbers are identical (Rinv = Rres > 1).

Estimating the generation-interval distribution is challenging, in part due to difficulties
in observing actual infection events. Many researchers primarily focus on comparisons of
other transmission intervals, such as the time between symptom onsets (also referred to
as serial intervals) or between testing events (2) of the infector and the infectee. Each of
these transmission-interval distributions can be subject to dynamical effects, which can
cause transmission-interval distributions to systematically differ from the corresponding
generation-interval distribution.

For example, when the epidemic is growing, there will be more recent infections, and
we are therefore more likely to observe recently infected individuals among a cohort of
infectors who developed symptoms at the same time. In this case, their incubation periods
will be shorter, on average, than those of their infectees, causing the mean serial interval
to be longer than the mean generation interval (3). We refer to such effects of growth rate
on expected intervals as “dynamical bias.” Because of dynamical bias, observed differences
in transmission-interval distributions between variants are not necessarily equivalent to
differences in the underlying generation-interval distributions when their growth rates
differ.

Here, we reanalyze serial-interval data collected by Backer et al. (4), representing
within- and between-household transmissions of the B.1.617.2 (Delta) and B.1.1.529
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(Omicron) variants from the Netherlands between 13 and
26 December 2021. The study found shorter mean within-
household serial intervals (3.5 vs. 4.1 d) and mean incubation
periods (3.2 vs. 4.4 d) for transmission pairs with S-gene target
failure (mostly Omicron during the study period) than without
(mostly Delta) but did not consider dynamical biases caused by
growth-rate differences in their inference: During this period, the
incidence of Omicron cases was increasing, whereas the incidence
of Delta cases was decreasing. We take the epidemiological
context in the Netherlands during the study period into account
to provide corrected estimates for the incubation periods and
generation-interval distributions of the Delta and Omicron
variants. We show that using up-to-date generation-interval
distributions is critical to accurately estimating the reproduction
advantage (i.e., the ratio between the reproduction numbers of
the invading and resident variants) of emerging SARS-CoV-2
variants.

1. Methods

A. Data. We analyze time series of reported COVID-19 cases
(https://data.rivm.nl/covid-19/) and proportions of SARS-CoV-
2 variants detected (https://www.rivm.nl/coronavirus-covid-19/
virus/varianten) from the Netherlands between 29 November
2021 and 30 January 2022. Datasets are publicly available on
the National Institute for Public Health and the Environment
(RIVM) website.

Serial-interval data are taken from ref. 4. Infector–infectee pairs
were identified through contact tracing, and their symptom onset
dates were reported through a national surveillance database.
Serial intervals were then calculated by taking the difference
between symptom onset dates of the infector and the infectee.
In order to ensure independence between serial intervals, one
infectee was chosen at random for each infector in the original
analysis. See the original article for additional details of data
collection.

Publicly available data are aggregated by the length of the serial
interval in days and do not include additional individual-level
information, such as exposure dates, symptom onset dates, or age.
The original article presented serial-interval estimates stratified by
the vaccination status in supplementary materials, but stratified
data are not publicly available; we rely on publicly available
data to keep the analysis simple and to focus on the qualitative
effects of dynamical biases. The aggregated data consist of 2,529
transmission pairs and are further stratified by the presence of S
gene target failure (SGTF), week of infectors’ symptom onset date
(week 50, December 13 to 19, 2021, and week 51, December 20
to 26, 2021), and the type of transmission (within- or between-
household transmission). In the main text, we combine data
from weeks 50 and 51 of 2021 (13 to 26 December) and present
a stratified analysis in SI Appendix. For simplicity, we refer to
transmission pairs with and without SGTFs as Omicron and
Delta transmission pairs, respectively. Incubation-period data
were originally collected from 513 individuals (consisting of 258
Omicron and 255 Delta cases), with symptom onsets between
December 1, 2021 and January 2, 2022; however, the data are
not publicly available with the original article. Instead, we rely on
previous estimates (4) to derive growth-rate-adjusted incubation-
period distributions.

B. Estimating Epidemic Growth Rates. In order to accurately
estimate incubation-period and generation-interval distributions
of the Delta and Omicron variants, we have to take their
epidemiological dynamics—in particular, their growth rates—

into account. To estimate the growth rates of the Delta and
Omicron variants, we first estimate the number of COVID-19
cases infected with each variant by multiplying reported weekly
numbers of cases by the proportion of Delta and Omicron
variants detected—we use weekly time series to smooth over
patterns of testing and reporting within each week. We note
that the proportion of Delta and Omicron variants detected
is reported with the date of sampling, whereas the case data
are reported with the date of report, meaning that there is
some delay between the two datasets (typically around 2 d). For
simplicity, we do not account for this delay in our growth-rate
estimates; instead, we later perform sensitivity analysis to assess
how growth rates affect the inferences of the incubation-period
and generation-interval distributions. We also do not account
for uncertainties around the estimates of the proportion of each
variant—almost 2000 samples were tested each week between the
week of November 28, 2021, and the week of January 23, 2022,
making uncertainty due to sample size small; we note however
that this estimate is also sensitive to the assumption that sampling
is random.

We then fit a generalized additive model (5) to the logged
weekly case estimates to obtain smooth trajectories for case
time series. More specifically, we model the logged weekly
numbers of cases infected with each variant as a function
of time using a penalized cubic spline fitted with restricted
maximum likelihood (specified as gam(log(cases)∼s(time,
bs="cs"), method="REML") using the MGCV R package):
We use Gaussian likelihoods to fit to logged cases in part for
convenience and in part because the inferred numbers of cases
infected with each variant are not whole numbers. In principle, it
might be preferable to explicitly model the process of sampling for
strain testing and then to use negative-binomial likelihoods for
case numbers (6), but our main purpose here is simply to roughly
estimate growth rates with reasonable uncertainties. Finally, we
take the derivative of the predicted logged numbers of cases
infected with each variant to obtain time-varying growth rate
estimates.

