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Abstract: Tick infestation and tick-borne disease spread in a region of multiple adjacent patches
with different environmental conditions depend heavily on the host mobility and patch-specific suit-
ability for tick growth. Here we introduce a two-patch model where environmental conditions differ in
patches and yield different tick developmental delays, and where feeding adult ticks can be dispersed
by the movement of larger mammal hosts. We obtain a coupled system of four delay differential equa-
tions with two delays, and we examine how the dynamical behaviours depend on patch-specific basic
reproduction numbers and host mobility by using singular perturbation analyses and monotone dynam-
ical systems theory. Our theoretical results and numerical simulations provide useful insights for tick
population control strategies.
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1. Introduction

Our focus here is the population dynamics of ticks, such as Ixodes ricinus and Ixodes scapularis,
which are responsible for transmitting tick-borne diseases including Lyme disease and tick-borne en-
cephalitis. The lifecycle for ticks consists of four main stages: eggs, larvae, nymphs and adults and the
stage-to-stage development from larvae to nymphs and from nymphs to adults occurs after ticks blood
feed on hosts. There are different substages for each post-egg stage: the questing stage, the feeding
stage and the engorged stage. In the questing stage, ticks are looking for a host to climb on and to feed
on. In the feeding stage, they are feeding on a host before detaching and molting on the ground. There
is a final stage for female ticks which is the egg-laying stage where ticks lay eggs before dying soon
after.

Tick population dynamics are highly dependent on the habitat’s local microclimatic conditions [1].
Host abundance is key to sustaining the tick population since ticks have to take blood meals from
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hosts in order to develop. Ticks at different stages of their life cycles have different host preferences:
immature ticks mostly feed on small mammals and rodents while adult ticks tend to have their blood
meals from large mammal hosts such as deer [2]. The abundance of suitable large mammals in the
habitat is therefore the key for adult ticks to complete their life cycles and for the reproduction rate
of female ticks [3]. Importantly, these large mammal hosts also provide the mobility of adult ticks as
feeding adult ticks may be carried by the hosts and may drop off in different locations.

Climatic conditions affect the tick population dynamics. Temperature, for example, has been seen
to play a crucial role in tick persistence [4]. Low temperatures may lead ticks to a quiescence period,
a state of torpidity in which ticks arrest their development and slow down their progression [5]. It
is also well known that ticks cannot survive at really cold temperatures, so when temperature rises
due to climate change, the geographic range of ticks expands quickly leading to the observed trend of
northward spread of ticks in Canada [6]. Other factors influencing tick development include humidity
and daylight exposure. Ticks tend to survive easily in humid environments such as those with thick mat
layers in the soil [7]. Several experimental studies show that ticks are very vulnerable to dessiccation,
therefore they remain questing for a limited time before replenishing their reserves [8]. It is also well
known that ticks are sensitive to changes of daylight and tend to undergo long diapausing periods in
habitats where the amount of light is below an optimal level [9].

It is therefore plausible that there are, in a given region, different geographical locations with differ-
ent tick concentrations corresponding to different combinations of local environmental conditions [10].
A habitat configuration analysis has been conducted to understand and predict tick spread in a small-
scale landscape, and to understand what are the potentially favourable areas for tick development and
how connectivity between different patches impacts the tick population distribution [11]. In this study,
hosts play a key role since ticks themselves have very limited mobility, and they can move between
different patches only when they are attached to hosts during their blood meals. Geographical areas
can be classified, according to certain micro-habitat and climatic conditions, including those afore-
mentioned, into being favourable or unfavourable for tick growth and spread [12]. Certain woodland
areas are both less exposed to daylight and contain a dense shrub layer that can keep the humidity
level high, these areas are highly favourable for tick growth [1]. On the other hand, grasslands do not
have any protection from sunlight and can be drier comparing with woodlands, and they are shown
to be less favourable for tick development [13]. Several studies have found a higher density of ticks
in woodlands than in grasslands, for example in Spain [14] and Sweden [15] for Ixodes ricinus, and
in the United States [16] for Ixodes scapularis. All the ecological factors mentioned above have been
shown to influence tick development by modifying not only their survival rates but also their diapause
probabilities [17]. This means that ticks in general take less time to develop in favourable areas with
respect to unfavourable areas, and have a higher survival rate.

Therefore, human interventions can alter the tick population dynamics. The two main types of
control are habitat-related and host-related. The former are used to decrease the favourability of a
specific environment for ticks and include the removal of the leaf litter layer, which is important for
ticks to avoid dessiccation [18], and controlled burns in some tick-rich areas [19]. The latter are useful
to modify tick migration between patches by fencing deer, for example [20]. Both control strategies
have a significant impact on the parameters of any tick population dynamics model including the one
we are developing here. One of our objectives in this study is to evaluate the impact of these changes
on tick population dynamics. Our previous study [21] shows that not every control intervention can
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achieve its intended goals.
Spatial models involving ticks have been extensively used in literature to show how tick population

grow and tick-borne diseases spread. Some of these formulations use partial differential equations and
aim to study what is the velocity of epidemics spread using traveling waves [22, 23]. In our approach,
we consider a patchy environment instead of a continuous spatial model and focus on the importance of
both patch-dependent and host mobility parameters. We will use delay differential equations to capture
the physiological structure of ticks. We note that a few delay differential equation compartmental
models have been developed. Some incorporated just a single development delay [24–26]. Some others
considered the possibility of ticks to undergo diapause which would lead to an additional delay during
development [27, 28]. The multi-patch approach has also been developed by references [29, 30] in a
multi-species epidemic model and recently by reference [31] using an ordinary differential equation
system where the focus was mainly on the effect of cofeeding and host movement for disease spread.

The paper is organized as follows. We first introduce the model and show some of its key prop-
erties. We then calculate how patch-dependent survival probabilities and migration parameters affect
the isolated and interconnected tick reproduction numbers and show their relevance in the study of the
equilibria and stability of the model. Finally, we discuss the effect of tick reproduction numbers by
showing some simulations and describe the implications of these results.

2. The patchy model spatially stratified by developmental delay and connected by host mobility

We consider a simplified habitat configuration with patch stratified by tick development delays
(regular vs diapause) and connected by host mobility. We assume the region consists of two patches,
which are distinguished by the length of life cycle of inhibiting ticks, and connected by large size
mammals which provide blood meals to feeding adult ticks. We consider the case where the density
of relevant hosts in each patch remains constant. Large size mammals move between the two patches
and therefore engorged adult ticks can drop off to both patches due to the host mobility. We ignore
the mobility of hosts for larval and nymphal ticks, so in our patchy model, only feeding adult ticks
and egg-laying adult ticks are explicitly incorporated while ticks in other stages can be calculated from
the production rate and the survival probability. To quantify the movements of hosts for feeding adult
ticks between two patches, we assume a portion αi j of feeding adult ticks in patch i can drop off to
patch j to become egg-laying adults in patch j and we consider this movement to be instantaneous. We
consider the case where ticks grow up from the eggs in a given patch remain in the patch until they
reach the stage of feeding adults, in other words, hosts for larval and nymphal ticks can move within the
patch but not to the other patch. We allow the two patches to be distinct in terms of the developmental
delays from eggs to feeding adults, one with normal developmental delay τ1 and another with diapause
developmental delay τ2. Since diapause would result in a longer overall development time for ticks, we
assume τ2 > τ1. The probability of survival from eggs to feeding adults ρi depends exclusively on the
patchy environment, although this can be relaxed to allowing delay-dependent probability. The birth
rate is, as normal, assumed to be dependent on the egg-laying adult density in the same patch by the
Ricker reproduction function f (x) = pxe−qx [32] with p and q being positive constants. The transition
time from feeding adult ticks to engorged ticks is relatively short, so the probability for the engorged
adult ticks to drop off to the same patch where the feeding ticks come from is relatively large, and
hence α12 + α21 < 1. In our model, feeding adults either die out with the death rate µ or develop into
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egg-laying adults with the development rate γ; and feeding adults advance to the egg-laying stage with
rate γF = γθ, where θ represents the survival probability of female adult ticks in the engorged stage.
Egg-laying adults then die out with the death rate δ. The parameters are incorporated in Figure 1 and
have been summarized in Table 1.

Figure 1. Flowchart for the model. The parameters are indicated in Table 1. Note that death
rates have not been incorporated to the diagram.

Table 1. Parameters of model (2.1)

Parameter Explanation
ρi Survival probability from eggs to feeding adults in patch i.
τi Development delay from eggs to feeding adults in patch i.
γ Development rate from feeding to engorged adults.
µ Mortality rate for feeding adults.
γF Transfer rate from feeding adults to egg-laying adults.
αi j Probability for feeding adult ticks in patch i to drop off to patch j.
p Maximal number of eggs produced by an egg-laying adult.
q Density-dependent effect parameter in the Ricker function.
δ Exit rate for egg-laying ticks.

