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Abstract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a generalist virus, 
infecting and evolving in numerous mammals, including captive and companion animals, free-
ranging wildlife, and humans. Transmission among non-human species poses a risk for the establish-
ment of SARS-CoV-2 reservoirs, makes eradication difficult, and provides the virus with opportunities 
for new evolutionary trajectories, including the selection of adaptive mutations and the emergence 
of new variant lineages. Here, we use publicly available viral genome sequences and phyloge-
netic analysis to systematically investigate the transmission of SARS-CoV-2 between human and 
non-human species and to identify mutations associated with each species. We found the highest 
frequency of animal-to-human transmission from mink, compared with lower transmission from other 
sampled species (cat, dog, and deer). Although inferred transmission events could be limited by 
sampling biases, our results provide a useful baseline for further studies. Using genome-wide associ-
ation studies, no single nucleotide variants (SNVs) were significantly associated with cats and dogs, 
potentially due to small sample sizes. However, we identified three SNVs statistically associated with 
mink and 26 with deer. Of these SNVs, ~⅔ were plausibly introduced into these animal species from 
local human populations, while the remaining ~⅓ were more likely derived in animal populations and 
are thus top candidates for experimental studies of species-specific adaptation. Together, our results 
highlight the importance of studying animal-associated SARS-CoV-2 mutations to assess their poten-
tial impact on human and animal health.

Editor's evaluation
The authors have rigorously examined the existence of mutations that are associated with SARS-
CoV-2 transmission between non-humans and human animals. The findings are important for 
contemporary conversations around viral niche breadth and disease emergence. The evidence 
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provided is very convincing, and the authors have creatively demonstrated how these sorts of GWA 
studies can be used to identify the genomic signature of niche breadth.

Introduction
Coronaviruses can have broad animal host ranges, and SARS-CoV-2 is no exception. Although the 
animal reservoir of ancestral SARS-CoV-2 remains unknown, SARS-CoV-2 has close relatives in bats 
and an ancestral variant likely spilled over into humans via an intermediate animal host in a seafood 
market in Wuhan, China (Worobey et al., 2022). Although SARS-CoV-2-related coronaviruses from 
animals in the Wuhan market were not sampled, there have been several subsequent reports of SARS-
CoV-2 transmission (‘spillback’) from humans to animals including in farmed mink (Oude Munnink 
et  al., 2021) and wild white-tailed deer (Odocoileus virginianus) (Kuchipudi et  al., 2022; Kotwa 
et al., 2022). Consequently, transmission among potential animal reservoirs is a key feature of the past 
and future evolution of coronaviruses. In addition to making SARS-CoV-2 elimination highly unlikely, 
evolution in animal reservoirs could transiently increase evolutionary rates (Porter et al., 2023) and 
potentially select for novel mutations with effects on transmission and virulence in humans (Otto 
et al., 2021). Viral adaptation to one host species might result in the tradeoff of reduced transmission 
in other species. For example, the Middle East respiratory syndrome coronavirus appears primarily 
adapted to camels, with relatively short-lived transmission chains in humans (Dudas et al., 2018). 
Alternatively, evolution in different species could potentially create new paths to peaks in the human-
adaptive fitness landscape. It is speculated that the SARS-CoV-2 Omicron variant of concern (VOC) 
might have evolved in a non-human animal (possibly a rodent) before transmitting widely among 
humans (Wei et al., 2021). This scenario remains hypothetical and is not exclusive of other hypoth-
eses, such as evolution in unsampled human populations, and/or in immunocompromised/chronically 
infected individuals. Nevertheless, ongoing transmission among humans and non-human animals and 
its implications for viral evolution and host adaptation deserves further study.

There have been several reports of SARS-CoV-2 transmission from humans to other animal species, 
and in some cases back to humans. In addition to farmed mink (Oude Munnink et al., 2021), there 
have also been reports of transmission from pet hamsters (Yen et al., 2022) and possible transmission 
events from white-tailed deer to humans in North America (Pickering et al., 2022). Certain mutations 
may improve the replication fitness of SARS-CoV-2 in animal hosts. For instance, experimental infec-
tions of ferrets (Mustela furo) identified a Y453F spike (S) mutation that increases viral binding to the 
ACE2 receptor in these animals, while decreasing infection of human airway cells (Zhou et al., 2022). 
Another potentially mustelid-adapted mutation (S:N501T) was also found to be prevalent in infected 
mink sampled in the United States (Cai and Cai, 2021; Eckstrand et al., 2021). Yet this mutation 
appears not to suffer a fitness tradeoff in humans; rather, it caused stronger binding to human ACE2 
in an in vitro screen (Starr et al., 2020).

While such case studies have been valuable in highlighting patterns of transmission and adaptation 
across individual animal species since the beginning of the pandemic, a standardized, global analysis 
of the available data is lacking. In this study, we comprehensively compared SARS-CoV-2 sequences 
derived from animal hosts using a publicly available dataset. Using phylogenetic methods, we inferred 
transmission events between humans and four other well-sampled animals and quantified their rela-
tive frequencies. Compared to earlier studies which tended to focus on one species at a time and 
much smaller datasets we use an automated approach to avoid manual browsing of the tree. This not 
only increases the efficiency of the analysis but also reduces the potential for human error. Second, 
rather than simply identifying all branches involving a transition from one host species to another, our 
method scans the tree for such branches and retains only the most basal nodes (closest to the root) 
on the descendant end of a given branch. This approach overcomes the possible overcounting of 
nested clades as separate transmission events and is conservative in reporting possible cross-species 
transmission events.