To obtain confidence intervals on the estimated time-varying
growth rates, we generate 1,000 parameter sets by resampling
spline coefficients from a multivariate normal distribution using
the estimated variance–covariance matrices. We calculate time-
varying growth rates from each parameter set and use equitailed
quantiles to generate 95% confidence limits. We note that
this method of calculating confidence intervals gives point-wise
confidence intervals, meaning that the confidence intervals give
95% coverage for the set of estimates at each time point; these
intervals are narrower than simultaneous confidence intervals,
which give 95% coverage for the set of estimated time series
across the whole time period (7).

C. Estimating Forward Incubation-Period Distributions from
Backward Incubation-Period Distributions. The incubation-
period distributions from 513 individuals (consisting of 258
Omicron and 255 Delta cases), with symptom onsets between
December 1, 2021 and January 2, 2022, were previously reported
in ref. 4. These data cover a wider time period than the serial-
interval data. Ref. 4 used the methods of ref. 8, which estimates
the incubation period by inferring distributions of time of
infection for each individual from their known exposure dates.
In particular, the methods of ref. 8 assume that the infection
time is uniformly distributed across exposure dates and compare
the inferred infection time to a known symptom-onset time to
calculate the incubation period for each individual. Even if this
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method can accurately estimate the infection time, and therefore
the incubation period, of each individual, dynamical biases can
still affect this sort of cohort-based estimation of the incubation
period.

More specifically, incubation periods (and other epidemiolog-
ical delays) can be measured in two ways: forward and backward
(3). Forward incubation periods are measured from a cohort
of individuals who were infected at the same time. We expect
the forward incubation-period distribution fI (τ ) to remain
relatively constant over the course of an epidemic of one given
variant, although biases can arise in observing incubation periods,
based on public or medical awareness of the disease. Backward
incubation periods are measured from a cohort of individuals
who developed symptoms at the same time. The backward
incubation-period distribution is sensitive to epidemic dynamics:
The difference between the forward and backward distribution
arises because forward incubation periods look forward from
the reference point toward symptom development, which is an
individual-level process, while backward incubation periods look
backward toward an infection event, which requires interaction
with an infectious individual.

In particular, when incidence of infection is growing exponen-
tially, we are more likely to observe backward incubation periods
that are shorter than the corresponding forward incubation
periods because there will be relatively more individuals who
were infected recently. Assuming that incidence of infection
is changing exponentially at a constant rate r across the
study period, the backward incubation-period distribution bI (τ )
corresponds to

bI (τ ) =
exp(−rτ )fI (τ )∫
∞

0 exp(−rx)fI (x) dx
, [1]

where the denominator is a normalization constant so that bI (τ )
integrates to 1. Therefore, the backward incubation-period distri-
bution bI (τ ) gives a biased estimate of the corresponding forward
distribution fI (τ ). The method of ref. 8 starts from observed
symptom onsets and estimates the backward incubation-period
distribution.

Assuming a constant growth rate r, the corresponding forward
incubation-period distributions can be calculated by inverting
Eq. 1, taking into account that fI is a probability distribution
and therefore needs to be normalized to integrate to 1:

fI (τ ) =
exp(rτ )bI (τ )∫
∞

0 exp(rx)bI (x) dx
. [2]

Since incubation-period data are not provided, we are not able to
fit Eq.2 directly; instead, we take the backward incubation-period
distributions bI (x) estimated by ref. 4, which was originally
assumed to follow a Weibull distribution, and apply Eq. 2. In
particular, ref. 4 estimated the scale and shape parameters of the
Weibull distribution to be 4.93 (95% CI: 4.51 to 5.37) and 1.83
(95% CI: 1.59 to 2.08), respectively, for the Delta cases, and
3.60 (95% CI: 3.23 to 3.98) and 1.50 (95% CI: 1.32 to 1.70),
respectively, for Omicron cases.

We also model the backward incubation-period distribution
bI (τ ) using a Weibull distribution based on the assumptions of
Backer et al. (4). To account for uncertainties in the original
parameter estimates, we rely on a sampling scheme, similar to the
one we used for the growth rate analysis (in section 2.2). First,
we approximate the previously inferred posterior distributions
of the shape and scale parameters of the Weibull distribution

using a lognormal distribution—we parameterize the lognormal
distribution such that i) its median matches the median of the
posterior distributions and ii) the probability that a random
variable following the specified lognormal distribution falls
between the lower and upper credible limits is 95% (9). We draw
1,000 samples of the shape and scale parameters (for the backward
distribution bI (τ ) from the specified lognormal distributions and
estimate the corresponding forward distribution using Eq. 2. We
take 95% equitailed quantiles to obtain 95% confidence intervals.
We repeat the analysis across plausible ranges of r for the Delta
and Omicron variants separately (discussed later).

D. Estimating Forward Generation-Interval Distributions from
Forward Serial-Interval Distributions. Dynamical biases in the
serial-interval distributions are more complex because the serial
interval depends on the incubation periods of the infector and
the infectee as well as the generation interval between them
(Fig. 1). For example, ref. 4 measured the forward serial-interval
distributions from cohorts of infectors who developed symptoms
during the same week. In this case, the forward serial interval τs
can be expressed in the form (3):

τs = −τi,1 + τg,symp + τi,2, [3]

where τi,1 represents the backward incubation period of the
infector (because all infectors developed symptoms at the same
time) and τi,2, represents the forward incubation period of the
infectee. Here, τg,symp represents the generation interval between
the infector and the infectee; we use the subscript symp to indicate
that these generation intervals are measured from infectors who
developed symptoms at the same time.