With the above assumptions and notations, we can now formulate the patchy model with multiple
delays as follows: 

F′1(t) = ρ1 f (L1(t − τ1)) − (γ + µ)F1(t),
F′2(t) = ρ2 f (L2(t − τ2)) − (γ + µ)F2(t),
L′1(t) = (1 − α12)γF F1(t) + α21γF F2(t) − δL1(t),
L′2(t) = α12γF F1(t) + (1 − α21)γF F2(t) − δL2(t).

(2.1)
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In the above formulation, we use Fi(t) to denote the number of feeding adults and Li(t) for the number
of egg-laying adults in patch i.

3. Preliminary qualitative properties of the model

We first show that solutions to (2.1) are non-negative (given non-negative initial conditions) and
bounded. Define the phase space

X+ := {(z1, z2, ϕ1, ϕ2) : zi ∈ [0,∞); ϕi ∈ C([−τi, 0], [0,∞)), i = 1, 2}

with norm

||ϕ|| =

2∑
i=1

(|zi| + sup
s∈[−τi,0]

|ϕi(s)|).

Proposition 1. Solutions to (2.1) (given non-negative initial conditions) are non-negative and uni-
formly bounded.

Proof. For a given initial data ϕ ∈ X+, we obtain a unique solution to (2.1) xϕ(t) for positive times ( [42],
Theorem 2.3), generating a semiflow on X+ . We can easily show that the solution to (2.1) with initial
data ϕ ∈ C([−τ2, 0],R4

+) remains non-negative. In what follows, we show that solutions of the model
with non-negative initial data are attracted to a bounded and positively invariant subset in X+. Let

Γ := {(F1, F2, L1, L2) ∈ R4
+ : F1 ≤ F∞1 , F2 ≤ F∞2 , L1 ≤ L∞1 , L2 ≤ L∞2 }, (3.1)

where

F∞1 =
ρ1 p

qe(γ + µ)
,

F∞2 =
ρ2 p

qe(γ + µ)
,

L∞1 =
γF p

qeδ(γ + µ)
[(1 − α12)ρ1 + α21ρ2],

L∞2 =
γF p

qeδ(γ + µ)
[ρ1α12 + ρ2(1 − α21)].

We note that the Ricker function f (x) = pxe−qx is bounded for x ≥ 0 and has its maximum at x = 1
q .

Let

f∞ := max
x≥0

( f (x)) = f
(
1
q

)
=

p
qe
.

Therefore, F′1(t) ≤ ρ1 f∞ − (γ + µ)F1(t),
F′2(t) ≤ ρ2 f∞ − (γ + µ)F2(t),

(3.2)

from which and with F1(0) = F0
1 and F2(0) = F0

2 it follows that

F1(t) ≤ (F0
1 − F∞1 )e−(γ+µ)t + F∞1 ,

F2(t) ≤ (F0
2 − F∞2 )e−(γ+µ)t + F∞2 .

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5329–5360.



5334

In particular, if F0
i ≤ F∞i , then Fi(t) ≤ F∞i , ∀t ≥ 0, for i = 1, 2. Also note thatL′1(t) ≤ (1 − α12)γF F∞1 + α21γF F∞2 − δL1(t),

L′2(t) ≤ α12γF F∞1 + (1 − α21)γF F∞2 − δL2(t),
(3.3)

from which and with L1(0) = L0
1 and L2(0) = L0

2 it follows that

L1(t) ≤ (L0
1 − L∞1 )e−(γ+µ)t + L∞1 ,

L2(t) ≤ (L0
2 − L∞2 )e−(γ+µ)t + L∞2 .

Consequently, if L0
i ≤ L∞i , then Li(t) ≤ L∞i ∀t ≥ 0, for i = 1, 2. The above argument implies that

all solutions of the model system remain bounded for all t ≥ 0 and solutions are in fact ultimately
uniformly bounded since

lim sup
t→∞

Fi(t) ≤ F∞i , lim sup
t→∞

Li(t) ≤ L∞i .

□

Let
X+Γ := {ϕ ∈ X+; zi ≤ F∞i ; ϕ(s) ∈ [0, L∞i ], s ∈ [−τi, 0], i = 1, 2}.

Then we have shown that X+
Γ

is a positively invariant set in X+ which attracts solutions of (2.1) with
initial data in X+.

4. Tick reproduction number

We start with a special case where two patches are isolated from each other, and we have for i = 1, 2
the coupled system F′i (t) = ρi f (Li(t − τi)) − (γ + µ)Fi(t),

L′i(t) = γF Fi(t) − δLi(t).
(4.1)

We compute the tick basic reproduction number R0,i for a single patch i which allows us to study
the average number of female ticks that are born by a single female tick in this patch. The procedure
is similar to calculating R0 for epidemics where we consider linearization at the tick-free equilibrium.
The existence of a positive feedback f ′(0) = p > 0 guarantees that monotone dynamical theory can be
applied. Therefore, the stability of the trivial solution of (4.1) is equivalent to that of the linear ordinary
differential equation system associated (where τi = 0) [33].

We first linearize system (4.1) at the trivial equilibrium, where τ1 = τ2 = 0, to get(
F′i
L′i

)
= (T + Σ)

(
Fi

Li

)
,

with the transmission matrix T and the transition matrix Σ

T =
(
0 ρi p
0 0

)
, Σ =

(
−(γ + µ) 0
γF −δ

)
,

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5329–5360.



5335

where p = f ′(0). To use the next generation matrix approach, we note that the inverse of Σ and the
next generation matrix K = −TΣ−1 are given by

Σ−1 =

 − 1
γ+µ

0
−

γF
δ(γ+µ) −

1
δ

 , K =
( γFρi p
δ(γ+µ)

ρi p
δ

0 0

)
.

Therefore the spectral radius
R0,i =

γFρi p
δ(γ + µ)

, (4.2)

gives the so-called basic reproduction number. As shall be shown, this basic reproduction number
decides whether ticks can persist in patch i, namely, R0,i > 1 implies persistence and R0,i < 1 implies
extinction of ticks in the patch. In what follows, we focus on the case in which R0,1 > 1 > R0,2. So
when the two patches are isolated from each other, ticks can persist in patch 1 but will be extinct in
patch 2.

We now consider the case when two patches are connected by mobility of feeding adults (α12, α21 ,

0). Similarly to the isolated case, the stability of the trivial solution of (2.1) is equivalent to that of
the linear ordinary differential equation system associated (where τ1 = τ2 = 0) [33]. We linearize
model (2.1) at the trivial equilibrium to get a linear system of ordinary differential equations for X =
(F1, F2, L1, L2)T , with τ1 = τ2 = 0

X′ = (T + Σ)X.

We now use the next generation approach to introduce the so-called basic reproduction number. The
transmission matrix T and the transition matrix Σ are given by

T =


0 0 ρ1 p 0
0 0 0 ρ2 p
0 0 0 0
0 0 0 0

 , Σ =


−(γ + µ) 0 0 0

0 −(γ + µ) 0 0
(1 − α12)γF α21γF −δ 0
α12γF (1 − α21)γF 0 −δ

 ,
respectively.

The inverse of Σ is given by

Σ−1 =


− 1
γ+µ

0 0 0
0 − 1

γ+µ
0 0

−
(1−α12)γF
δ(γ+µ) −

α21γF
δ(γ+µ) −1

δ
0

−
α12γF
δ(γ+µ) −

(1−α21)γF
δ(γ+µ) 0 −1

δ

 ,
so the next generation matrix K = −TΣ−1 is given by

K =


(1−α12)γFρ1 p

δ(γ+µ)
α21γFρ1 p
δ(γ+µ)

ρ1 p
δ

0
α12γFρ2 p
δ(γ+µ)

(1−α21)γFρ2 p
δ(γ+µ) 0 ρ2 p

δ

0 0 0 0
0 0 0 0

 .
We define the tick reproduction number R0,c = ρ(K12), where ρ denotes the spectral radius and

K12 =

 (1−α12)γFρ1 p
δ(γ+µ)

α21γFρ1 p
δ(γ+µ)

α12γFρ2 p
δ(γ+µ)

(1−α21)γFρ2 p
δ(γ+µ)

 = (
(1 − α12)R0,1 α21R0,1

α12R0,2 (1 − α21)R0,2

)
.
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Therefore the characteristic equation of K12 is:[
λ2 − λ

(
γFρ1 p(1 − α12) + γFρ2 p(1 − α21)

δ(γ + µ)

)
+
γ2

Fρ1ρ2 p2(1 − α12 − α21)
δ2(γ + µ)2

]
= 0,

and can be rewritten as
λ2 − bλ + c = 0,

where
b = (1 − α12)R0,1 + (1 − α21)R0,2, c = R0,1R0,2[1 − (α12 + α21)].

Note that both eigenvalues are real since

∆ = [(1 − α12)R0,1 + (1 − α21)R0,2]2 − 4R0,1R0,2[1 − (α12 + α21)],
≥ [(1 − α12)R0,1 + (1 − α21)R0,2]2 − 4R0,1R0,2[1 − α12][1 − α21],
= [(1 − α12)R0,1 − (1 − α21)R0,2]2,

> 0.