Our analysis revealed a relatively high number of mink-to-human transmission events, while 
instances of animal-to-human transmission from cats (Felis catus domesticus), dogs (Canis lupus fami-
laris), or deer (Odocoileus virginianus) were rare. Using genome-wide association studies (GWAS), 
we identified mutations associated with specific animal species. We recovered the S:N501T muta-
tion previously associated with mink, along with two other amino acid changes in other SARS-CoV-2 
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genes. We also identified several novel mutations associated with deer, including both synonymous 
and nonsynonymous substitutions. Together, our work provides a quantitative framework for tracking 
SARS-CoV-2 transmission across animals from available genomic sequences and points to several 
candidate animal-adaptive mutations for experimental follow-up.

Results
Although secondary spillover events of SARS-CoV-2 transmission from animals back to humans have 
been reported, their frequency has yet to be quantified and compared across animal species. To this 
end, we retrieved all available SARS-CoV-2 genome sequences sampled from non-human animals from 
GISAID (Shu and McCauley, 2017; Figure 1a, Supplementary file 1). After applying sequence quality 
filters (Supplementary file 2) and considering only animals with 50 or more sequences, we were left 
with four species: cat, dog, mink, and deer. Our filters excluded common experimental animals such 
as mice and ferrets (Figure 1a). For each of the four animal species, we extracted a similar number 
of closely-related human-derived sequences (Methods). If these closely-related animal-human pairs 
represent recent transmission chains, we would expect them to come from the same geographic 
region. Consistent with this expectation, we found that 95.4% of deer-derived sequences share the 
same sampling location as their closest human-derived relatives, and this percentage is slightly lower 
for cats (85.6%), dog (89%), and mink (91.7%). The high percentage of deer could be due to higher 
sampling efforts in North America, the origin of all deer sequences. More generally, the variation in 
these percentages could be explained by other sampling biases. For example, cats and dogs might 
be undersampled relative to mink and deer.
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Figure 1. Overview of available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome sequences from different animal species. 
(A) Barplot of the number of genome sequences available in GISAID (on February 28, 2022) sampled from each animal species. Only species with 50 
or more sequences were included in the current study: cat, dog, mink, and deer. (B) Heatmap of animal-associated mutations identified in previous 
publications. Darker colors indicate mutations found in a greater number of studies. Each row corresponds to one of the species included in this study, 
and columns correspond to mutations along the SARS-CoV-2 reference genome. Mutations identified as family-wise significant (p<0.05) in our genome-
wide association studies are indicated with an orange asterisk. A detailed list of publications reporting these mutations is in Supplementary file 8. 
Only single nucleotide variants, not insertions or deletions, are included. The heatmap illustrates the results of several key prior studies but does not 
represent a comprehensive meta-analysis.
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To investigate potential animal-to-human transmission events in greater detail, including the 
direction of transmission, we analyzed viral phylogenetic trees. For each species, the animal-derived 
sequences and their closest relative human-derived sequence were combined with ten random sub-
samplings of human-derived sequences (n ≈ 50 per subtree per month of the pandemic), from which 
we inferred ten replicate phylogenies per species, providing an assessment of phylogenetic uncer-
tainty. Using ancestral state reconstruction as previously described (Murall et al., 2021), we counted 
the most basal animal-to-human (Figure 2a–d) and human-to-animal transitions on each tree (Supple-
mentary file 3). Representative detailed trees are available in Figure 2—source data 1–4. Ancestral 
state reconstruction can be biased by differential sampling across species. Such bias tends to be more 
severe close to the root of the tree (De Maio et al., 2015) but, in our case, the root is known to be 
human (as we excluded more divergent animal outgroups). Most of the inferred transmission events 
are close to the tips and far from the root (Figure 2), which we expect to minimize (but not entirely 
eliminate) bias. Our goal is, therefore, not to infer absolute rates of cross-species transmission, but 
rather to provide a consistent comparative framework for interspecies transmission.

To determine a more conservative lower bound for the transmission counts, we excluded transition 
branches with <75% bootstrap support (Methods). As further validation, we performed a permutation 
test to determine whether the estimated transmission counts converged on a non-random value. We 
performed the same ancestral state reconstruction on 1000 permutations of each of the 40 phylog-
enies whose tip labels (animal or human) were shuffled randomly, and the number of transmissions 
in both directions was recorded. This permutation test revealed that in both directions (animal-to-
human and human-to-animal) the observed transmission counts in mink, deer, and cat falls within a 
narrow range (standard deviations of 10.32, 0.96, and 0.52, respectively) compared to the permuta-
tions (68.83, 2.85, and 1.90) while the observed counts in a dog (standard deviation of 0.95) is similar 
to the permutations (0.90). In the human-to-animal direction, the observed standard deviations in 
transmission counts are 0.48, 0.48, 2.15, and 5.2 for cat, dog, mink, and deer, respectively, compared 
to permuted values of 8.91, 1.68, 67.37, and 18.44. These results show that, in general, our inferences 
of transmission events converge upon stable values, but that the estimate for dog-to-human transmis-
sion might be less reliable.