The generation-interval distribution for a symptom-based
cohort (τg,symp in Eq. 3) is biased (compared to the generation-
interval distribution for an infection-based cohort) because
infectors who developed symptoms at the same time will have
shorter incubation periods (when the epidemic is growing) and
are therefore likely to transmit earlier (Fig. 1A). This generation-
interval distribution for a symptom-based cohort depends on the
backward incubation-period distribution:

fG,symptom(τ ) =
∫
∞

0
fG|I (τ |x)bI (x) dx, [4]

where fG|I (τ |x) represents the forward generation-interval dis-
tribution conditional on a known value of the incubation
period, x, and bI (x) represents the backward incubation-period
distribution. Instead, the forward generation-interval distribu-
tion measured from a cohort of individuals who were infected
at the time is expected to provide reliable estimates of the
distribution across individuals (because their incubation-period
distribution is expected to remain constant over time, Fig. 1B):

fG,inf (τ ) =
∫
∞

0
fG|I (τ |x)fI (x) dx. [5]

Previous analyses of serial-interval distributions typically assumed
that the incubation periods and generation intervals are indepen-
dent (10); in this case, the generation-interval distribution for
the symptom-based and infection-based cohorts are identical.

In summary, when an epidemic is growing exponentially,
there are two opposing effects affecting the relationship be-
tween the mean forward serial and generation interval. First,
infectors who developed symptoms at the same time are more
likely to have shorter (backward) incubation periods than the
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Same symptom onset time

Infector A

Infectee B

Infector C

Infectee D

Infection Transmission, A to B Symptom

Incubation period Serial interval

Generation interval

Infection Symptom

Incubation period

Infection Transmission, C to D Symptom

Incubation period Serial interval

Generation interval

Infection Symptom

Incubation period

Symptom−based infector cohort

Same infection time

Infector E

Infectee F

Infector G

Infectee H

Infection Transmission, E to F Symptom

Incubation period Serial interval

Generation interval

Infection Symptom

Incubation period

Infection Transmission, G to H Symptom

Incubation period Serial interval

Generation interval

Infection Symptom

Incubation period

Infection−based infector cohort

A

B

Fig. 1. Schematic diagrams of serial and generation intervals from symptom- and infection-based infector cohorts. (A) Forward serial intervals are measured
from the cohort of infectors who develop symptoms at the same time. In this case, infectors will have shorter incubation periods than their infectees on average;
the corresponding generation intervals will be also short because infectors with short incubation periods will transmit earlier. (B) Generation intervals for the
cohort of infectors who are infected at the same time are not biased by dynamical effects on incubation periods.

corresponding forward incubation periods of their infectees on
average, E[τi,1] < E[τi,2], causing the mean forward serial
interval to be longer than the mean symptom-based generation
interval (E[τs] > E[τg,symp]). Second, the mean symptom-based
generation interval will be shorter than the mean infection-based
generation interval: E [τg,inf ] > E[τg,symp] due to correlations
between incubation periods and generation intervals. Therefore,
the difference between the mean forward serial interval and the
mean infection-based generation interval is difficult to predict
in general; in most cases, however, we expect the former
effect to dominate, causing the mean forward serial interval

to be longer than the mean infection-based generation interval:
E[τs] > E [τg,inf ] (3). Earlier work on serial-interval distributions
neglected dynamical biases in the incubation periods of the
infectors (11, 12), which allowed the authors to conclude that the
mean generation and serial intervals are identical. For simplicity,
we will use the term “forward generation-interval” to refer to the
infection-based generation-interval distribution (measured from
a cohort of infectors who were infected at the same infection
time, Fig. 1B), and drop the subscript inf .

Assuming that the incidence of infection will continue to
change exponentially at a constant rate r, the forward serial-
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interval distribution for a cohort of infectors who developed
symptoms at the same time t is expected to remain unchanged
through time (3). Then, we can focus on the forward serial-
interval distribution at t = 0, which in turn allows us to
reparameterize the incubation-period and generation-interval
distributions in terms of the infection time of the infector α1 < 0
and of the infectee α2 > α1. Under this parameterization, for a
given length of a serial interval τ , we can rewrite the incubation
period of the infector as−α1; the generation interval as α2−α1;
and the incubation period of the infectee as τ − α2. Then, the
forward serial-interval distribution fS(τ ) for a cohort of infectors
who developed symptoms at time t = 0 can be expressed in terms
of three distributions (Eq. 3): the backward incubation-period
distribution of the infector bI (−α1) (taken from Eq. 1), the
forward generation-interval distribution conditional on a known
value of the incubation period, fG|I (α2 − α1| − α1), and the
forward incubation-period distribution of the infectee fI (τ−α2).
Integrating across infection time of the infectorα1 < 0 and of the
infectee α2 > α1 and rewriting the backward incubation-period
distribution bI (−α1) in terms of the forward distribution, we
obtain (3)

fS(τ ) =
1
φ

∫ 0

−∞

∫ τ

α1

exp(rα1)fG|I (α2 − α1| − α1)

fI (−α1)fI (τ − α2) dα2 dα1, [6]

where φ is a normalization constant chosen so that
∫
fS(x) dx =

1. As discussed earlier, this method assumes that the incidence
is changing exponentially at a constant rate r across the study
period. As we show in Results, the exponential growth rate
changes over the study period, including weeks 50 and 51
(December 13 to 26, 2021); for illustrative purposes, we
choose representative values of r that for Delta and Omicron
during this period and also explore across plausible ranges of r
(see below).

While the derivation of the forward serial-interval distribution
Eq. 6 may be complex, its implementation is simple. The
main difference between our model and previous models that
neglect dynamical effects (10, 13–15) is the exponential growth
term exp(rα1) and the normalization term φ—it is relatively
straightforward to include these terms in existing models of
serial intervals. Ferretti et al. (16, 17) also included this term
in their analyses of serial-interval data but accounted only for the
epidemic growth effect (and not the decay effect).