Therefore the tick reproduction number is

R0,c = ρ(K12) =
b +
√
∆

2
. (4.3)

There are two interesting special cases of semi-connectedness of two patches.

4.1. Escalating up

This is the case when hosts for feeding adults move only from patch 2 (tick-unfavorable patch) to
patch 1 (tick-favorable patch), so α12 = 0. In this case, we have

∆ = [R0,1 + (1 − α21)R0,2]2 − 4R0,1R0,2(1 − α21),
= [R0,1 − (1 − α21)R0,2]2,

and

R0,eu =
1
2

[R0,1 + (1 − α21)R0,2 + R0,1 − (1 − α21)R0,2]

= R0,1.

4.2. Cascading down

This is the case when hosts for feeding adults move only from patch 1 (tick-favorable patch) to
patch 2 (tick-unfavorable patch), so α21 = 0. In this case, we have

∆ = [(1 − α12)R0,1 + R0,2]2 − 4R0,1R0,2(1 − α12),
= [(1 − α12)R0,1 − R0,2]2,

and
R0,cd = max{R0,1(1 − α12),R0,2}.
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5. Model equilibrium analyses

A nontrivial equilibrium (F∗1, F
∗
2, L

∗
1, L

∗
2) of (2.1) is given by

0 = ρ1 f (L∗1) − (γ + µ)F∗1,
0 = ρ2 f (L∗2) − (γ + µ)F∗2,
0 = (1 − α12)γF F∗1 + α21γF F∗2 − δL∗1,

0 = α12γF F∗1 + (1 − α21)γF F∗2 − δL∗2.

This can be rewritten as:
F∗1 =

ρ1 f (L∗1)
γ + µ

, F∗2 =
ρ2 f (L∗2)
γ + µ

,

L∗1 =
(1 − α12)γF F∗1 + α21γF F∗2

δ
, L∗2 =

α12γF F∗1 + (1 − α21)γF F∗2
δ

.

(5.1)

5.1. Isolated patches

Without host mobility (α12 = α21 = 0), (5.1) is given by

F∗1 =
ρ1 f (L∗1)
γ + µ

, F∗2 =
ρ2 f (L∗2)
γ + µ

, L∗1 =
γF F∗1
δ

, L∗2 =
γF F∗2
δ

.

Using the basic reproduction number, we obtain

L∗i =
γFρi f (L∗i )
δ(γ + µ)

=
R0,i f (L∗i )

p
, i = 1, 2.

Noting f (x)
x = pe−qx, we get

L∗i =
1
q

ln
(
γFρi p
δ(γ + µ)

)
=

1
q

ln(R0,i), i = 1, 2.

Recall that ρ1 ≥ ρ2, R0,1 ≥ R0,2, we conclude that if R0,1 < 1, then the unique equilibrium is E0 =

(0, 0, 0, 0); if R0,2 < 1 < R0,1, then the model has a nontrivial equilibrium E1 = (F∗1, 0, L
∗
1, 0); if

R0,2 > 1, then the model has three nontrivial equilibria: E1 = (F∗1, 0, L
∗
1, 0), E2 = (0, F∗2, 0, L

∗
2), and

the coexistence equilibrium EC = (F∗1, F
∗
2, L

∗
1, L

∗
2). As stated before, we focus on the second case. In

addition to the threshold R0,i = 1, there is another threshold R0,i = e at which the system changes its
feedback nature from positive (R0,i < e) to negative (R0,i > e). At this point, the resulting equilibrium
L∗i =

1
q maximizes the birth function f (Li) and separates the cases for which f ′(L∗i ) > 0 (for R0,i < e)

and f ′(L∗i ) < 0 (for R0,i > e).

5.2. Semi-connected patches

In the escalating up case when ticks move only from an unfavourable to a favourable environment
(i.e., α12 = 0), there exists a unique non-trivial equilibrium (F∗1, 0, L

∗
1, 0) where (F∗1, L

∗
1) is identical to

the isolated case in the scenario considered (R0,2 < 1 < R0,1). In the cascading down case (i.e., α21 = 0),
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we have either only the trivial equilibrium or a coexistence equilibrium. Namely, if α12 >
R0,1−1

R0,1
,

we have the equilibrium E0 = (0, 0, 0, 0), but when α12 <
R0,1−1

R0,1
, we have a coexistence equilibrium

EC = (F∗1, F
∗
2, L

∗
1, L

∗
2) that will be specified below.

Indeed, from the non-trivial equilibrium equations in (5.1), we get
L∗1 =

γF(1 − α12)ρ1 f (L∗1)
δ(γ + µ)

,

L∗2 =
γF(α12ρ1 f (L∗1) + ρ2 f (L∗2))

δ(γ + µ)
.

(5.2)

From the first equation of (5.2) and using f (x)
x = pe−qx, we find that L∗1 = q−1 ln((1 − α12)R0,1) > 0 only

if α12 <
R0,1−1

R0,1
. In this case we rewrite the second equation of (5.2) as

L∗2 =
α12

1 − α12
L∗1 +

γFρ2 f (L∗2)
δ(γ + µ)

.

Noting that R0,2 =
ρ2 pγF
δ(γ+µ) and defining ζ∗ := α12

1−α12
L∗1

p
R0,2

, we have

p
R0,2

L∗2 − ζ
∗ = f (L∗2),

and ζ∗ > 0 guarantees that there is always a nontrivial solution of this equation.

5.3. Interconnected patches

We now consider the fully connected case. First of all, using the equations in (5.1), we find F∗1 and
F∗2 as linear combinations of L∗1 and L∗2 whenever α12 , 0, α21 , 0 and α12 + α21 < 1. These are given
by F∗1 = a11L∗1 + a12L∗2,

F∗2 = a21L∗1 + a22L∗2.
(5.3)

where a11 =
δ(1−α21)

γF (1−α12−α21) , a12 = −
δα21

γF (1−α12−α21) , a21 = −
δα12

γF (1−α12−α21) , a22 =
δ(1−α12)

γF (1−α12−α21) .
Note that α12 + α21 < 1 if and only if a11a22 > a12a21.

5.3.1. Geometric approach

We now develop a geometric approach to look at (5.3) as we change α12 and α21 subject to the
constraint α12 + α21 < 1. For notation simplicity, let

ξ =
δ

γF(1 − α12 − α21)
.

Then (5.3) becomes F∗1 = ξ(1 − α21)L∗1 − ξα21L∗2,

F∗2 = −ξα12L∗1 + ξ(1 − α12)L∗2.
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So we substitute the feeding adult equilibria in the two patches F∗1 and F∗2 in (5.3) with the first two
equations of (5.1) and get 

ρ1 f (L∗1)
γ + µ

= ξ(1 − α21)L∗1 − ξα21L∗2,

ρ2 f (L∗2)
γ + µ

= −ξα12L∗1 + ξ(1 − α12)L∗2.

We want to explore graphically the behaviour of L∗1 with respect to L∗2, to study conditions for coex-
istence equilibrium, which would be the intersection of the functions defined below. Taking L∗2 as a
function of L∗1 yields

L∗2 = F(L∗1) :=
1 − α21

α21
L∗1 −

ρ1 f (L∗1)
ξα21(γ + µ)

,

and L∗1 as a function of L∗2 yields

L∗1 = G(L∗2) :=
1 − α12

α12
L∗2 −

ρ2 f (L∗2)
ξα12(γ + µ)

.

In particular we have F(x) − 1−α21
α21

x → 0 as x → ∞ and G(x) − 1−α12
α12

x → 0 as x → ∞. In order for F
and G to be plotted on a x = L∗1, y = L∗2 plot, we need to reflect G about the line y = x. Note also that

F′(x) =
1 − α21

α21
−

ρ1 f ′(x)
ξα21(γ + µ)

,

G′(x) =
1 − α12

α12
−

ρ2 f ′(x)
ξα12(γ + µ)

.

Therefore F′ and G′ are increasing functions since f ′ is decreasing, with
F′(0) =

1 − α21

α21
−

ρ1 p
ξα21(γ + µ)

=
1
α21

[(1 − α21)(1 − R0,1) + α12R0,1],

G′(0) =
1 − α12

α12
−

ρ2 p
ξα12(γ + µ)

=
1
α12

[(1 − α12)(1 − R0,2) + α21R0,2]

Recall that we are interested in the case when R0,1 > 1 > R0,2. This means that F′(0) is relatively small
while G′(0) is relatively large. Since 0 < R0,2 < 1, we see that G(x) is always non-negative for x > 0,
since G(0) = 0, G′(0) > 0 and G′(x) is an increasing function for x ≥ 0. Therefore G−1 is well defined
for x ≥ 0, and (G−1)′(x) is a decreasing function for x ≥ 0, and G−1(x) − α12

1−α12
x→ 0 as x→ ∞. We are

interested in studying the possible intersections between F(x) and G−1(x). We see that G−1(x) < F(x)
for large x since the following inequality holds under the condition α12 + α21 < 1:

α12

1 − α12
<

1 − α21

α21
.