Based on the bootstrap-filtered counts, we inferred fewer than two transmission events on average 
to humans from dogs and deer, and around four transmissions on average from cats to humans 
(Figure 3a, Table 1). In contrast, there were an average of 38 or more transmission events inferred 
from mink back to humans. The upper bound (bootstrap unfiltered) estimates are higher, but the 
pattern of much higher transmission from mink is retained. The inferred number of transmissions in 
the opposite direction, from humans to other animals, was generally higher and much more uniform 
across species (Figure 3b, Table 1), with lower bounds in the range of 31.5–58.5 events. The relatively 
higher sampling of sequences from humans than from other animals may have inflated the number 
of inferred human-to-animal events relative to animal-to-human events. Mink are also better sampled 
than the other animal species, and further sampling of other animals could identify more transmis-
sion events. On the other hand, the number of inferred transmission events is not clearly related 
to the sample size. For example, despite their smaller sample size compared to deer, cats tend to 
be involved in more transmission events to and from humans (Table 1). Despite these caveats, it is 
notable that human-to-animal transmission events are relatively constant across animal species, while 
mink-to-human transmission is much more frequently detected compared with other animals.

Next, we sought to identify mutations associated with each animal species compared to humans. 
These mutations could be candidates for species-specific adaptations. Dozens of mutations in the 
SARS-CoV-2 genome have been reported in association with different animal species (particularly 
mink; Figure 1b) but it is unclear how many of these associations are statistically significant. To test 
for significant associations, we conducted GWAS using POUTINE, a method that implicitly controls 
for viral population structure and linkage (non-independence) between mutations by considering only 
homoplasic mutations that are identical by state, not identical by descent, and that have occurred inde-
pendently of multiple times in the SARS-CoV-2 phylogeny (Chen and Shapiro, 2021). We performed a 
separate GWAS to identify mutations associated with each species and replicated the GWAS on each 
of the ten replicate trees described above.

We identified numerous SNVs with high statistical significance associated with mink and deer, but 
none in cats or dogs (Figure 4). In all cases, we used a significance cutoff of a family-wise p<0.05 to 

https://doi.org/10.7554/eLife.83685
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Tree annotation
Animal descendant Branch
Human descendant Branch

a. Cat b. Dog

c. Mink d. Deer

Transmission annotation
Bootstrap filtered Transmission
Unfiltered Transmission

Figure 2. Transmission events inferred from non-human animals to humans. Panels a-d display a representative tree for every species with animal-to-
human transmissions marked on the tree. More detailed versions of these trees are in . Trees are rooted with the Wuhan reference genome (from one of 
the first sampled human COVID-19 patients).

Figure 2 continued on next page

https://doi.org/10.7554/eLife.83685


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Naderi et al. eLife 2023;12:e83685. DOI: https://doi.org/10.7554/eLife.83685 � 6 of 22

correct for multiple hypothesis testing. The mink GWAS revealed three unique SNVs (Table 2). One 
of these hits appears in all ten replicates and the remaining two appear in at least half of the repli-
cates. All three of these mutations are non-synonymous, including S:N501T which was previously 
associated with a mink outbreak in the United States (Cai and Cai, 2021). Inspecting the distribu-
tions of these GWAS hits across the tree reveals several independent origins. For example, S:N501T 
occurred independently in The Netherlands, Denmark, Latvia, Lithuania, Spain, France, and the USA 
(Figure 2—source data 3), explaining the strong association detected by POUTINE. The deer GWAS 
revealed a total of 26 unique statistically significant SNVs, of which seven appear in all ten replicates, 
and five in at least half (Table 3). Out of these 26 hits, five are intergenic (within the 5′ and 3′ UTRs) 

The online version of this article includes the following source data for figure 2:

Source data 1. Detailed representative phylogeny of cat- and human-derived Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
sequences.

Source data 2. Detailed representative phylogeny of dog- and human-derived Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
sequences.

Source data 3. Detailed representative phylogeny of mink- and human-derived Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
sequences.

Source data 4. Detailed representative phylogeny of deer- and human derived Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
sequences.

Figure 2 continued
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to-animal direction. Points are plotted with jitter to avoid overlap.
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and 12 are synonymous mutations. Notably, 21 of the hits are C>U transition mutations. The seven 
hits found in all ten replicates clearly occur multiple times independently in different branches of the 
tree; for example, ORF1ab:N4899I (which affects amino acid 507 of the mature RNA-dependent RNA 
polymerase protein, nsp12) occurred at least twice independently in both the states of New York and 
Iowa (Figure 2—source data 4).

We next asked whether mutations identified by GWAS plausibly occurred in an animal host or if 
they were more likely circulating in a local human population before being transmitted to a different 
animal species. While both these categories of mutations are statistically associated with a partic-
ular animal species, the former are particularly good candidates for species-specific adaptations. To 
address this question, we obtained the global frequency of the minor allele of each significant GWAS 
hit in Cov-Spectrum (Chen et  al., 2022) – a significantly larger database than our downsampled 
trees used for GWAS. The minor alleles were generally rare (<1% frequency; Supplementary files 
4 and 5), as expected for non-human animal-associated mutations in a large database dominated 
by human sequences. To test the hypothesis that animal-associated mutations arose not in animals 
but in a local human population that then transmitted to animals in the same region, for each GWAS 
hit we first defined the ‘in’ region in which the animals containing the mutation were sampled and 
the ‘out’ regions including all other regions. We then performed a Fisher’s exact test to determine if 
human-derived sequences containing the animal-associated mutation were enriched in the ‘in’ region, 
resulting in an odds ratio (OR) significantly higher than one (Methods). For mink, two GWAS hits had 
OR significantly greater than one (p<0.0001, ). Only the S:N501T mutation had OR significantly less 
than one, making it the best candidate for having arisen in a mink host, rather than in a human who 
later transmitted the mutant virus to a mink. For deer, the majority of GWAS hits (18/26) could be 
explained by transmission from the local human population (OR >1) while the remaining eight could 
not (OR <1 or not significantly different than one, Table 3).