We model the forward incubation-period fI (τ ) and
generation-interval fG(τ ) distributions using a bivariate log-
normal distribution. The joint distribution is parameterized by
log-scale means, µI and µG , log-scale variances, σ 2

I and σ 2
G ,

and the log-scale correlation coefficient ρ. Thus, the forward
generation-interval distribution conditional on the incubation
period fG|I (τ |τi,1) has a log-scale mean of µG +σGρ(log(τi,1)−
µI )/σI and a log-scale variance of σ 2

G(1−ρ2). For a given value
of r, we first estimate the forward incubation-period distribution
from the backward distribution, previously estimated by ref.
4, using Eq. 2. We then approximate the forward incubation-
period distribution with a lognormal distribution by matching
the mean and SD (also known as the method of moments); we
note that we are unable to directly fit a lognormal distribution
to the forward incubation-period distribution because we are
relying on existing estimates rather than raw data. Using this
incubation-period distribution, we fit Eq. 6 to the observed serial-
interval data by minimizing the negative log-likelihood. We then
calculate the mean forward generation interval using Eq. 5. The

95% confidence intervals are calculated by taking the estimated
variance–covariance matrix for our mean and SD parameters
and calculating the corresponding variance–covariance for the
overall mean using Taylor expansion—this method is also known
as the Delta method (18). We assume ρ = 0.75 throughout
based on ref. 19—since we do not have individual-level data on
infection and symptom onset times, we expect this parameter
to be unidentifiable in practice. In SI Appendix, we explore how
assumptions about ρ affect inferences of the generation-interval
distribution.

E. Estimating Instantaneous Reproduction Numbers. We use
our estimates of the generation-interval distributions to infer
instantaneous reproduction numbers R(t) of the Delta and
Omicron variants as well as the ratio between the two repro-
duction numbers. Estimating the instantaneous reproduction
number—defined as the average number of secondary infections
that a primary case will generate if epidemiological conditions
remain constant (20)—requires the intrinsic generation-interval
distribution g(τ ):

R(t) =
i(t)∫

∞

0 i(t − x)g(x) dx
, [7]

where i(t) represents incidence of infection. Here, we approx-
imate the intrinsic generation-interval distribution with the
forward generation-interval that we estimate for weeks 50 and 51
of 2021 (13 to 26 December)—when the epidemic is growing
or decaying exponentially, we expect the forward generation-
interval to be a good proxy for the intrinsic generation-interval
distribution (21, 22). Incidence of infection is approximated by
shifting the smoothed case trajectories by one week to account
for reporting delays. This method of approximating incidence
of infection assumes a fixed delay between infection and case
reporting; in practice, deconvolution is required to accurately
estimate the incidence of infection (23). Case reports are also
sensitive to changes in testing behavior, and therefore, our
estimates of R(t) must be interpreted with care. Confidence
intervals are calculated by sampling parameters of the smoothed
case trajectories as well as the generation-interval distributions
from multivariate normal distributions and repeating the analysis
1,000 times.

2. Results

Fig. 2 summarizes the epidemiological context in the Netherlands
during the study period. The first known Omicron case in
the Netherlands was sampled on November 19, 2021 (4),
during a period when COVID-19 incidence was decreasing
(Fig. 2A). As the Omicron variant continued to spread and
increase in proportion (Fig. 2B), the number of COVID-19
cases started to increase (Fig. 2A). Multiplying the proportion
of each variant with the number of reported COVID-19 cases
further allows us to estimate the epidemiological dynamics of each
(Fig. 2C ). The number of COVID-19 cases infected with the
Delta variant continued to decrease throughout the study period
with time-varying growth rates decreasing from r ≈ −0.01/d to
r ≈ −0.09/d by the week of January 16, 2022, and increasing
back up to r ≈ −0.04/d by the end of January 2022 (Fig. 2D).
The number of COVID-19 cases infected with the Omicron
variant increased rapidly but decelerated over time with time-
varying growth rates decreasing from r = 0.18/d on the week of
December 19, 2021, to r = 0.04/d by the end of January 2022.
These changes in growth rates coincide with the introduction
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Fig. 2. Epidemic dynamics of the Delta and Omicron variants in the Netherlands between November 2021 and January 2022. (A) Daily numbers of reported
COVID-19 cases in the Netherlands (points). The solid line represents the 7-d moving average. Data are publicly available at https://data.rivm.nl/covid-19/. (B)
Proportion of SARS-CoV-2 variants detected from the Netherlands. Data are publicly available at https://www.rivm.nl/coronavirus-covid-19/virus/varianten. (C)
Weekly numbers of COVID-19 cases infected with the Delta (black points) and Omicron (orange triangles) variants are estimated by multiplying the weekly
numbers of cases (A) with the proportion of each variant (B). Solid lines and shaded areas represent fitted lines and corresponding 95% confidence intervals
using a generalized additive model. (D) Estimated growth rates of the Delta (black) and Omicron variants (orange) and their growth-rate differences (purple).
Lines and shaded areas represent medians and corresponding 95% confidence intervals. Growth rates are estimated by taking the derivative of the generalized
additive model estimates of the logged number of cases.

of lockdown on December 19, 2021 (24) and its relaxation
beginning January 15, 2022 (25, 26). We note that the growth-
rate difference between the Delta and Omicron variants decreased
over time. Hereafter, we use r = −0.05/d for the Delta variant
and r = 0.15/d for the Omicron variant as representative growth
rates—these growth rates correspond to the mean growth rates
between December 1, 2021 and January 2, 2022, during which
the incubation-period data were collected. We then evaluate the
growth-rate effects across r = −0.1/d to 0.0/d for the Delta
variant and r = 0.1/d to 0.2/d for the Omicron variant as a
sensitivity analysis.