The only case there can be one and only one non-trivial intersection between F(x) and G−1(x) occurs
if

(G−1)′(0) =
1

G′(0)
> F′(0).
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Therefore, we introduce the threshold value Tcoex := F′(0)G′(0)

Tcoex =
1

α21α12
[(1 − α21)(1 − R0,1) + α12R0,1][(1 − α12)(1 − R0,2) + α21R0,2].

In particular, the existence of a non-trivial equilibrium occurs if Tcoex < 1.
Recall that we have computed another threshold value R0,c in (4.3), which is also a threshold to

determine if a coexistence equilibrium exists. The next result shows the equivalence of R0,c and Tcoex

in terms of the coexistence equilibrium.

Theorem 5.1.

R0,c > 1 if and only if Tcoex < 1; R0,c = 1 if and only if Tcoex = 1.

Proof. From the expression of R0,c, we note that

R0,c > 1 if and only if
√

b2 − 4c > 2 − b.

We consider two cases: the case b > 2, and hence
√

b2 − 4c ≥ 0 > 2 − b and the case b ≤ 2. In this
case R0,c > 1 if and only if b > c + 1.

In a similar, way we study when Tcoex < 1, which is equivalent to

[(1 − α21)(1 − R0,1) + α12R0,1][(1 − α12)(1 − R0,2) + α21R0,2] < α12α21,

which can be rewritten as

(1 − α12 − α21)b > (1 − α12 − α21)c + (1 − α12 − α21).

By dividing both sides by (1 − α12 − α21) > 0, we have that b > c + 1. Note that this condition is
equivalent to that for R0,c > 1 in case b ≤ 2.

It remains to show that b > 2 implies Tcoex < 1. We know R0,c ∈ R
+, therefore b2 ≥ 4c. But b > 2

means c ≤ 1; so b > c + 1 holds for b > 2 and c ≤ 1. We can also use a similar argument to show
R0,c = 1 if and only if Tcoex = 1. □

So we have the following result.

Corollary 1. If R0,c < 1 (i.e., Tcoex > 1), then the model has only the trivial equilibrium (0, 0, 0, 0).
If R0,c > 1 (i.e., Tcoex < 1), then the model has a nontrivial equilibrium (F∗1, F

∗
2, L

∗
1, L

∗
2) with each

component positive.

5.3.2. Asymptotic expansion analyses

We have seen that in the interconnected case a closed form solution for the coexistence equilibrium
is difficult to obtain. In this subsection, we study the coexistence equilibrium using a perturbation
analysis when host mobility is small. The equilibria in the case when α12 = ϵα

0
12 and α21 = ϵα

0
21 with

ϵ << 1 can be computed by solving
0 = ρ1 f (L∗1) − (γ + µ)F∗1,
0 = ρ2 f (L∗2) − (γ + µ)F∗2,
0 = (1 − ϵα0

12)γF F∗1 + ϵα
0
21γF F∗2 − δL∗1,

0 = ϵα0
12γF F∗1 + (1 − ϵα0

21)γF F∗2 − δL∗2.

(5.4)
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Consider the asymptotic expansion of the equilibria as:

F∗1 = f1 + ϵ f1,2 + o(ϵ),
F∗2 = f2 + ϵ f2,2 + o(ϵ),
L∗1 = l1 + ϵl1,2 + o(ϵ),
L∗2 = l2 + ϵl2,2 + o(ϵ),

(5.5)

where ( f1, f2, l1, l2) = ( δ
γFq ln(R0,1), 0, 1

q ln(R0,1), 0) is the equilibrium in the isolated patches case where
R0,1 > 1 > R0,2. Making the appropriate substitutions, (5.5) becomes

F∗1 =
δ

γFq
ln(R0,1) + ϵ f1,2 + o(ϵ),

F∗2 = ϵ f2,2 + o(ϵ),

L∗1 =
1
q

ln(R0,1) + ϵl1,2 + o(ϵ),

L∗2 = ϵl2,2 + o(ϵ).

By substituting the values in (5.4), we have the following equations:



0 = ϵ
[

f1,2γF − α12
δ

q
ln(R0,1) − δl1,2

]
+ o(ϵ),

0 = ϵ
[

f2,2γF + α12
δ

q
ln(R0,1) − δl2,2

]
+ o(ϵ),

0 = ϵ
[
ρ1 p
R0,1

(l1,2)(1 − ln(R0,1)) − (γ + µ) f1,2

]
+ o(ϵ),

0 = ϵ
[
ρ2 pl2,2 − (γ + µ) f2,2

]
+ o(ϵ).

Ignoring o(ϵ), this is a linear system of four equations and four unknowns l1,2, l2,2, f1,2, f2,2 which
yields the solution

f1,2 =
α0

12δ

qγF
[ln(R0,1) − 1],

f2,2 =
α0

12δ

qγF

ln(R0,1)
1 − R0,2

,

l1,2 = −
α0

12

q
,

l2,2 =
α0

12

q
ln(R0,1)
1 − R0,2

.
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We therefore obtain the final asymptotic expansion of the coexistence equilibrium in (5.6) as

F∗1 =
δ

qγF
{ln(R0,1) + α0

12ϵ[ln(R0,1) − 1]},

F∗2 =
α0

12δ

qγF

ln(R0,1)
1 − R0,2

ϵ,

L∗1 =
ln(R0,1) − α0

12ϵ

q
,

L∗2 =
α0

12

q
ln(R0,1)
1 − R0,2

ϵ.

(5.6)

We observe that, first of all, the solution (L∗1, L
∗
2, F

∗
1, F

∗
2) is always positive since R0,1 > 1 > R0,2

and ϵ << 1. Secondly, a small host mobility causes the decrease of egg-laying adults in the favorable
environment and an increase in the unfavorable patch. Also, the feeding adult equilibrium in the
favorable environment can increase or decrease, depending on the size of R0,1. If R0,1 > e, then F∗1
increases, otherwise if R0,1 < e, then F∗1 decreases. Finally, the fact that F∗1 increases with mobility of
the host if R0,1 > e is interesting: although mobility of the host decreases L∗1, a large basic reproduction
number in the favorable patch amplifies the number of ticks in the stage from eggs to feeding adults to
compensate for the loss of L∗1.

6. Stability

6.1. Linearization

Linearization at the trivial equilibrium (0, 0, 0, 0) yields:
F′1(t) = ρ1 pL1(t − τ1) − (γ + µ)F1(t),
F′2(t) = ρ2 pL2(t − τ2) − (γ + µ)F2(t),
L′1(t) = (1 − α12)γF F1(t) + α21γF F2(t) − δL1(t),
L′2(t) = α12γF F1(t) + (1 − α21γF F2(t) − δL2(t).

(6.1)

The characteristic equation for λ ∈ C is given by det(B) = 0 where B = B0 + B1e−λτ1 + B2e−λτ2 − λI,

B0 =


−(γ + µ) 0 0 0

0 −(γ + µ) 0 0
(1 − α12)γF α21γF −δ 0
α12γF (1 − α21)γF 0 −δ

 ,
and

B1 =


0 0 ρ1 p 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B2 =


0 0 0 0
0 0 0 ρ2 p
0 0 0 0
0 0 0 0

 .
Defining ψ := (γ + µ + λ)(δ + λ), we have

det(B) = ψ2 − b0ψ + b1 = 0, (6.2)
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where
b0 = (1 − α12)γFρ1 pe−λτ1 + (1 − α21)γFρ2 pe−λτ2 ,

b1 = γFρ1 pe−λτ1γFρ2 pe−λτ2[1 − (α12 + α21)].

Similarly, the linearization at the non-trivial equilibrium (F∗1, F
∗
2, L

∗
1, L

∗
2) is given by

F′1(t) = ρ1 f ′(L∗1)L1(t − τ1) − (γ + µ)F1(t),
F′2(t) = ρ2 f ′(L∗2)L2(t − τ2) − (γ + µ)F2(t),
L′1(t) = (1 − α12)γF F1(t) + α21γF F2(t) − δL1(t),
L′2(t) = α12γF F1(t) + (1 − α21γF F2(t) − δL2(t).

The characteristic equation derives from det(C) = 0, where

C =


−(γ + µ) − λ 0 ρ1 f ′(L∗1)e−λτ1 0

0 −(γ + µ) − λ 0 ρ2 f ′(L∗2)e−λτ2

(1 − α12)γF α21γF −δ − λ 0
α12γF (1 − α21)γF 0 −δ − λ

 .
In particular, det(C) = ψ2 − c0ψ + c1 and

c0 = (1 − α12)γFρ1 f ′(L∗1)e−λτ1 + (1 − α21)γFρ2 f ′(L∗2)e−λτ2 ,

c1 = γFρ1 f ′(L∗1)e−λτ1γFρ2 f ′(L∗2)e−λτ2[1 − (α12 + α21)].

6.2. Isolated patches

With α12 = α21 = 0, we have

det(B) = ψ2 − ψ(γFρ1 pe−λτ1 + γFρ2 pe−λτ2) + γFρ1 pe−λτ1γFρ2 pe−λτ2 .