Finally, we asked if mutations identified as significantly associated with a specific animal by GWAS 
tended to occur on branches with inferred human-to-animal transitions, as would be expected for 
species-specific adaptive mutations. To do so, using ancestral sequence reconstruction, we iden-
tified mutations that occurred along these transition branches. As expected, all three significant 
mink-associated mutations occurred multiple times on human-to-mink transition branches, with the 
human parent node carrying the reference allele and the animal descendant node carrying the mink-
associated alternate allele (Supplementary file 6). Of the 26 deer-associated mutations, 22 occurred 
multiple times on human-to-deer branches, of which 21 carry the exact nucleotide substitution iden-
tified by GWAS (Supplementary file 7). By contrast, none of the substitutions identified by GWAS 
occurred on animal-to-human branches, consistent with species-specific adaptation.

Discussion
Summary and caveats
SARS-CoV-2 can be considered a generalist virus, able to infect a range of different species – perhaps 
more so than other viruses, and even other coronaviruses such as MERS with more restricted host 
preferences (Dudas et al., 2018). Yet SARS-CoV-2 may still replicate and transmit better in certain 
species than others, providing opportunities for species-specific adaptive mutations to arise. SARS-
CoV-2 transmission between humans and animals has typically been studied in individual species 
in isolation, and using heterogeneous methods and datasets. Similarly, viral mutations associated 
with particular species have been reported, but largely in experimental studies or region-specific 
sampling efforts that are difficult to generalize. Our goal in this study was to apply standardized 
methods to identify animal-to-human transmission events and to discover animal-associated muta-
tions using available viral genomic data. The results are likely biased by uneven sampling efforts 

Table 1. Average inferred transmission events between humans and animals.

Average inferred number of transitions
(filtered – unfiltered)

Mink
(n=1038)

Deer
(n=134)

Cat
(n=78)

Dog
(n=39)

Animal-to-human 38.0–112.3 0.7–1.4 4.4–4.4 1.4–1.7

Human-to-animal 42.3–65.2 38.3–55.2 58.5–68.3 31.5–35.7

https://doi.org/10.7554/eLife.83685
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across species. Specifically, oversampling of human-derived sequences could bias the ancestral state 
reconstruction toward human-to-animal rather than animal-to-human transmission. In the future, such 
biases might be accounted for using a Bayesian structured coalescent approximation (De Maio et al., 
2015). However, we do not expect this bias to be severe, for three reasons. First, most of our inferred 
transmission events are close to the tips, while bias towards the most common state appears worst 
close to the root (De Maio et al., 2015). Second, the number of inferred transmission events involving 
each animal species is not clearly associated with its sample size. Third, we also used permutations to 
flag certain inferences (e.g. dog-to-human transmission) as unreliable in our current sample. Overall, 
our transmission analysis provides a ‘level playing field’ upon which to assess the results of previous 
animal-specific studies. Our genome-wide association studies considered only homoplasic muta-
tions that occur multiple times independently in the SARS-CoV-2 phylogeny. This provides strong 
protection against false-positive associations that could occur due to population structure in clonal 
pathogens (Chen and Shapiro, 2021) at the expense of missing non-homoplasic true-positives. Like 
most GWAS approaches, we test each nucleotide site independently, implicitly assuming additive 
fitness effects. This may be a reasonable assumption, as non-additive epistatic fitness effects have 
been inferred to be negligible in SARS-CoV-2 evolution to date, at least in the spike receptor-binding 
domain (Rochman et al., 2022). As genome sequences continue to be sampled from different animal 
species, the approaches described here will allow researchers to further study the evolution and trans-
mission of SARS-CoV-2 and other pathogens across animal species. Sampling more sequences from 
diverse animals (including the four analyzed here, as well as others) will enable more robust estimates 
of secondary zoonotic and zooanthroponotic transmission events and species-specific adaptations.

What explains variation in transmission and evolution across species?
Methodological and sampling considerations aside, there are two major factors affecting rates of 
transmission across animal species: structural similarity in viral receptor proteins (or more general 
phylogenetic similarity) and rates of contact between species. These factors have been used to 
predict cross-species viral transmission, with habitat overlap playing a dominant role over phyloge-
netic similarity at least on a global scale (Carlson et al., 2022). On more local scales, contact with pets 
such as cats and dogs will be high for a large number of pet owners, while contact with minks may be 
high transiently, or for a subset of the population working on farms. Similarly, contact with deer may 
be restricted to hunters,or may involve indirect contact with human waste. A recent study compared 
ACE2 orthologs across mammalian species and classified deer ACE2 as having ‘high’ structural simi-
larity to human ACE2; meanwhile, cat similarity was ‘medium,’ dog was ‘low,’ and mink species were 
‘very low’ (Damas et  al., 2020). Clearly, large mink outbreaks have occurred despite a relatively 
dissimilar ACE2 structure – and the ‘mismatch’ between SARS-CoV-2 spike and mink ACE2 could 
impose a strong selection for mink-adapted spike mutations (discussed below). Meanwhile, if deer 
ACE2 was already structurally similar to human ACE2, this could explain the lack of deer-associated 
mutations in spike. While it is tempting to speculate that the many other deer-associated mutations 
outside of spike could provide deer-specific adaptations that reduce transmission back to humans, it 
is equally possible that the rarity of deer-to-human transmission is explained by relatively low contact 
rates. As SARS-CoV-2 continues to evolve and transmit in both deer and humans, ongoing sequencing 
efforts might allow us to test the relative importance of these hypotheses. In summary, while global-
scale predictions of zoonotic risk are possible based on contact rates and phylogenetic similarity, it is 
more difficult to predict the precise risk for a particular species of interest (e.g. mink vs. deer), which 
depends on detailed life history and genetic factors. However, combining estimates of habitat overlap 
with the genomic analyses described here could enable more fine-grained predictions.