Previous analysis of a cohort of individuals who developed
symptoms between December 1, 2021 and January 2, 2022
found longer mean (backward) incubation period for the Delta
variant than for the Omicron variant (4) (Fig. 3A). However,
when we account for growth-rate differences and reestimate the
forward incubation periods, we find that both variants have

similar incubation-period distributions with a mean of 4.1 d
(95% CI: 3.8 to 4.4 d) for the Delta variant and 4.2 d (95% CI:
3.6 to 4.9 d) for the Omicron variant Fig. 3B). In this case, the
difference between the mean backward and forward incubation
periods corresponds to−22% and 7% bias for the Omicron and
Delta variants, respectively. Although the exact estimate of the
mean forward incubation periods of both variants is sensitive to
the assumed growth/decay rates, we find similar means across a
plausible range of growth rates (Fig. 3 C and D). For example,
the mean forward incubation period of the Delta variant changes
from 3.8 d (95% CI: 3.5 to 4.1 d) to 4.4 d (95% CI: 4.0 to
4.8 d) as we change the assumed values of r from −0.1/d to
0.0/d (Fig. 3C ), while the mean forward incubation period of
the Omicron variant changes from 3.8 d (95% CI: 3.4 to 4.4 d)
to 4.5 d (95% CI: 3.9 to 5.5 d) as we change the assumed values
of r from 0.1/d to 0.2/d (Fig. 3D). Wider confidence intervals
for the Omicron variant are driven by greater uncertainties from
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Fig. 3. Observed and corrected differences in incubation-period distributions of Delta and Omicron variants. (A) Posterior median estimates of the observed
(backward) incubation periods of the Delta (black) and Omicron (orange) variants by ref. 4. (B) Forward incubation-period distributions assuming r = −0.05/d
and r = 0.15/d for the Delta (black) and Omicron (orange) variants, respectively. (C and D) Corrected estimates of the mean forward incubation period for
different assumptions about the growth rates of the Delta (C) and Omicron variants (D). Lines represent median estimates. Shaded regions represent the
corresponding 95% confidence intervals.

the dynamical correction, which is larger for Omicron because
of higher absolute growth rates.

We can use these estimates of the forward incubation-period
distributions to estimate the forward generation-interval distribu-
tions. For illustrative purposes, we first focus on aggregated serial
intervals from infectors who developed symptoms during weeks
50 and 51 (13 to 26 December 2021). For within-household
transmission pairs (Fig. 4A), the Omicron variant has shorter
mean serial interval (3.1 d; 95% CI: 2.9 to 3.3 d) than that
of the Delta variant (3.7 d; 95% CI: 3.5 to 3.8 d). When we
account for growth-rate differences (assuming r = −0.05/d and
r = 0.15/d for the Delta and Omicron variants, respectively),
the estimated mean forward generation interval exhibits a slightly
larger difference (Fig. 4B): 3.0 d (95% CI: 2.7 to 3.2 d) for the
Omicron variant and 3.8 d (95% CI: 3.7 to 4.0 d) for the Delta
variant. Our estimate of this difference in these mean generation
intervals is robust across plausible ranges of assumptions about
the growth rates of the variants (Fig. 4 C and D). Assuming
lower values of the correlation ρ between the incubation period
and generation intervals leads to larger differences in the mean
generation intervals of the Delta and Omicron variants (SI
Appendix, Fig. S1). In particular, the generation-interval estimates
of the Omicron variant are more sensitive to the assumed values
of ρ due to faster changes in incidence of infection—for example,
changing ρ from 0.85 to 0.5 changes the mean generation-
interval estimates for the Omicron variant from 3.1 d (95%
CI: 2.8 to 3.3 d) to 2.7 d (95% CI: 2.5 to 2.9 d). We explore
a wide range of ρ to consider the possibility that our original
assumption (ρ = 0.75) may under or overestimate the true ρ.

Similar pictures arise for between-household transmission
pairs, but the differences in mean serial intervals are unclear

(Fig. 4E): 3.0 d (95% CI: 2.7 to 3.3 d) for the Omicron variant
and 3.3 d (95% CI: 3.0 d to 3.6 d) for the Delta variant.
Consistent with the original study, which also reported shorter
mean serial intervals for between-household pairs (4), we estimate
shorter mean generation intervals for between-household Delta
pairs. While the difference in mean generation intervals is larger,
there is greater uncertainty in their mean estimates (Fig. 4F ): 2.9
d (95% CI: 2.5 to 3.3 d) for the Omicron variant and 3.5 d
(95% CI: 3.2 to 3.8 d) for the Delta variant. Once again, these
patterns are robust across plausible ranges of assumptions about
the growth rates of the Delta and Omicron variants (Fig. 4 G
and H ).

In SI Appendix, Fig. S2, we present generation-interval
estimates that are further stratified by the week of infectors’
symptom onset (December 13 to 19, 2021 and December 20
to 26, 2021). We generally estimate shorter mean generation
intervals for the Omicron variant, but the differences are unclear
across all strata, except for within-household transmission pairs
during week 50 (December 13 to 19, 2021). We also estimate
a reduction in the mean forward generation intervals from week
50 (December 13 to 19, 2021) to week 51 (December 20 to 26,
2021), especially for the Delta variant; this decrease in the mean
generation interval is likely associated with the lockdown.

Accounting for differences in the generation-interval distribu-
tions, we estimate that the instantaneous reproduction number of
the Omicron variant decreased from 1.73 (95% CI: 1.59 to 1.89)
to 1.14 (95% CI: 1.00 to 1.32) between December 12, 2021, and
January 23, 2022 (Fig. 5A). On the other hand, the instantaneous
reproduction number of the Delta variant decreased from 0.90
(95% CI: 0.83 to 0.97) to 0.69 (95% CI: 0.65 to 0.75) between
December 5, 2021, and January 9, 2022, and increased back up
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Fig. 4. Estimated forward generation-interval distributions of Delta and Omicron variants. (A and E) Observed and fitted forward serial-interval distributions for
within-household (A) and between-household (E) transmission pairs in the Netherlands for the Delta (black) and Omicron (orange) variants (4). Serial intervals
are calculated for infectors who developed symptoms on weeks 50 and 51 (December 13 to 26, 2021). Points represent the observed data. Lines represent the
fitted lines assuming r = −0.05/d for the Delta variant and r = 0.15/d for the Omicron variant. (B and F ) Estimated forward generation-interval distributions
for within-household (B) and between-household (F ) transmission pairs in the Netherlands. (C, D, G, and H) Sensitivity of the mean forward generation-interval
estimates to assumed growth rates of the Delta (C and G) and Omicron variants (G and H) for within-household (C and D) and between-household (G and H)
transmission pairs. Lines represent maximum likelihood estimates. Shaded regions represent the corresponding 95% confidence intervals.