Therefore det(B) = 0 if and only if (ψ−γFρ1 pe−λτ1)(ψ−γFρ2 pe−λτ2) = 0. Here, each factor corresponds
to the characteristic equation of an isolated patch linearized at the trivial equilibrium. Similarly we have
det(C) = 0 written as

(ψ − γFρ1 f ′(L∗1)e−λτ1)(ψ − γFρ2 f ′(L∗2)e−λτ2) = 0.

Proposition 2. The trivial equilibrium (0, 0) of (4.1) is a global attractor if R0,i < 1 and unstable if
R0,i > 1.

Proof. The linearized system of patch i at the trivial equilibrium is given byF′i (t) = ρi pLi(t − τi) − (γ + µ)Fi(t),
L′i(t) = γF Fi(t) − δLi(t).

This is a delay differential system with an irreducible and cooperative delayed feedback. By Corol-
lary 5.2 of Smith [33], the stability of the above system is the same as that of the corresponding ordinary
differential equation model (letting τi = 0) from which the conclusion follows. □
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We can also consider the stability of the non-trivial equilibrium (F∗i , L
∗
i ) =

(
δ ln(R0,i)
γFq ,

ln(R0,i)
q

)
, when

exists, by considering the linearizationF′i (t) = ρi f ′(L∗i )Li(t − τi) − (γ + µ)Fi(t),
L′i(t) = γF Fi(t) − δLi(t),

(6.3)

where
f ′(L∗i ) = p

1 − ln(R0,i)
R0,i

. (6.4)

It has been shown that 1 < R0,i < e⇒ f ′(L∗i ) > 0; and R0,i > e⇒ f ′(L∗i ) < 0. Let

B =
(
−(γ + µ + λ) ρi f ′(L∗i )e−λτi

γF −(δ + λ)

)
,

The characteristic equation is det B = 0, namely,

(γ + µ + λ)(δ + λ) = γFρi f ′(L∗i )e−λτi , (6.5)

and can be rewritten as
(γ + µ + λ)(δ + λ)

γFρi f ′(L∗i )
= e−λτi . (6.6)

Note that if 1 < R0,1 < e, the system is cooperative and the stability of non-trivial equilibrium of (6.3)
is same for all τi so we can impose τi = 0 and study the ODE model instead [33]. We show that local
stability of the non-trivial equilibrium holds also when e < R0,1 < e2.

Proposition 3. The non-trivial equilibrium (F∗i , L
∗
i ) of (4.1) is locally asymptotically stable for all

τi ≥ 0 if 1 < R0,i < e2.

Proof. We want to show that there are no solutions to the characteristic equation (6.6) with positive
real part. Suppose by contradiction there exists a root of (6.6) λ = x + iy with x ≥ 0. So the following
equality holds:

|(γ + µ + x + iy)(δ + x + iy)| = |γFρi f ′(L∗i )e−(x+iy)τi |,

We also know

|(γ + µ + x + iy)(δ + x + iy)| = |(γ + µ + x + iy)||(δ + x + iy)|

=
√

(γ + µ + x)2 + y2
√

(δ + x)2 + y2

≥
√

(γ + µ)2
√
δ2 = (γ + µ)δ.

While the right hand side with 1 < R0,i < e2 satisfies

|γFρi f ′(L∗i )e−(x+iy)τi | ≤ γFρi| f ′(L∗i )|

= γFρi p

∣∣∣∣∣∣1 − ln(R0,i)
R0,i

∣∣∣∣∣∣
= (γ + µ)δ|1 − ln(R0,i)| < (γ + µ)δ,

a contradiction. □
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Proposition 4. Every non-trivial solution of (4.1) converges to (F∗i , L
∗
i ) as t → ∞ if 1 < R0,i < e.

Proof. We have shown that Γ defined in (3.1) is a positively invariant set of (2.1) and the ω-limit of
the solutions is in Γ. Let Γiso := {(Fi, Li) ∈ R2

+ : Fi ≤ F∞i , Li ≤ L∞i }, where F∞i =
ρi p

qe(γ+µ) , L
∞
i =

γF pρi
qeδ(γ+µ) .

Consider the Jacobian of (6.3) for τi = 0:

J =
(
−(γ + µ) ρi f ′(L∗i )
γF −δ

)
,

We see that Γiso is a positively invariant set of (4.1) containing (F∗i , L
∗
i ) and the ω-limit of its solutions

is contained in Γiso, using the argument similar to that for Proposition 1. We also note that (6.3) is a
cooperative system (for τi = 0), since j1,2, j2,1 ≥ 0 as f ′(L∗i ) > 0 if 1 < R0,i < e. Finally, J is irreducible
since j1,2, j2,1 , 0. Therefore, using the monotone dynamical systems theory [33], we conclude that
(F∗i , L

∗
i ) is globally attractive. □

We remark that it is possible to extend global attractivity of the non-trivial equilibrium also for
e ≤ R0,i < e2 using exponential ordering [33].

Proposition 5. Assume R0,i > e2. The equilibrium (F∗i , L
∗
i ) of (4.1) is locally asymptotically stable if

τi < τ
∗, and is unstable for τi > τ

∗, where τ∗ = ω−1 arctan
(
ω(δ+γ+µ)
ω2−δ(γ+µ)

)
.

Proof. We start with the asymptotic stability of the non-trivial equilibrium when τi = 0. The charac-
teristic equation becomes (γ + µ + λ)(δ + λ) = ρ1γF f ′(L∗i ), which can be rewritten as

λ2 + (γ + µ + δ)λ + δ(γ + µ) + ρ1γF p
(
ln(R0,i) − 1

R0,i

)
= 0.

It is easy to check that both zeros have negative real parts, so (F∗i , L
∗
i ) is asymptotically stable in the

absence of delay.
We expect the presence a Hopf bifurcation as the delay grows. In order to apply the Hopf bifurcation

theorem for DDE systems [34], suppose there exists a purely imaginary root λ∗ = ±iω. Then (γ + µ +
iω)(δ + iω) = ρ1γF f ′(L∗i )e−iωτ∗1 . We separate the real and imaginary parts of this system and yieldδ(γ + µ) − ω2 = ρ1γF f ′(L∗i ) cos(ωτ∗i ),

ω(δ + γ + µ) = −ρ1γF f ′(L∗i ) sin(ωτ∗i ).
(6.7)

The Hopf bifurcation point τ∗i is the smallest τi that satisfies (6.7). Summing up the square of first line
to the square of the second line yields

ω4 + ω2[δ + γ + µ − 2δ(γ + µ)] + δ2(γ + µ)2 − (ρiγF f ′(L∗i ))2 = 0.

Letting ζ = ω2, we obtain

ζ2 + ζ[δ + γ + µ − 2δ(γ + µ)] + δ2(γ + µ)2 − (ρiγF f ′(L∗i ))2 = 0.

That is, using (6.4), we have

ζ2 + ζ[δ + γ + µ − 2δ(γ + µ)] + δ2(γ + µ)2(1 − (1 − ln(R0,i))2) = 0.
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Note that if R0,i > e2, there will always be a unique positive solution since

∆ = (δ + γ + µ − 2δ(γ + µ))2 − 4[δ2(γ + µ)2][1 − (1 − ln(R0,i))2]
> (δ + γ + µ − 2δ(γ + µ))2 ≥ 0.

(6.8)

The two real solutions of ζ are ζ1,2 =
1
2 (2δ(γ + µ) − (δ + γ + µ) ±

√
∆), and the only positive solution is

ζ1 =
1
2

(2δ(γ + µ) − (δ + γ + µ) +
√
∆). (6.9)

Therefore ω = ±
√
ζ1. To find τ∗i , use (6.7) to get

tan(ωτ∗i ) =
ω(δ + γ + µ)
ω2 − δ(γ + µ)

, (6.10)

therefore

τ∗i = ω
−1 arctan

(
ω(δ + γ + µ)
ω2 − δ(γ + µ)

)
.

Consider
h(λ, ξ) = (γ + µ + λ)(δ + λ) − γFρi f ′(L∗i )e−λ(τ∗i +ξ).

Since λ∗ is a root of (6.5) for τi = τ∗i , h(λ∗, 0) = 0. We can verify that hλ(λ∗, 0) , 0, so the
Implicit Function Theorem ensures that there exists λ(ξ) ∈ C1 such that λ(0) = λ∗ = iω. So proving
transversality condition reduces to showing that Re(λ′(0)) , 0. Using implicit differentiation and
noting that h(λ(ξ), ξ) = 0, we have

λ′(0) = −
∂h
∂ξ
|(λ∗,0)/

∂h
∂λ
|(λ∗,0).

The computation of the partial derivatives of h at (λ∗, 0) yields

λ′(0) =
γFρi f ′(L∗i )λ∗e−λ

∗τ∗i

2λ∗ + γ + µ + δ + γFρi f ′(L∗i )τ∗i e−λ∗τ∗i
.

