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Abstract The role of schools in the spread of SARS-CoV-2 is controversial, with some claiming 
they are an important driver of the pandemic and others arguing that transmission in schools is 
negligible. School cluster reports that have been collected in various jurisdictions are a source of 
data about transmission in schools. These reports consist of the name of a school, a date, and the 
number of students known to be infected. We provide a simple model for the frequency and size of 
clusters in this data, based on random arrivals of index cases at schools who then infect their class-
mates with a highly variable rate, fitting the overdispersion evident in the data. We fit our model to 
reports from four Canadian provinces, providing estimates of mean and dispersion for cluster size, 
as well as the distribution of the instantaneous transmission parameter β, whilst factoring in imper-
fect ascertainment. According to our model with parameters estimated from the data, in all four 
provinces (i) more than 65% of non-index cases occur in the 20% largest clusters, and (ii) reducing 
instantaneous transmission rate and the number of contacts a student has at any given time are 
effective in reducing the total number of cases, whereas strict bubbling (keeping contacts consistent 
over time) does not contribute much to reduce cluster sizes. We predict strict bubbling to be more 
valuable in scenarios with substantially higher transmission rates.

Editor's evaluation
This paper provides an important novel methodology to understand the mode of spread of SARS-
CoV-2 in schools given sparse data.

Introduction
In the management of the COVID-19 pandemic, an important consideration is the role of children and 
in particular schools. In most jurisdictions rates of SARS-CoV-2 infection among children are similar 
to those in the adult population (Centers for Disease Control and Prevention, 2021). But severity 
is much lower in children; the infection fatality rate (IFR) of COVID for at age 10 was estimated to 
be 0.002% versus an IFR of 0.01% at age 25, and 0.4% at age 55, for the original SARS-CoV-2 virus 
present in 2020 (Levin et al., 2020). Cases are more often asymptomatic among children, less likely 
to require hospitalization and ICU care (Centers for Disease Control and Prevention, 2021), and 
less likely to be classified as long COVID (Sudre et al., 2021). On the other hand, MIS-C is a serious 
condition sometimes resulting from SARS-CoV-2 infection (CDC, 2021a), and myocarditis happens 
more frequently as a side effect of infection among younger individuals (Singer et al., 2022).

Jurisdictions have had to make a choice between closing schools, with all the attendant social, 
economic, and psychological costs (Chaabane et  al., 2021), and leaving schools open, allowing 
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possible transmission of SARS-CoV-2 in that setting (Centers for Disease Control and Prevention, 
2021). The direct downside of transmission in schools if it occurs is that children may be infected there, 
risking the low but non-negligible harms of COVID-19 in that age range, but also adult teachers and 
staff are put at risk. Transmission in schools may also contribute to overall community transmission, 
indirectly jeopardizing more vulnerable individuals (Walsh et al., 2021). As a concrete example, if a 
child contracts SARS-CoV-2 at school, they may then go on to transmit it to an elderly relative they live 
with, for whom the consequences are more severe (Laws et al., 2021). Estimating the magnitude of 
these two kinds of harm and making the decision as to what choice to make involves many sources of 
uncertainty and value judgements, which helps explain why different jurisdictions have taken different 
approaches (Harris, 2020). In some jurisdictions schools were open for the 2020–2021 school year, 
though many measures were put into place in order to reduce the risk of SARS-CoV-2 transmission 
(British Columbia Ministry of Education, 2020). Measures included cohorting, staggered entrance 
and exit times, masks, improvements in ventilation, extra sanitization measures. In other jurisdictions 
schools were closed for large portions of the year (Partners, 2021).

Studies that have looked at the effect of school closures on the overall rate of SARS-CoV-2 trans-
mission find mixed results: some find substantial reduction in community transmission when schools 
are closed, and others small or no effect (Walsh et al., 2021; Chernozhukov et al., 2021). Given that 
schools involve many children all sharing a room for many hours a day, it may be surprising that there 
is not a clearer evidence of significant transmission in schools. One explanation is that children may 
be less likely to transmit SARS-CoV-2 to each other, either by being less infectious or by being less 
susceptible (Dattner et al., 2021; Viner et al., 2021). But transmission in schools does occur, and it’s 
worthwhile to estimate the magnitude and characterize the variation in it.