to 0.83 (95% CI: 0.73 to 0.94) by January 23, 2022 (Fig. 5A). We
estimate the reproduction advantage (i.e., the ratio between the
instantaneous reproduction numbers of the Omicron and Delta
variants) stayed roughly constant at around 2.10 (95% CI: 1.90 to
2.33) between December 12 to 26, 2021, and slowly decreased to
1.38 (95% CI: 1.15 to 1.65). However, if we neglect differences
in the generation-interval distributions and solely rely on the
generation-interval-distribution estimate for the Delta variant,
we overestimate the reproduction number of the Omicron variant

and therefore the reproduction advantage (Fig. 5B). In this case,
the reproduction advantage decreases from 2.38 (95% CI: 2.13 to
2.67) to 1.43 (95% CI: 1.17 to 1.75), corresponding to roughly
4 to 13% bias. Using between-household generation intervals
also gives similar conclusions about changes and biases in the
reproduction number estimates (SI Appendix, Fig. S3).

In both cases, the decrease in the reproduction advantage
coincides with the decrease in the reproduction number of
the Omicron variant, implying that epidemiological changes
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Fig. 5. Estimated instantaneous reproduction number advantages of the Omicron variant. (A) Estimated instantaneous reproduction numbers and their ratios
over time while accounting for differences in the generation-interval distributions. (B) Estimated instantaneous reproduction numbers and their ratios over time
while assuming identical generation-interval distributions. The instantaneous reproduction number of each variant is estimated using the renewal equation by
shifting the smoothed case curves by one week (Fig. 2C). The intrinsic generation-interval distribution is approximated by the maximum likelihood estimates
of the forward generation-interval distributions for within-household transmission pairs based on r = −0.05 for the Delta variant (black) and r = 0.15 for the
Omicron variant (orange). Purple lines represent the ratio between the effective reproduction numbers of the Delta and Omicron variants. Lines and shaded
regions represent medians and corresponding 95% confidence intervals.
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driving the dynamic had larger effects on the transmission of the
Omicron variant than on the transmission of the Delta variant;
a larger reduction in the reproduction number of the Omicron
variant also caused its growth rate to decrease faster, causing
changes in the observed growth-rate difference shown earlier
(Fig. 2D).

3. Discussion

We compare estimates of the forward incubation-period and
generation-interval distributions of the Delta and Omicron
variants from the Netherlands in late 2021 and early 2022. The
original analysis detailing the dataset previously reported a shorter
mean incubation period and serial interval for the Omicron
variant (4). Accounting for differences in epidemic growth rates,
however, we find similar incubation-period distributions for
both variants but a shorter (by 0.3 to 0.8 d) mean generation
interval for the Omicron variant relative to that of the Delta
variant. Finally, we estimate that the transmission advantage of
the Omicron variant decreased from 2.1- to 1.4-fold between
early December and late January. Improving generation-interval
estimates by taking dynamical effects into account may improve
understanding of epidemic dynamics and control measures.

The generation-interval distribution describes changes in
the individual-level transmission dynamics over the course of
infection and therefore provides crucial information for epidemic
control. A few studies have estimated the generation-interval
distributions of SARS-CoV-2 infections from serial-interval
data, but most of them neglect the effects of epidemic growth
rates (10, 13–15)—these practices can be largely attributed to
historical work that concluded that serial and generation intervals
have the same means based on the assumption that infectors
and infectees have identical incubation-period distributions
(11, 12, 27). We build on newer work (3), which demonstrated
theoretically that forward serial-interval distributions depend on
epidemic growth rates, and further confirm that estimates of
the forward generation-interval distributions are indeed sensitive
to epidemic growth rates. These effects are also pertinent to
epidemiological inferences of past events from a cohort of infected
individuals who experienced a later event at the same time—
this includes inferences of other delay distributions, such as
incubation-period distributions, as well as viral load trajectories
(28). Our sensitivity analysis also shows that the assumptions
about the correlation between incubation periods and generation
intervals can also have important effects on the estimates of the
generation-interval distributions (SI Appendix, Fig. S1).

This study presents a method for accounting for dynamical
biases when inferring incubation-period distributions based on
epidemic growth rates. Observed incubation-period distributions
based on symptom-based cohorts are generally expected to be
biased, and similar kinds of corrections will be necessary to
accurately estimate the incubation-period distribution. We note
that making these kinds of corrections will also depend on
data availability, model complexity, and other epidemiological
covariates affecting incubation periods, such as vaccine sta-
tuses. Accounting for different sources of biases is critical to
accurately estimating incubation-period distributions (and other
epidemiological distributions alike) but will necessarily increase
uncertainties in the estimates. On the other hand, it is still
possible to characterize the forward incubation-period distri-
butions without making growth-rate-based corrections through
a careful cohorting of individuals with similar infection times
when detailed information about infection time is available—

we were not able to explore this in our analysis because we
relied on publicly available information, which does not contain
individual-level information, such as exposure or symptom onset
dates.