With λ∗ = iω and using the fact that Re(z) = ac+bd
c2−d2 for a complex number z = a+ib

c+id where (c, d) ,
(0, 0), and using the Euler’s formula, and after a series of computations, we have

Re(λ′(0)) , 0 if and only if sin(ωτ∗i )(γ + µ + δ) + 2ω cos(ωτ∗i ) , 0.

So, we need to show that tan(ωτ∗i )(γ + µ + δ) + 2ω , 0, which by the computed tangent from
(6.10), is equivalent to (δ + γ + µ)2 + 2[ω2 − δ(γ + µ)] , 0. This, by isolating ω2, is equivalent to
ω2 , 1

2 (2δ(γ + µ) − (δ + γ + µ)2). But ω2 = ζ1 in (6.9) so we want to compare the two quantities and
check if

√
∆ , (δ+γ+µ)−(δ+γ+µ)2. Using (6.8) for R0,i > e2 and the fact that (δ+γ+µ)2 ≥ 2δ(γ+µ),

we get √
∆ > δ + γ + µ − 2δ(γ + µ) ≥ δ + γ + µ − (δ + γ + µ)2,

completing the proof of the transversality condition. □

We remark that the critical value τ∗i decreases when pρiγF increases, therefore survival probabilities
and maximal amount of eggs produced influence the Hopf bifurcation. Also ω2 depends directly on
b := δ+ γ+ µ− 2δ(γ+ µ). In this case as b decreases, also τ∗i decreases. (F∗1, 0, L

∗
1, 0) is asymptotically

stable if 1 < R0,1 < e2 for all τ1 > 0; or R0,1 > e2 and τ1 < τ
∗; and unstable if τ1 > τ

∗.
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6.3. Semi-connected patches

We now consider the semi-connected case.
Escalating up: In this case, α12 = 0, we have both trivial equilibria and a non-trivial equilibrium

(F∗1, 0, L
∗
1, 0). The characteristic equation at the non-trivial equilibrium det(B) = ψ2 − c0ψ + c1 = 0,

where
c0 = γFρ1 f ′(L∗1)e−λτ1 + (1 − α21)γFρ2 f ′(L∗2)e−λτ2 ,

c1 = γFρ1 f ′(L∗1)e−λτ1γFρ2 f ′(L∗2)e−λτ2[1 − α21].

We can factorize det(B) = 0 as (ψ − a)(ψ − b) = 0, where a = γFρ1 f ′(L∗1)e−λτ1 and b =
(1 − α21)γFρ2 f ′(L∗2)e−λτ2 .

Patch 2 only admits the equilibrium (0, 0) which is asymptotically stable. The stability of the equi-
libria in Patch 1 instead will be exactly the same as that of the isolated case, therefore we conclude
that: trivial equilibrium (0, 0, 0, 0) is unstable (Proposition 2); the non-trivial equilibrium (F∗1, 0, L

∗
1, 0)

is asymptotically stable if 1 < R0,1 < e2 for all τ1 (Proposition 4); is asymptotically stable if R0,1 > e2

for τ1 < τ
∗ and unstable otherwise since it undergoes a Hopf bifurcation at a certain τ∗ derived by (6.7)

(Proposition 5).
Cascading down: In this case, α21 = 0, there is either only the trivial equilibrium if α12 >

R0,1−1
R0,1

, or
there is also a coexistence equilibrium (F∗1, F

∗
2, L

∗
1, L

∗
2).

The characteristic equation at the trivial equilibrium is det(B) = ψ2 − c0ψ + c1 with

c0 = (1 − α12)γFρ1 f ′(L∗1)e−λτ1 + γFρ2 f ′(L∗2)e−λτ2 ,

c1 = γFρ1 f ′(L∗1)e−λτ1γFρ2 f ′(L∗2)e−λτ2[1 − α12].

Thus, we have det(B) = (ψ−a)(ψ−b) with a = (1−α12)γFρ1 f ′(L∗1)e−λτ1 and b = γFρ2 f ′(L∗2)e−λτ2 . Note
that ψ− b = 0 will results only in eigenvalues with negative real part since f ′(L∗2) ≤ p and R0,2 < 1, we
need to only focus on ψ−a = 0. Therefore, we have: the trivial equilibrium (0, 0, 0, 0) is asymptotically
stable if (1−α12)R0,1 < 1, and unstable if (1−α12)R0,1 < 1; the coexistence equilibrium (F∗1, F

∗
2, L

∗
1, L

∗
2)

exists if (1−α12)R0,1 < 1 and is asymptotically stable if 1 < (1−α12)R0,1 < e2 for all τ1; asymptotically
stable if (1 − α12)R0,1 > e2 for τ1 < τ

∗; and unstable otherwise since it undergoes a Hopf bifurcation at
τ1 = τ̃ derived below.

Hopf bifurcation occurs when there exists a purely imaginary root λ = iω to ψ − a = 0, which is
found by solving the following system:δ(γ + µ) − ω2 = (1 − α12)ρ1γF f ′(L∗1) cos(ωτ̃),

ω(δ + γ + µ) = −(1 − α12)ρ1γF f ′(L∗1) sin(ωτ̃).

Using calculations similar to the isolated patch case in Proposition 5, we have

∆ = (δ + γ + µ − 2δ(γ + µ))2 − 4[δ2(γ + µ)2][1 − (1 − α12)(1 − ln(R0,1))2],

ω = ±
√

1
2

(
2δ(γ + µ) − (δ + γ + µ) +

√
∆
)
,

τ̃ = ω−1 arctan
(
ω(δ+γ+µ)
ω2−δ(γ+µ)

)
.

6.4. Interconnected patches

Stability in the interconnected case presents several complications due to the fact that the equilib-
rium is not in a closed form and that the characteristic equation cannot be factored out. We analyse the
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solutions of the characteristic equation

ψ2 − b0ψ + b1 = 0,

where
ψ := (γ + µ + λ)(δ + λ),

and

b0 = (1 − α12)γFρ1 pe−λτ1 + (1 − α21)γFρ2 pe−λτ2

= δ(γ + µ)[(1 − α12)R0,1e−λτ1 + (1 − α21)R0,2e−λτ2],
b1 = γFρ1 pe−λτ1γFρ2 pe−λτ2[1 − (α12 + α21)]
= δ2(γ + µ)2[R0,1R0,2e−λτ1e−λτ2(1 − α12 − α21)].

in terms of the basic reproduction numbers R0,1 and R0,2.
First, we study the solution of this second order equation with respect to x, therefore we compute

∆ = δ2(γ + µ)2{[(1 − α12)R0,1e−λτ1 + (1 − α21)R0,2e−λτ2]2

− 4R0,1R0,2e−λτ1e−λτ2(1 − α12 − α21)}.

So

ψ1,2 =
δ(γ + µ)[(1 − α12)R0,1e−λτ1 + (1 − α21)R0,2e−λτ2 ±

√
ξ]

2
, (6.11)

where

ξ = [(1 − α12)R0,1e−λτ1 + (1 − α21)R0,2e−λτ2]2

− 4R0,1R0,2e−λτ1e−λτ2(1 − α12 − α21).

and we can rewrite the characteristic equation as

(ψ − ψ1)(ψ − ψ2) = 0.

Therefore by replacing ψ with its definition, we have

[(γ + µ + λ)(δ + λ) − ψ1][(γ + µ + λ)(δ + λ) − ψ2] = 0,

and the two different terms can be rewritten separately for i = 1, 2 as

λ2 + λ(δ + γ + µ) + δ(γ + µ)
[
1 −

ψi

δ(γ + µ)

]
= 0.

Therefore the solutions of the characteristic equation (i.e. the eigenvalues of linearized matrix at trivial
equilibrium) have to satisfy one of the following 4 equations for i = 1, 2:

λ =
−(δ + γ + µ) ±

√
∆i

2
, (6.12)

where

∆i = (δ + γ + µ)2 − 4δ(γ + µ)
[
1 −

ψi

δ(γ + µ)

]
,

= [δ − (γ + µ)]2 + 4ψi.

Note that ψi is a function of λ. At this point we prove an analogous result to the isolated case.
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Proposition 6. The trivial equilibrium (0, 0, 0, 0) of (2.1) is a global attractor if R0,c < 1 and unstable
if R0,c > 1.

Proof. The linearized system of patch i at the trivial equilibrium is given by (6.1). This is a delay dif-
ferential system with an irreducible and cooperative delayed feedback. By Corollary 5.2 of Smith [33],
the stability of the above system is the same as that of the corresponding Ordinary Differential Equation
model 

F′1(t) = ρ1 pL1(t) − (γ + µ)F1(t),
F′2(t) = ρ2 pL2(t) − (γ + µ)F2(t),
L′1(t) = (1 − α12)γF F1(t) + α21γF F2(t) − δL1(t),
L′2(t) = α12γF F1(t) + (1 − α21γF F2(t) − δL2(t).