Consistent with previous reports (Oude Munnink et al., 2021), mink had the largest number of 
inferred transmission events to humans. This could be because mink have more opportunities to 
interact with humans on mink farms, whereas contact between deer and humans is more limited and 
potentially seasonal (Kuchipudi et  al., 2022). However, mink outbreaks could be more frequently 
reported due to higher surveillance of mink farms and noticeable symptomatic diseases in these 
animals (Oreshkova et  al., 2020). As for cats and dogs, we inferred much lower transmission to 
humans, suggesting that they might be ‘dead-ends’ for the virus. This does not mean that SARS-
CoV-2 transmission from dogs or cats to humans is not possible, and it may be more readily detected 
with deeper sampling or in prospective household transmission studies. Transmission from humans 
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to animals was relatively uniform across species, with somewhat higher inferred transmission to cats 
than to other species. Overall, our results support the previous reports of relatively high rates of 
mink-to-human transmission, and only rare or anecdotal transmission from other animals, such as deer 
(Pickering et al., 2022).

Despite the large sample size of mink-derived viral sequences, we only detected three mink-
associated SNVs using GWAS, including the previously identified S:N501T mutation. This is consistent 
with relatively little time for SARS-CoV-2 to adapt to mink between transmission cycles in humans. In 
contrast, we detected many more SNVs associated with deer despite a smaller sample size. Even if 
we only consider the eight SNVs less likely to have arisen in the human population before transmit-
ting to deer, or the seven SNVs detected in all replicate GWAS runs, there are still more than twice 
as many deer-associated than mink-associated GWAS hits. This could suggest a greater number of 
deer-adapted SNVs compared to mink-adapted SNVs, perhaps due to multiple uninterrupted cycles 
of deer-deer transmission. Sustained deer-deer transmission is also supported by previous studies 
(Kuchipudi et  al., 2022), including the observation of relatively divergent SARS-CoV-2 genomes 
(Pickering et al., 2022). Asymptomatic or mild disease in deer relative to mink (Oreshkova et al., 
2020) might also allow more opportunity for evolution and transmission during prolonged infections. 
Despite pruning out highly divergent branches, including several of the Canadian sequences involved 
in a potential deer-to-human transmission event (Pickering et al., 2022), some relatively long deer-
associated branches are notable in our study, suggesting rapid evolution in deer (Figure 2d). Together, 
these results point to deer as an important reservoir of novel SARS-CoV-2 mutations. Ongoing moni-
toring of deer-to-human transmission events is, therefore, warranted.

Lack of GWAS hits in cats or dogs
Several viral mutations have been previously associated with cats or dogs (Elaswad et al., 2020), but 
we found no statistically significant mutations associated with either of these species (Figure 1b). This 
could be due to limited viral adaptation, which would be expected if cats and dogs are effectively 
dead-end hosts for the virus, with little time for cycles of intra-species transmission. Alternatively, the 
limited sample size for these species could have limited GWAS power to identify adaptive mutations. 
Given the higher viral load and shedding in cats compared to dogs (Bosco-Lauth et al., 2020; Shi 
et al., 2020), we expect greater adaptation and transmission in cats; however, further data will be 
needed to test this expectation.

Mink GWAS hits
We identified three statistically significant mutations associated with mink. The substitution 
ORF3a:L219V, which appears in all ten GWAS replicates, has been previously detected as a substitu-
tion associated with mink, in the ORF3a accessory gene (Elaswad et al., 2020). However, the previous 
detection was not tested for statistical significance. Similarly, the ORF1ab:G4177E (nsp9:G37E) muta-
tion has been identified previously in mink-derived sequences (Eckstrand et al., 2021). The S:N501T 
substitution has also been previously associated with mink (Lu et al., 2021; Elaswad et al., 2020) 
and ferret (Zhou et al., 2022). The mink-associated S:N501T substitution increases binding to human 
ACE2 (Starr et al., 2020), and the S:N501Y substitution has been detected in several human SARS-
CoV-2 VOCs with higher transmissibility, such as the Alpha variant (Liu et al., 2022; Vöhringer et al., 
2021). Certain other mutations that have been previously associated with mink, including S:Y453F 
(Zhou et al., 2022; Lu et al., 2021; Elaswad et al., 2020) and S:L260F (Adney et al., 2022) that were 
suggested to arise as a result of rapid adaptation are not statistically significant in our GWAS. While 
such mutations could be truly animal-associated and were not picked up in GWAS due to limited 
power or sampling, others may be anecdotal reports that do not survive the scrutiny of rigorous 
statistical testing, or associations identified in laboratory conditions that are not currently observed 
in nature.