A few studies have suggested that the incubation period of the
Omicron variant may be shorter than that of the Delta variant.
The median estimates of the Omicron incubation period typically
range between 3 and 4 d, consistent with earlier findings of
(4). However, these data were collected when the number of
Omicron infections was growing rapidly (29, 30), suggesting
that they may have been subject to similar biases. On the other
hand, incubation-period estimates based on individuals who were
exposed from the same event are likely more reliable (because they
look forward in time): ref. 31 estimated the median incubation
period of the Omicron variant to be 3 d among those who
attended the same holiday party (n = 117) on November 26,
2021 in Norway. However, we cannot rule out the possibility
that some of these attendees were infected prior to the party
given that some individuals had COVID-like symptoms prior
to the party with at least 96 of the attendees sharing offices;
neglecting these factors can lead to underestimation of the mean
incubation period. Systematic comparisons of data collection
methods and epidemiological contexts are needed to properly
assess the differences in incubation period distributions of the
Delta and Omicron variants.

Some studies have also estimated that the Omicron variant has
shorter transmission intervals than the Delta variant (2, 30, 32),
but there has been a lack of direct generation-interval estimates.
Refs. 33 and 34 estimated the generation-interval distributions
of the Omicron variant but they both relied on population-level
epidemic dynamics (rather than individual-level transmission
data). Here, we estimate a shorter mean realized generation
interval for the Omicron variant. The realized generation
intervals represent time between actual infection events and are
different from the intrinsic generation intervals, which reflect the
average profile of infectiousness of infected individuals over the
course of their infections (21).

Shorter realized generation intervals of the Omicron variant
may be driven, in part, by shorter intrinsic generation intervals.
For example, faster within-host clearance of the Omicron variant
(35) may lead to faster recovery, which could in turn shorten
the intrinsic generation interval (36). Preexisting immunity
has also typically been associated with faster recovery (37)
(and therefore, shorter generation intervals). In our analysis,
a greater proportion of Omicron than Delta infections would
have been in people with preexisting immunity (because these
people are less likely to be infected by Delta); this allowed the
Omicron variant to rapidly replace the previously dominant Delta
variant at the population level. However, the individual-level
relationship between immunity and the intrinsic generation-
interval distributions of the Omicron variant is difficult to predict
given its high immune evasiveness: Some individuals may have
been able to elicit a strong immune response, thereby recovering
faster, but many other individuals likely experienced a full
course of infection. In other words, preexisting immunity may
shorten intrinsic generation intervals, whereas immune evasion
may lengthen them (relative to reinfection with Delta, which
would be less immune evasive). Their combined effects on the
resulting generation-interval distribution are unclear. We further
note that the population-level effects of immune evasiveness,
which allowed the Omicron variant to invade rapidly, do not
depend on these possible changes in the generation-interval
distribution: Immune evasion could have allowed Omicron to
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replace Delta even without differences in intrinsic generation-
interval distributions.

Even if the Delta and Omicron variants had identical intrinsic
generation-interval distributions (e.g., a lack of changes in viral
kinetics or the effect of preexisting immunity), their realized
generation-interval distributions could still differ. For example,
if there are more stringent contact tracing measures against the
Omicron variant, individuals who are infected with the Omicron
variant would transmit for a shorter amount of time, thereby
resulting in a shorter realized generation interval. Although this
was the case in the Netherlands (4), targeted control measures
against a specific variant are likely to have a small impact on
the overall generation-interval distribution given that variants
are usually identified for a small fraction of total infections. If
Delta and Omicron variants have different degrees of symp-
tomaticity or different incubation periods, behavioral changes
after symptom onset, such as self-isolation, could also lead to
shorter realized generation intervals. However, this explanation is
also less likely given similarities in the inferred incubation-period
distributions.

Instead, we tentatively hypothesize that the differences in
realized generation intervals may be primarily driven by the
network effect (15, 22): a higher reproduction number of the
Omicron variant leads to faster susceptible depletion among
close contacts, which in turn prevents long generation intervals
from being realized. To illustrate this effect, consider a scenario
in which an individual infected with variant A can infect one
person per day for 4 d, whereas another individual infected
with variant B can infect two people per day for 4 d—in this
case, both variants have identical intrinsic generation-interval
distributions. We note that this scenario does not match our
model, which assumes time-varying force of infection, not a
deterministic number of infections; nonetheless, this scenario
provides a simple example for explaining the network effect.
Under the same scenario, if each individual closely interacted
with four other contacts, the individual infected with variant
A will infect one person every day; in contrast, an individual
infected with variant B will infect two people per day and no
longer transmit (effectively) after the first 2 d, leading to shorter
realized generation intervals. Previous simulations showed that
such network effects can have a considerable impact on realized
generation intervals (22). While the network effect is expected
to be strongest among household contacts, it is also applicable to
other forms of contact structures that involve repeated contacts
between the same group of individuals (because only the first
infectious contact results in infection).

Our study indicates that the Omicron variant has a shorter
mean realized generation interval than that of the Delta variant,
but the difference between the intrinsic infectiousness profiles
remains unclear. In particular, similarities in the incubation-
period distributions of the Delta and Omicron variants suggest
that the differences in their infectiousness profiles may be smaller
than the estimated differences in their realized generation-interval
distributions. In addition, the counterfactual initial intrinsic
generation intervals (for an immunologically naive population)
of both variants are likely longer than what we estimate
given existing levels of interventions, including vaccination,
and pandemic awareness—estimating initial intrinsic generation-
interval distributions of SARS-CoV-2 variants is expected to
be a difficult problem as it requires data from times when
awareness levels were low (19). Nonetheless, estimates of real-
ized generation-interval distributions describe current epidemic
dynamics, implicitly accounting for intervention and behavioral

effects, and can therefore be expected to improve estimates of
effective reproduction numbers.