From that, the conclusion follows. □

Analytical considerations on the coexistence equilibrium cannot be made since there is no closed-
form solution. We can study though the stability of the coexistence equilibrium in the asymptotic case
where ϵ << 1 

F′1(t) = ρ1 f (L1(t − τ1)) − (γ + µ)F1(t),
F′2(t) = ρ2 f (L2(t − τ2)) − (γ + µ)F2(t),
L′1(t) = (1 − ϵα0

12)γF F1(t) + ϵα0
21γF F2(t) − δL1(t),

L′2(t) = ϵα0
12γF F1(t) + (1 − ϵα0

21)γF F2(t) − δL2(t).

(6.13)

and show that the stability properties of (4.1) are preserved.

Proposition 7. The non-trivial equilibrium (F∗1, F
∗
2, L

∗
1, L

∗
2) in (5.6) is locally asymptotically stable

in (6.13) for all τ1, τ2 ≥ 0 if 1 < R0,c + o(ϵ) < e2.

Proof. We calculate R0,c for (6.13)

R0,c =
b +
√

b2 − 4c
2

,

where
b = (1 − ϵα0

12)R0,1 + (1 − ϵα0
21)R0,2, c = R0,1R0,2[1 − ϵ(α0

12 + α
0
21)].

Through a series of algebraic computations we have that

b2 − 4c = (R0,1 − R0,2)2 + 2ϵ(α12R0,1 − α21R0,2)(R0,2 − R0,1).

We consider the asymptotic expansion for x→ 0 and a > 0,

√
a2 + x ∼ a +

x
2a
+ o(x),

and observe that

√
b2 − 4c = (R0,1 − R0,2) +

ϵ(α0
12R0,1 − α

0
21R0,2)(R0,2 − R0,1)

2(R0,1 − R0,2)
+ o(ϵ),

= (R0,1 − R0,2) − ϵ(α0
12R0,1 − α

0
21R0,2) + o(ϵ).
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So the asymptotic form of R0,c is

R0,c = R0,1(1 − ϵα0
12) + o(ϵ). (6.14)

We study the characteristic equation
ψ2 − c0ψ + c1 = 0,

where
ψ = (γ + µ + λ)(δ + λ),

and the parameters are

c0 = (1 − ϵα0
12)γFρ1 f ′(L∗1)e−λτ1 + (1 − ϵα0

21)γFρ2 f ′(L∗2)e−λτ2 ,

and
c1 = γFρ1 f ′(L∗1)e−λτ1γFρ2 f ′(L∗2)e−λτ2[1 − ϵ(α0

12 + α
0
21)].

As in the isolated case, we can rewrite the equation as

[ψ − (1 − ϵα0
12)γFρ1 f ′(L∗1)e−λτ1][ψ − (1 − ϵα0

21)γFρ2 f ′(L∗2)e−λτ2] + o(ϵ) = 0.

Therefore the solutions with respect to x are

ψ1 = (1 − ϵα0
12)γFρ1 f ′(L∗1)e−λτ1 ,

ψ2 = (1 − ϵα0
21)γFρ2 f ′(L∗2)e−λτ2 .

We want to show there are no solutions to the characteristic equation with positive real part:

(γ + µ + λ)(δ + λ) = ψi for i = 1, 2. (6.15)

Suppose by contradiction there exists a root of (6.15) λ = x + iy with x ≥ 0. So the following equality
holds for j = 1, 2:

|(γ + µ + x + iy)(δ + x + iy)| = |(1 − ϵα0
12)γFρi f ′(L∗j)e

−(x+iy)τ j |.

We also know

|(γ + µ + x + iy)(δ + x + iy)| = |(γ + µ + x + iy)||(δ + x + iy)|

=
√

(γ + µ + x)2 + y2
√

(δ + x)2 + y2

≥
√

(γ + µ)2
√
δ2

= (γ + µ)δ.

Taking the asymptotic solution from (5.6) and using the fact that f (x) = pxe−qx, we see that

f ′(L∗1) =
p

R0,1
{1 − ln(R0,1) + ϵα0

12[2 − ln(R0,1)]} + o(ϵ),

f ′(L∗2) = p − 2pα0
12ϵ

ln(R0,1)
1 − R0,2

.
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For j = 1, the right hand side with 1 + ϵα12 < R0,i < e2(1 + ϵα12) satisfies

|(1 − ϵα0
12)γFρ1 f ′(L∗1)e−(x+iy)τ2 | ≤ (1 − ϵα0

12)γFρ1| f ′(L∗1)|,

=
γFρ1 p
R0,1

∣∣∣1 − ln(R0,i + ϵα
0
12

∣∣∣ + o(ϵ),

< (γ + µ)δ + o(ϵ).

Note that the condition 1 + ϵα0
12 < R0,i < e2(1 + ϵα0

12) is satisfied if 1 < R0,c < e2 using (6.14).
A similar conclusion can be inferred for j = 2 when R0,2 < 1

|(1 − ϵα0
21)γFρ2 f ′(L∗2)e−(x+iy)τ1 | ≤ (1 − ϵα0

21)γFρ2| f ′(L∗2)|,
≤ (1 − ϵα0

21)γFρ2 p,

= (1 − ϵα0
21)R0,2(γ + µ)δ,

≤ R0,2(γ + µ)δ,
< (γ + µ)δ.

We thus reach a contradiction, therefore all the roots of the characteristic equation have negative real
part and (F∗i , L

∗
i ) is locally asymptotically stable for 1 < R0,i < e2. □

Proposition 8. Every non-trivial solution of (6.13) converges to the equilibrium (F∗1, F
∗
2, L

∗
1, L

∗
2) in (5.6)

for all (τ1, τ2) ≥ 0 if 1 < R0,c + o(ϵ) < e.

Proof. We have shown that Γ defined by (3.1) is a positively invariant set of (2.1) and the ω-limit of
the solutions is in Γ. In a similar way, by multiplying both migration terms by ϵ, we find a set Γasy

preserving the same properties for (6.13). Let

Γasy := {(F1, F2, L1, L2) ∈ R4
+ : F1 ≤ F∞1 , F2 ≤ F∞2 , L1 ≤ L∞1 , L2 ≤ L∞2 },

where

F∞1 =
ρ1 p

qe(γ + µ)
,

F∞2 =
ρ2 p

qe(γ + µ)
,

L∞1 =
γF p

qeδ(γ + µ)
[(1 − ϵα0

12)ρ1 + ϵα
0
21ρ2],

L∞2 =
γF p

qeδ(γ + µ)
[ρ1ϵα

0
12 + ρ2(1 − ϵα0

21)].

Consider the Jacobian of (6.13) for τ1 = τ2 = 0:

J =


−(γ + µ) − λ 0 ρ1 f ′(L∗1) 0

0 −(γ + µ) − λ 0 ρ2 f ′(L∗2)
(1 − ϵα0

12)γF ϵα0
21γF −δ − λ 0

ϵα0
12γF (1 − ϵα0

21)γF 0 −δ − λ

 .
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We see from (6.16) that for small ϵ, f ′(L∗2) > 0. We want to understand how f ′(L∗1) is related to R0,c

using (5.6). We study the case in which f ′(L∗1) > 0, which corresponds to the case in which L∗1 <
1
q .

ln(R0,1) < 1 + α0
12ϵ,

R0,1 < e1+α0
12ϵ ,

R0,1 < e(1 + α0
12ϵ) + o(ϵ).

From (6.14) we see that f ′(L∗1) > 0 if and only if R0,c + o(ϵ) < e. We see that

1. Γasy is a positively invariant set of (6.13) containing (F∗1, F
∗
2, L

∗
1, L

∗
2) in (5.6) and the ω-limit of its

solutions is contained in Γasy - check Proposition 1 for derivation.

2. (6.13) is a cooperative system (for τ1 = τ2 = 0) since jkl ≥ 0 for k , l. This is true since
f ′(L∗1), f ′(L∗2) > 0 if 1 < R0,c + o(ϵ) < e.

3. J is irreducible since for every nonempty proper set I of N = {1, 2, 3, 4}, there is a k ∈ I, j ∈ N \ I
such that jkl , 0 and the digraph is strongly connected.

Therefore, using monotone dynamical theory [33], we deduce that (6.13) does not contain any
periodic solution for 1 < R0,c < e, therefore (F∗1, F

∗
2, L

∗
1, L

∗
2) is attractive. □

It is possible to extend global attractivity of the coexistence equilibrium also for e ≤ R0,c < e2 using
exponential ordering [33] and to study Hopf bifurcation of (6.13).

For the general interconnected case (2.1), we observe through simulations that R0,c has a similar be-
haviour to R0,i and the properties that have been proved by studying the isolated model and asymptotic
expansion can be extended to the general model. In particular we observe that

• 1 < R0,c < e2 - the coexistence equilibrium is a global attractor of (2.1).

• R0,c > e2 - the coexistence equilibrium is conditionally asymptotically stable on the choices of τ1

and τ2.