Our GWAS approach was designed to identify species-specific mutations, which could increase 
fitness in one species at the expense of others. It is less likely to identify mutations that increase 
fitness across species. One possible example is the S:Y453F mutation, associated with mink in several 
studies but not in our GWAS. In all replicate trees, the mutation occurred four times as a homoplasy 
in mink but never or only once in humans, resulting in a pointwise p-value <0.05 that did not survive 
correction for multiple hypothesis testing (family-wise p>0.05). In cell culture experiments, S:Y453F 
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decreased infection of human airway cells (Zhou et al., 2022). The mutation has been observed in 
human-derived sequences, but they are at quite a low frequency in Cov-Spectrum. The non-significant 
GWAS results for this mutation could, therefore, be explained by its occurrence in mink but also (more 
rarely) in humans. We performed ancestral state reconstruction of this mutation on the ten replicate 
mink trees, and observed that S:Y453F occurred 17 times on human-to-human transition branches, 30 
times on human-to-mink branches, 85 times on mink-to-mink branches, and never on mink-to-human 
branches. The frequent occurrence of S:Y453F on mink-to-mink and human-to-mink branches is 
consistent with its adaptive value in mink, but its occasional occurrence on human-to-human branches 
suggests it does not completely prevent transmission among humans. This and other mutations that 
could potentially increase host range – or at least those that increase fitness in one species without 
a strong tradeoff in another species – are of particular relevance but might require new or adapted 
GWAS methods to detect.

Deer GWAS hits
Many of the deer-associated mutations are synonymous and occur broadly across the genome outside 
of the relatively well-studied spike (S) protein (Figure 4). These are primarily transition mutations, 
which are typically generated at a higher frequency than transversions. The deer-associated synon-
ymous mutations showed no particular bias toward codons that are preferred in deer relative to 
humans; therefore, selection for codon usage optimization does not easily explain these associations 
(data not shown). Nonetheless, the vast majority of mutations were C>U transitions, which may be a 
reflection of APOBEC1-mediated RNA editing, which results in the deamination of cytosine to uracil 
in single-stranded RNA (Harris and Dudley, 2015; Salter and Smith, 2018). Consistent with this 
hypothesis, C>U transitions in deer contained the consensus sequence [U/A][U/A]C[A/U][A/U], which 
resembles that observed for human APOBEC1-mediated deamination [AU]C[AU]; however, it remains 
to be seen whether the deer APOBEC1 isoform has the same substrate specificity or whether there 
is increased APOBEC expression or activity in deer tissue (Di Giorgio et al., 2020; Rosenberg et al., 
2011). Alternatively, the C>U transitions may be related to RNA secondary structure or nucleotide 
composition biases required for genome condensation during viral replication organelle biogenesis 
or virion assembly in the deer host.

Our GWAS revealed several mutations in deer that localized to distinct RNA secondary structures 
in the 5´ and 3´ UTRs of the viral RNA. Specifically, in the 5´ UTR, both mutations (C203U and G210U) 
localized to stem-oop 5  a (SL5a), a highly conserved stem-loop structure previously implicated in 
virion assembly in related coronaviruses (Yang and Leibowitz, 2015; Morales et  al., 2013; Miao 
et al., 2021). Similarly, in the 3´ UTR, all the mutations localized to the 3´ terminal stem-loop struc-
ture, with two specifically localized to the S2M region (C29738A and C29750U) (Yang and Leibowitz, 
2015; Gilbert and Tengs, 2021; Wacker et al., 2020). Interestingly, while the 3´ terminal stem-loop 
structure is known to be hypervariable, the S2M region is highly conserved in sequence and structure 
across a wide range of RNA viruses, including members of the Astroviridae, Caliciviridae, Picornavir-
idae, and Coronaviridae families (Tengs et al., 2013; Gilbert and Tengs, 2021). While the role of this 
S2M region is poorly understood, its strict conservation across a range of positive-strand RNA viruses 
suggests that it may play an important role in the viral life cycle. Notably, both the mutations identified 
by GWAS are predicted to maintain the overall S2M consensus fold, so these may reflect differences 
in species-specific interactions between S2M and host proteins or RNA molecules.

The deer GWAS also revealed a few nonsynonymous mutations in viral proteins important in RNA 
binding and host antiviral responses. Specifically, ORF1ab:N4899I (nsp12:N507I) lies in the nsp12 
RNA-dependent RNA polymerase, within the highly conserved motif G which is important in posi-
tioning the 5´ template strand during viral RNA synthesis (Sheahan et al., 2020). While N507 is known 
to make contact with the +2 nucleotide of the template strand, experimental investigations will be 
needed to understand how the N507I mutation impacts the active site structure and/or viral RNA 
synthesis (Hillen et al., 2020). The ORF1ab:P5401L (nsp13:P77L) mutation in the nsp13 helicase is 
predicted to be a solvent-exposed residue within the N-terminal Zinc-binding domain (Newman et al., 
2021). However, given that this is distant from the helicase active site, we predict that it is unlikely to 
affect helicase enzymatic activity. Finally, we identified two mutations that may have implications for 
host adaptation as they are identified in proteins known to interact with the host antiviral response. 
Specifically, ORF1a:P1640L (nsp3:P822L) in the nsp3 protease localizes to the deubiquitinating site 
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in the PLpro domain which overlaps with the ISG15 binding site, suggesting it may modulate host 
antiviral responses (Yang and Leibowitz, 2015; Shin et  al., 2020; Liu et  al., 2021). Interestingly, 
the deer GWAS also revealed the ORF7a:T120I mutation within the ORF7a accessory protein. This 
residue is adjacent to K119, which is implicated in the inhibition of the antiviral response in human 
cells (Redondo et al., 2021; Cao et al., 2021). Specifically, K119 polyubiquitination has been shown 
to block STAT2 phosphorylation, leading to the inhibition of type I IFN. Thus, it is possible that the 
ORF7a:T120I mutation modulates ubiquitination at the K119 residue; however, this will require exper-
imental validation.