Our study also has important implications for estimating
transmission advantages of new SARS-CoV-2 variants. In the
example we consider, neglecting differences in the generation-
interval distributions leads to ≈10% bias in the estimates of the
reproduction advantage (i.e., the ratio between the reproduction
numbers of the Omicron and Delta variants). More generally,
the bias in inferring the reproduction advantage of an emerging
variant is expected to be sensitive to the assumed generation-
interval distribution of the resident variant. For example, ref.
38 estimated a much higher reproduction advantage of the
Omicron variant (>4-fold) compared to the Delta variant in
South Africa but also assumed a longer mean generation interval
for the Delta and Omicron variants (6.4 vs. 5.2 d, respectively).
With our generation-interval estimates, we estimate a 2.6-
fold reproduction advantage for the Omicron variant assuming
r = −0.06 and r = 0.26 for the Delta and Omicron variants,
respectively—these growth rates were chosen to match the
assumptions and results of ref. 38 for Gauteng province in South
Africa. Overall, our revised estimates are more consistent with
contact tracing studies that reported a 1.5- to 2.2-fold increase
in secondary attack rates across household and nonhousehold
settings of Omicron relative to Delta variants (39, 40).

We considered two ways of measuring transmission ad-
vantages: growth-rate differences and reproduction advantage.
Characterizing new variants in terms of their reproduction
advantage is useful because it is directly related to the amount
of increased transmissibility and immune evasion (38). On the
other hand, the growth-rate difference is easier to estimate in real
time and is also more directly relevant to short-term dynamics.
For example, when two strains have the same R > 1, the one
with shorter generation intervals will grow faster and become
dominant as long asR > 1; however, whenR is reduced below 1
(either due to intervention or susceptible depletion), the one with
a longer generation interval will grow faster. These transmission
advantages are captured by the growth-rate difference, but not by
the ratio of reproduction numbers of two strains. Therefore, we
suggest using growth-rate differences and reproduction advantage
as complementary measures for understanding the dynamics of
emerging SARS-CoV-2 variants.

There are several limitations to our analysis. First, we primarily
rely on case data to understand epidemic patterns of the Delta
and Omicron variants. In doing so, we implicitly assume that the
delay between infection and reports is fixed. However, changes in
case trajectories are sensitive to testing patterns and therefore may
not accurately reflect patterns of infections. While this limitation
does not affect our generation-interval estimates, our inferences
of the transmission advantages of the Omicron variant should be
interpreted with care.

We assume a constant growth rate for each variant throughout
our analysis. During the study period, growth rates of both
the Delta and Omicron variants changed slowly, and therefore,
our constant-growth-rate assumption provides a reasonable
approximation for their dynamics across two weeks. However,
this assumption might be problematic when growth rates are
changing rapidly (e.g., due to an introduction of stringent control
measures) or if the sampling window is too wide. Extending
our framework to account for time-varying growth rates is
relatively simple when inferring the forward incubation-period
distribution from the corresponding backward distribution—we
can simply replace r with r(t) in Eq. 2 because the backward
incubation-period distribution is a weighted average of the
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forward incubation-period distributions and the number of
individuals in each cohort (i.e., individuals who were infected at
the same time). However, such extensions are more complicated
for linking generation- and serial-interval distributions because
the forward serial-interval distribution also depends on the
cohort reproduction number—for example, if a certain cohort
of infectors had a higher reproduction number (e.g., because
they were infected before control measures were observed), we
are more likely to observe transmission from this cohort (see ref.
3 for more details). Assuming exponential growth allows us to
avoid this complexity. Extending our framework to account for
time-varying growth rates can provide more accurate tools for
inferring epidemiological delay distributions.

We assume that incubation periods and generation intervals
follow a bivariate lognormal distribution—thus, we implicitly
assume a power-law relationship between them. This was done
because data were limited, and previous work (19) has shown
that this approach can also capture important aspects of the
relationship. In fact, however, previous studies have shown that
mechanistic models capture this relationship better (17, 41).
When sufficient data are available, more mechanistic approaches
may therefore be more suitable.

We do not account for individual-level heterogeneity, such
as age, vaccination status, or previous exposure history. In
general, epidemic growth rates may differ between infection
groups (e.g., the incidence of infection caused by any variant
is expected to grow faster among immunologically naive indi-
viduals), and these growth-rate differences can affect estimates
of epidemiological delay distributions, including the incubation-
period and generation-interval distributions. We are not able to
perform stratified analyses because individual-level information
was not publicly available. Therefore, while we estimate unclear
differences in incubation-period distributions between Delta and
Omicron infections, controlling for other covariates, such as age
and immune history, may help better characterize differences in
Delta and Omicron infections.

Finally, there are several sources of biases in serial-interval
data that we did not consider. For example, the direction of
transmission is difficult to establish for SARS-CoV-2 due to
presymptomatic transmission. Other sources of information,
such as exposure history and positive test results, can help resolve
uncertainties but are imperfect. Serial-interval data also depend
on the ability of infected individuals to accurately recall when
their symptoms started. Future studies may explore how these
biases affect the inference of generation intervals from serial
intervals. While comparisons of incubation-period and serial-
interval distributions can shed insight into pathogen dynamics,
both distributions typically do not account for the dynamics of
asymptomatic infections; neglecting these differences can further
bias estimates of transmissibility of a pathogen (42).

Monitoring changes in key epidemiological parameters is
critical to understanding the evolution of SARS-CoV-2 and

predicting its future dynamics (43). Our study synthesizes a previ-
ously developed theoretical framework on serial- and generation-
interval distributions and presents methodological advances in
monitoring epidemiological parameters. Similar efforts will be
critical to improve estimates of the infectiousness profiles of
future SARS-CoV-2 variants, especially among asymptomatically
infected individuals. These conclusions are relevant for other
emerging and endemic pathogens in general.

This study also has potential implications for studying genera-
tion times in population biology (44–47). For example, mean
age of reproduction for a cohort of mothers corresponds to
the forward generation interval, while mean age of mothers
for a cohort of offspring corresponds to the backward interval.
Their difference is therefore likely affected by dynamical biases
(48). Similarly, the connection between generation times based
at different recruitment stages is analogous to that between
serial and generation intervals (49–51). Comparing definitions
and methods across these fields could provide valuable future
insights.

Data, Materials, and Software Availability. All data and code are stored in
a publicly available GitHub repository (https://github.com/parksw3/omicron-
generation) (52).
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