7. Simulations

The parameters considered in the following simulation are mainly deriving from literature and are
mostly fixed. The normal development delay τ1 is set to 2 years (730 days) while the diapause devel-
opment delay τ2 is set to 3 years (1095 days). The development time from feeding adult to egg-laying
is between 10 and 28 days [35] so we choose it to be on average two weeks (i.e., γ = 1/14). The
death rate of feeding adults is set to µ = 0.005 [36, 37], the survival probability of ticks from feeding
to egg-laying stage is θ = 0.81 [38] and the exit rate δ for feeding adults is set to 1 [35]. The final fixed
parameters are the two constants of the Ricker functions which are p = 1000 and q = 6.2 [38, 39]. We
used Matlab to provide the simulations using the dde23 algorithm with initial conditions F1 = L1 = 1
and F2 = L2 = 0.1 and the biftool package. Note that the choice of initial conditions does not have an
impact on the plots in the long run.

Since the aim of this paper is to study how environment and movement affect tick dynamics, survival
probabilities and migration coefficients between both patches will be the only parameters that vary
throughout the experiments. Note that ρ1 and ρ2 are always chosen such that the condition of favourable
and unfavourable environment are satisfied (R0,1 > 1 and R0,2 < 1).
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7.1. Isolated patches

In the absence of host migration, ticks always die out in patch 2, while in patch 1 they converge
to a non-trivial equilibrium in the right plot or to a periodic solution in the left plot of Figure 2. The
difference in these two plots is the choice of the survival probability which is larger in the right plot
(ρ1 = 0.015) with respect to the former (ρ1 = 0.0065). We have previously shown that the threshold
R0,i = e2 is key to study global dynamics of the model. In the right plot, periodic solutions occur since
R0,1 = 11.36 > e2 and the 3-year delay is larger than the threshold delay τ∗1 which can be computed
using Hopf bifurcation theory to be τ∗1 ∼ 28 days in this specific case.
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Figure 2. Isolated model. In both plots patch 2 dies out since ρ2 = 0.0008 which yields
R0,2 = 0.57. The plot on the left represents the non-trivial equilibrium case where ρ1 = 0.0065
and R0,1 = 4.92, while the plot on the right represents the periodic solution when ρ1 = 0.015
and R0,1 = 11.36.

7.2. Semi-connected patches

The escalating up case (α12 = 0) is similar to the isolated case since patch two always dies out while
patch 1 either reaches a coexistence equilibrium in the left plot or converges to a periodic solution in
the right plot of Figure 3. Note that the parameters in the left (resp. right) plot for patch 1 of Figure 3
are identical to the left (resp. right) plot of Figure 2. Since we have shown that R0,eu = R0,1, the global
dynamics is not heavily impacted by the addition of uni-lateral host migration.

The cascading down model (α21 = 0) presents three possible dynamics which depend on the value
of R0,cd = max(R0,1(1 − α12),R0,2). The first case leads to extinction as it is shown in the left plot of
Figure 4 where R0,cd = 0.75 < 1. The second case leads to convergence to a coexistence equilibrium
in the central plot of Figure 4 where 1 < R0,cd = 3.41 < e2. The third case leads to convergence to a
periodic solution as in the right plot of Figure 4 where R0,cd = 8.18 > e2.
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Figure 3. Escalating up model. In both plots patch 2 dies out since ρ2 = 0.00125 in the left
plot and ρ2 = 0.0008 in the right plot which yields in the left the plot R0,2 = 0.95 < 1 and in
the right plot R0,2 = 0.61 < 1. The host migration probability is 40% in both plots. The plot
on the left represents the non-trivial equilibrium case where ρ1 = 0.0065 and R0,1 = 4.92,
while the plot on the right represents the periodic solution when ρ1 = 0.015 and R0,1 = 11.36.
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Figure 4. Cascading down model. In the left plot ticks die out (ρ1 = 0.002, ρ2 =

0.000625, R0,1 = 1.51, R0,2 = 0.47, α12 = 0.5), in the central plot a coexistence equilib-
rium is reached (ρ1 = 0.0075, ρ2 = 0.00125, R0,1 = 5.68, R0,2 = 0.95, α12 = 0.4), while in
the right plot convergence to a periodic solution occurs (ρ1 = 0.018, ρ2 = 0.00125, R0,1 =

13.63, R0,2 = 0.95, α12 = 0.4).

7.3. Interconnected patches

The interconnected case dynamics is similar to the escalating down model since in both patches
ticks would either persist or die out. Though we have not shown full stability of this model, we observe
similar behaviours as in the other cases. In particular, the threshold R0,c is key to determine the global
stability of the model and can be computed using its definition. In the left plot of Figure 5, R0,c =

0.74 < 1 guarantees tick extinction; in the central plot of Figure 5, dynamics lead to a coexistence
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equilibrium since 1 < R0,c = 4.57 < e2 while in the right plot of Figure 5, tick dynamics converges to
a periodic solution for R0,c = 8.02 > e2 and delay larger than a specific threshold. We also included a
bifurcation diagram to show how the survival probability ρ1 and the delay τ1 affect tick dynamics.
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Figure 5. Interconnected model. In the left plot ticks die out (ρ1 = 0.002, ρ2 =

0.000625, R0,1 = 1.51, R0,2 = 0.47, α12 = 0.6, α21 = 0.1), in the central plot a coexis-
tence equilibrium is reached (ρ1 = 0.0075, ρ2 = 0.00125, R0,1 = 5.68, R0,2 = 0.95, α12 =

0.2, α21 = 0.1), while in the right plot there is convergence to a periodic solution (ρ1 =

0.015, ρ2 = 0.00125, R0,1 = 11.36, R0,2 = 0.95, α12 = 0.3, α21 = 0.15).

8. Conclusions

We have introduced a spatial DDE model for tick demographics in a two-patch environment and
shown how changes in environment favourability and tick movement on large mammals could affect
the dynamics. Depending on the key parameter R0,c and on the delay parameters τ1 and τ2, we have
shown three possible long-term behaviours of tick population including extinction, convergence to a
coexistent solution and convergence to a periodic solution.

It is important to note that tick control measures can alter some of the model parameters used to
differentiate three possible outcomes of tick population dynamics. In particular, patch-specific sur-
vival probabilities and development delays can be altered by habitat modification strategies including
controlled burns. In addition, the mobility of large mammal hosts between patches can be modified
by interventions such as deer fencing. So, our study here provides insights on how human interven-
tions can change tick population dynamics. We recall that both thresholds are functions of the basic
reproduction number in the isolated patches and of the mobility parameters. Using the closed form
we obtained, we can see how these thresholds vary by changing these parameters. In particular, we
conclude that

(i) Increasing R0,1 helps coexistence since it decreases the threshold:

∂Tcoex

∂R0,1
=

[(1 − α12)(1 − R0,2) + α21R0,2][α12 + α21 − 1]
α21α12

< 0.
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Figure 6. Bifurcation diagram. This diagram describes the behaviour of solutions for differ-
ent choices of ρ1 and τ1 (bifurcation parameters). The rest of parameters are chosen as in the
central plot of Figure 5. The solid blue line is the Hopf bifurcation curve and separates the
convergence to an equilibrium (on the left) and the convergence to a periodic solution (on the
right). The dotted black line represents the threshold R0,c = e under which there is always a
convergence to an equilibrium for every delay τ1. The solid black line indicates the value of
ρ1 for which R0,c = 1 and separates convergence to the trivial equilibrium (on the left) and
convergence to a non-trivial solution (on the right).

(ii) Increasing R0,2 also helps coexistence, since

∂Tcoex

∂R0,2
=

[(1 − α21)(1 − R0,1) + α12R0,1][α12 + α21 − 1]
α21α12

,

so if the first term of the product in the numerator is negative, coexistence is always possible (On
the other hand, if this term is positive, then the threshold always decreases).

(iii) If α21 is negligible with respect to α12 (α21 = o(1)), then

∂Tcoex

∂α12
∼

[1 − R0,2][R0,1(1 − α2
12) − 1]

α21α
2
12

.

Therefore Tcoex increases at first for small α12 and then undergoes a unique change of monotonicity

at α12 =

√
R0,1−1

R0,1
. This implies that in order to facilitate coexistence, it is necessary to have a large

movement of ticks from favorable to unfavorable environment. This threshold also depends on R0,1

which helps determine when the change of monotonicity occurs.
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(iv) If α12 is negligible with respect to α21 (α12 = o(1)). Then increasing α21 does not facilitate
coexistence since

∂Tcoex

∂α21
∼

[1 − R0,1][R0,2(1 − α2
21) − 1]

α12α
2
21

> 0.

There are a number of topics remaining for further studies. For example, the global stability of
the coexistence equilibrium has not been resolved, though we suspect this is true and our numerical
simulations also support this conjecture, in the case in which e < R0,c < e2. We suggest the idea
that exponential ordering [33] coupled with the monotone dynamical systems theory can be used to
establish the global convergence. We have not done much stability analysis for the bifurcated periodic
solutions for (6.13), and the global continuation of these local Hopf branches also deserves additional
attention [40]. Finally, in the real world setting, the environmental conditions are subject to seasonal
temperature variations so a more realistic model capturing the tick population dynamics in the natural
environment needs to be non-autonomous, at least periodic in time [41].
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