Concluding perspectives
Upon finalization of this manuscript, another analysis of SARS-CoV-2 transmission and potential host 
adaptation was published, using a similar dataset from GISAID (Tan et al., 2022). Notably, this work 
focused only on transmission from humans to other animals, while we also considered the animal-to-
human direction. The approach used to identify animal-associated mutations was conceptually similar 
to ours – focusing on homoplasic mutations and a set of reasonable but arbitrary filters for allele 
frequencies and effect sizes – whereas we took a more formal statistical GWAS approach. Our three 
mink significant GWAS hits are a subset of the four identified in the other study, and neither study 
identified any deer-associated mutations in Spike (Tan et al., 2022). Our study identified more signifi-
cantly deer-associated mutations (including the single hit reported by Tan et al. in nsp3, ORF1a:L1853F 
(nsp3:L1035F)), which could be due to different data filtering and significance testing approaches. 
Overall, the two studies are complementary and pave the way for future studies on larger datasets.

In conclusion, while the dynamics of anthroponosis and zooanthroponosis for SARS-CoV-2 are still 
unclear, cross-species transmission events are likely to continue given continued geographically wide-
spread infections, high transmission rates, and the emergence of new variants. We identified several 
statistically significant animal-associated substitutions in mink and deer, suggestive of sustained 
animal-to-animal transmission and perhaps reflective of host adaptation. Continuous molecular 
surveillance of SARS-CoV-2 from animals is likely to reveal new insights into SARS-CoV-2 host range 
and adaptation and may contribute to our understanding of the risk for spillback of new variants. This 
also highlights the need to monitor for similar patterns of susceptibility to infection and sustained 
intra-species transmission in related species. Our study draws attention to several specific, statistically 
significant nucleotide and amino acid substitutions that may play a role in host adaptation, pathogen-
esis, and/or transmission and are candidates for experimental study.

Methods
Data
On February 28, 2022, we downloaded from GISAID (Shu and McCauley, 2017) all SARS-CoV-2 
consensus genome sequences derived from non-human animals. These host species include several 
mammalian species such as whitetail deer, mink, cats, dogs, lions, and monkeys among others. The 
raw non-human dataset obtained from GISAID was filtered for low-quality sequences, sequences with 
a length of less than 29,000 base pairs, and an ambiguous nucleotide (N) count above 500. Sequences 
with incomplete dates recorded in the metadata were discarded and excluded from the study. This 
study focuses on species with at least 50 sequences in the dataset, namely mink (n=1038), deer 
(n=134), cat (n=78), and dog (n=59).

From the 7.6 million human-derived viral sequences present in GISAID’s human alignment dated 
February 28, 2022, a set of closely related sequences for every animal species was extracted. To do so, 
we used Nextstrain (Hadfield et al., 2018) to calculate a proximity matrix based on pairwise substitu-
tions between every animal-derived sequence and all ~8 million human-derived sequences. The query 
alignment was generated using MAFFT (Katoh and Standley, 2013) in which animal sequences were 
aligned to the gapped version of the Wuhan IV04 reference sequence present in GISAID’s human-host 
alignment dated February 28, 2022, with the ‘keeplength’ option of the software enabled to maintain 
the length of context alignment in the query alignment.

Using this matrix and noting that some sequences from a given species might share a number of 
close relatives, we extracted the closest human-derived sequences for every sequence of a given 
species such that the unique set of best-hit human-host sequences for a particular species would have 

https://doi.org/10.7554/eLife.83685


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Naderi et al. eLife 2023;12:e83685. DOI: https://doi.org/10.7554/eLife.83685 � 16 of 22

roughly the same count as the sequences from that animal species. To provide a greater and more 
representative phylogenetic context, 500 human-derived sequences were subsampled randomly 
from every month of the pandemic, from January 2020 to February 2022, resulting in 13,000 human-
derived sequences, distributed uniformly over time. Here again, the same quality filtering criteria were 
applied and the sample was drawn from sequences that were at least 29,000 base pairs long and had 
fewer than 500 ambiguous nucleotides (‘N’ characters). The GISAID identifiers for all sequences used 
in this study are reported in Supplementary file 1.

Alignment
All the above sequences, that is, the animal-host sequences along with their closely related human 
host sequences and the context random human subsample, and the Wuhan IV04 reference sequence 
were aligned using MAFFT (version 7.471). We used the NW-NS-2 setting, which is a speed-oriented, 
progressive method without FFT approximation. The alignment was done in two steps; first, a prelim-
inary alignment was done and problematic sequences causing almost invariant insertions due to 
stretches of ambiguous nucleotides (N’s) were removed from the dataset, and the remaining sequences 
were aligned again with the exact same algorithm, resulting in the final alignment, including a total of 
14787 sequences, comprised of 1038 mink sequences, 134 deer sequences, 39 dog sequences, and 
78 cat sequences. As for the closely related human-host sequences, this dataset included 852 close 
relatives for mink, 61 for cat, 31 for dog, and 123 for deer. The remaining sequences were human-host 
sequences randomly subsampled.