One source of evidence for transmission in schools are school exposure reports. Throughout the 
pandemic organizations have collected data submitted by volunteers about COVID cases in schools, 
and such data has subsequently been published online (National Education Association, 2020; Covid 
Schools Canada, 2021; Support Our Students Alberta, 2022). Data consists of reports of exposures 
or clusters in schools, either submitted by parents or determined from reading newspaper reports. 
Several such websites exist, though many ceased due to excessive workload after the 2020–2021 

eLife digest During the COVID-19 pandemic, public health officials promoted social distancing 
as a way to reduce SARS-CoV-2 transmission. The goal of social distancing is to reduce the number, 
proximity, and duration of face-to-face interactions between people. To achieve this, people shifted 
many activities online or canceled events outright. In education, some schools closed and shifted to 
online learning, while others continued classes in person with safety precautions.

Better information about SARS-CoV-2 transmission in schools could help public health officials to 
make decisions of what activities to keep in person and when to suspend classes. If safety measures 
lower transmission in schools considerably, then closing schools may not be worth online education's 
social, educational, and economic costs. However, if transmission of SARS-CoV-2 in schools remains 
high despite measures, closing schools may be essential, despite the costs.

Tupper et al. used data about COVID-19 cases in children attending in-person school in four Cana-
dian provinces between 2020 and 2021 to fit a computer model of school transmission. On average, 
their analysis shows that one infected person in a school leads to between one and two further 
cases. Most of the time, no more students are infected, indicating that normally infection clusters are 
small; and only rarely does one infected person set off a large outbreak. The model also showed that 
measures to reduce transmission, like masking or small class sizes, were more effective than interven-
tions such as keeping students with the same cohort all day (bubbling).

Tupper et al. caution that their findings apply to the variants of SARS-CoV-2 circulating in Canada 
during the 2020-2021 school year, and may not apply to newer, highly transmissible strains like 
Omicron. However, the model could always be adapted to assess school or workplace transmission of 
more recent strains of SARS-CoV-2, and more generally of other diseases. Thus, Tupper et al. provide 
a new approach to estimating the rate of disease transmission and comparing the impact of different 
prevention strategies.

https://doi.org/10.7554/eLife.76174
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school year. In some jurisdictions there are also similar sources of data provided by local government 
(Government of Ontario, 2021; State of Michigan, 2021) or Public Health Agencies (Vancouver 
Coastal Health, 2021; Health, 2021).

Here, we propose a simple model of transmission in schools, and we use these data on cluster sizes 
to estimate parameters of the model for four Canadian provinces. Our model allows for heterogeneity 
in transmission rate, which is able to capture the considerable variability in the sizes of the clusters, 
with most exposures leading to no further cases (and so a cluster of size 1) but with few having a 
large number of cases (Tufekci, 2020). We estimate the mean and overdispersion parameters for 
different jurisdictions. We then use our parameter estimates in a couple of ways: firstly, we explore 
the overdispersion of cluster sizes in different jurisdictions, giving estimates of what fraction of all 
cases are in the 20% largest of all clusters. Secondly, we can obtain an estimate of the distribution 
of the transmission rate ‍β‍, the rate at which a single infected individual infects a susceptible person 
when they are in contact. This parameter, in turn, could be used to simulate school transmission and 
explore the impacts of interventions (Tupper et al., 2020) as we explore for some parameter choices. 
In Appendix 1 we perform a similar analysis for eight US states, where only substantially less complete 
datasets were available.

Finally, two important changes have occurred in 2021 that we expect to impact cluster sizes in 
schools. On the one hand, in many jurisdictions, large portions of children aged 5 and up have been 
vaccinated with the Pfizer/BioNTech vaccine (The New York Times, 2020). According to the extent to 
which the vaccine protects against infection, we expect cluster size will be reduced, as fewer students 
will be infected if they have been immunized. Observed cluster size may be reduced further even 
than this, if the vaccine allows harder-to-detect infections to occur. On the other hand, now more 
infectious variants of the coronavirus have emerged; the Alpha, Delta, and Omicron variants have all 
had a higher estimated transmissibility than their predecessors (CDC, 2021b; CDC, 2022). Increased 
transmissibility would suggest larger cluster sizes, certainly among unvaccinated ages, but the relative 
impact of vaccination and the new variants together is difficult to gauge. Furthermore, changes in 
vaccination, transmission, and immune evasion may all lead to a change in the variability in cluster 
sizes.