Phylogeny
Ten replicate trees for each candidate species were generated, each of which included the focal 
species’ sequences, its closely related human-host sequences, and one-tenth of the randomly subsa-
mpled human-host sequences which were again split uniformly over time to ensure temporal hetero-
geneity, resulting in an overall count of 40 trees. Maximum-likelihood divergence trees were inferred 
using IQ-TREE (Nguyen et al., 2015) with a general time-reversible model and with 1000 bootstrap 
iterations using the ancestral sequence reconstruction (-ASR) option. The resulting trees were pruned 
for branches that are unreasonably divergent, and tips whose lengths were considered outliers 
according to the interquartile criterion and were longer than ‍q0.75 + 1.5IQR‍ were pruned (q0.75 = 
3rd quartile; IQR = q0.75-q0.25; q0.25=1st quartile). This criterion discarded a maximum of five deer 
sequences out of 134, a maximum of two mink sequences out of 1038, and a maximum of one dog 
sequence out of 39, while no cat sequences were pruned.

Ancestral state reconstruction
Discrete ancestral state reconstruction was performed on all 40 trees in the study, with states set as 
‘human’ and ‘animal.’ The reconstruction was done using the maximum likelihood method ‘ace’ imple-
mented in the ‘ape’ package (Paradis and Schliep, 2019) in R (R Development Core Team, 2021) 
. Ancestral state reconstruction was done using the ‘equal rates model’ which allows for an equal 
probability of transition in both directions of ‘animal-to-human’ and ‘human-to-animal‘ on the tree.

Estimating transmission events
Once the states were labeled, the set of all branches along which a transition from an ‘animal’ node 
state to a ‘human’ node state has occurred was identified, and the human end of the branch, namely 
the most recent common ancestor of the introduced human clade or the human tip in case of single-
tons, was marked as a transition node. In order to identify an independent set of transitions and to 
avoid the redundancy of reporting nested spilled-back clades as separate events, the most basal of 
these transition nodes was identified. In order to provide a well-rounded record of spillovers, the 
same analysis was done in the human-to-animal direction as well. For setting a lower bound to the 
transmission counts, in another set of analyses, all transitions in the desired direction were identified, 
then the branches whose parent side had a bootstrap support of lower than 75% were discarded, and 
subsequently, the most basal transitions were identified. To validate the ancestral state reconstruction 
and the transmission counts, a permutation test was done in which the tips of every 10 trees for all 
candidate species were randomly shuffled in 1000 permutations, and the same algorithm for ancestral 
state reconstruction and subsequently counting transitions in both directions (animal-to-human and 

https://doi.org/10.7554/eLife.83685


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Naderi et al. eLife 2023;12:e83685. DOI: https://doi.org/10.7554/eLife.83685 � 17 of 22

human-to-animal) was applied to find the most basal transitions, unfiltered counts on the shuffled 
trees.

Genome-wide association studies
We used POUTINE (Chen and Shapiro, 2021) to scan the genome for mutations that are statistically 
associated with each animal species. POUTINE relies on the viral phylogeny to identify homoplasic 
mutations associated with a phenotype of interest, in this case, human vs. animal hosts. By considering 
only homoplasic mutations at the tips of the tree, POUTINE implicitly accounts for population struc-
ture. POUTINE was run on 40 tree replicates: 10 per species, with each replicate containing the same 
sequence alignment used in the transmission analysis, though trees were inferred without the -ASR 
option in IQ-TREE (Ancestral sequence reconstruction was unnecessary because POUTINE only tests 
mutations that occur on terminal branches). In each run, animal-host sequences were set as ‘cases’ 
and human-host sequences as ‘controls.’ We chose to treat animals as cases because the root of the 
tree is human, and initial transmission events are human-to-animal with more recent and rare animal-
to-human events. The dataset is, therefore, better suited to identify animal-associated mutations than 
human-associated mutations. In each of the ten replicates for every species, any sites with a minor 
allele familywise p-value of less than 0.05 were recorded as a hit for that run. The unique collective set 
of hits for every species across all 10 runs was retained and the number of replicates in which each hit 
appeared was recorded.

Fisher’s exact test for geographic bias
In order to check for geographic bias we performed a Fisher’s exact test on every SNV identified by 
POUTINE to compare its frequency in human hosts inside and outside regions where animal-host 
sequences bearing these mutations are found. For each SNV, we obtained its geographical distri-
bution of human-host sequence counts broken down by geographical division from CoV-Spectrum. 
We partitioned global divisions into regions that animal-host sequences bearing the specific muta-
tion are found (‘in’ regions), and regions in which such sequences are not found (‘out’ regions). We 
then created the 2-by-2 contingency table in which rows correspond to wildtype allele and alternate 
(animal-associated) allele counts, and columns correspond to ‘in’ or ‘out’ region counts. We then 
calculated the pointwise estimate and confidence interval for the odds ratio, and flagged mutations 
in which the two frequencies were significantly different. Counts and frequencies for this step are 
recorded in Supplementary files 4 and 5.

Code availability
Scripts used to perform all analyses are available at https://github.com/Saannah/Animal.SARS-CoV-2.​
git, (copy archived at Naderi, 2023).
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