Materials and methods
Our data consist of reports of confirmed cases among students, teachers, and staff in schools in four 
Canadian provinces during the 2020–2021 school year. Data was collected by Dr Shraddha Pai with 
COVID Schools Canada (Covid Schools Canada, 2021), an initiative of the group Masks for Canada 
(Canadian Doctors, Professionals, & Citizens for Masks, 2021). We included the four provinces 
from this dataset with the most schools reporting cases with date information. For each school, there 
is a list of confirmed cases among students, teachers, and staff, along with the dates on which the 
cases were reported. We then assigned cases to clusters based on being at the same school and being 
reported within 7 days of each other; if the difference in date between two cases was less than or 
equal to 7 days, or they could be linked by a sequence of such cases, they were put in the same cluster. 
We chose 7 days on the basis of estimates of the serial interval for COVID-19 of approximately 5 days 
(Rai et al., 2021). (We explore other choices of window in Appendix 1.) Information was not available 
about whether the cases at the same school were in the same classroom. Accordingly, we interpret 
clusters as capturing all linked cases at a given school, and not just one classroom.

There is substantial uncertainty in whether each of our determined clusters of cases accurately 
represents a set of cases linked by transmission. For any cluster of two or more cases, it may be that 
two independent sets of cases are incorrectly included in the same cluster. This may lead us to overes-
timate the size of clusters. Likewise, any two of our clusters in the the same school that occur further 
apart than 7 days may in fact be linked by a chain of undetected transmission, leading to an underesti-
mate of cluster size. Both these factors may occur in our data, but we neglect both of them, taking the 
observed cluster size as given by our method. We are also unable to distinguish between transmission 
occurring in a school and in social activities with classmates outside of school.

In a given jurisdiction, we assume exposure events occur according to a Poisson process with 
variable rate. Independently of this process, once an exposure event occurs at a school, we say ‍Z ‍ 
additional people are infected by the index case, for a total of ‍Z + 1‍ individuals in the cluster. The 
variable ‍Z ‍ includes individuals directly infected by the index case, as well as any subsequent infected 

https://doi.org/10.7554/eLife.76174
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individuals that are included in the same cluster. Following Lloyd-Smith et al., 2005, we model ‍Z ‍ as a 
Poisson random variable with parameter ‍ν‍, where ‍ν‍ itself is a Gamma-distributed random variable. As 
described by Lloyd-Smith et al., 2005, ‍Z ‍ is then a negative binomial random variable. Rather than the 
usual parametrization of a negative binomial distribution, we use parameters ‍Rc‍ and ‍k‍. The parameter 
‍Rc‍ is the expected number of additional infections in a cluster, and ‍k‍ is the dispersion: a measure of 
how far the distribution of ‍Z ‍ is from being Poisson. As ‍k → ∞‍, the distribution of ‍Z ‍ approaches that 
of a Poisson distribution with mean ‍Rc‍. The variance of ‍Z ‍ is ‍Rc(1 + Rc/k)‍ and so for smaller values of 
‍k‍ we expect more of the secondary cases to occur in rare large clusters rather than in frequent small 
clusters (Lloyd-Smith et al., 2005).

There are then a total of ‍Z + 1‍ infected individuals in the school. To give an idea of how the distri-
bution of true cluster size depends on the parameters when they are in this range, in Figure 1 we 
show the theoretical distributions for varying parameters. On the left, we fix ‍Rc + 1 = 2‍ and vary ‍k‍. 
Decreasing ‍k‍ causes there to be more clusters of size 1 (i.e. no transmission) and more large clusters, 
but reduces the number of intermediate-sized clusters. On the right, we fix ‍k = 0.3‍ and show the effect 
of varying mean cluster size ‍Rc + 1‍. As ‍Rc‍ increases, the frequency of clusters with no or little transmis-
sion decreases and the frequency of larger cluster sizes increases.

The number of the total ‍Z + 1‍ cases that are actually observed, ‍X ‍, depends on the ascertainment 
model. We consider a model where each case is observed and contributes to the reported cluster size 
with probability ‍q‍, so that the observed cluster size ‍X ‍ (conditioned on ‍Z ‍) is binomial with parameters 
‍n = Z + 1‍ and probability ‍q‍. The index case is treated the same as the infectees, so ‍X ‍ may or may not 
include the index case. If none of the cases in a cluster are observed, we assume the cluster is not 
reported, so our model factors in the effect that smaller clusters are more likely to be missed. See 
Appendix 1 for an explicit statement of the likelihood function.

For each collection of cluster sizes in our datasets we estimate the mean ‍Rc‍ and dispersion ‍k‍ using 
the ascertainment model with ‍q = 0.75‍. We base this value on the meta-analysis (Bobrovitz et al., 
2021) which reports ascertainment fractions for high-income regions in the Americas between 66% 
(in the last quarter of 2020) and 85% (in the second quarter of 2021). We use maximum likelihood 
estimation to obtain estimates of ‍Rc‍ and ‍k‍, and we use the Hessian of the log-likelihood to obtain 95% 
confidence ellipses for the parameters [Wasserman, 2013, Sec. 9.10].

Finally, we perform a second analysis using the same model, using a smaller window of time for 
the definition of a cluster. In this way we hope to identify only the index case and the cases directly 
infected by the index case. We use the model above for this (smaller) number of cases for each cluster 
to estimate a distribution for ‍ν‍, but then use this in turn to estimate a distribution for the instanta-
neous transmission rate ‍β‍. Our reasoning is that if ‍ν‍ is the random Poisson parameter when the index 
case it exposed to ‍n‍ people for time ‍T ‍, then ‍β‍ has approximately the same distribution as ‍ν/(nT)‍. 

Figure 1. Frequency of clusters of different sizes on a log scale. Trends continue as shown for larger clusters. (Left) Fixing mean cluster size ‍Rc + 1‍ and 
varying dispersion ‍k‍. (Right) Fixing ‍k‍ and varying ‍Rc + 1‍.

https://doi.org/10.7554/eLife.76174
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Under these assumptions, ‍β‍ is also a Gamma-distributed random variable with parameter we can 
easily identify, from those for ‍ν‍.

Results
Figure 2 shows histograms of cluster size according to our definition in the four provinces. In Table 1 
we show some statistics associated with the data for each province. In the top we show the number 
of clusters, the number of schools appearing, the number of schools with more than one reported 
cluster, and the fraction of schools with multiple clusters. In the bottom we show the fraction of clus-
ters that have only one observed case, and the average number of observed cases in the clusters, the 
maximum observed cluster size, the index of dispersion (variance divided by mean) of cluster size, and 
index of dispersion of the number of cases in a cluster subtracting one for the presumed index case.

In Figure 3 (left) we show the rate (in clusters per day per 100,000 population) that cases appear in 
the dataset over time. In Figure 3 (right) we show the rate of COVID incidence per 100,000 population 
in the province over the same period of time. There is an apparent correspondence between the two 
time series, with peaks in rate of clusters per day occuring near peaks in incidence.

Figure 4 (left) shows the estimated mean cluster size (‍= Rc + 1‍) and dispersion ‍k‍ for the four Cana-
dian provinces. Mean cluster sizes ranged from 1.9 to 2.9 cases, and dispersion ranged from 0.34 to 

Figure 2. Histograms of observed cluster sizes in four Canadian provinces. Inset histograms only show clusters of size 11 or more on a different scale.
Each dot represents a single cluster of size 11 or larger, and indicates the presence of (more rare) larger clusters.

https://doi.org/10.7554/eLife.76174
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0.53 (recalling that no overdispersion corresponds to ‍k → ∞‍.) Recall that we determined clusters by 
including cases in the same cluster if they were reported within 7 days of each other. In Appendix 1 
we explore what happens if we change this window to either 4 or 10 days. We find that estimates of 
‍k‍ do not change much: there is less than a 10% change in ‍k‍ in all cases. A window of 4 days leads to 
smaller cluster sizes (at most 18% smaller) and a window of 10 days leads to larger cluster sizes (at 
most 11% larger).

In Appendix 1 we explore varying the ascertainment fraction between 0.2 and 1. Though lower 
ascertainment fractions yield bigger values of ‍Rc‍ and smaller values of ‍k‍, we see that the parameter 
estimates are relatively insensitive to values of ‍q‍ between 0.5 and 1. For example, when q1 is reduced 
from 0.75 to 0.5, the range of ‍Rc + 1‍ shifts from 1.9–2.9 to 3.2–6.4, and the range of ‍k‍ shifts from 
0.34–0.53 to 0.22–0.39. The reason for this is that though a given cluster with multiple cases will look 
smaller with fewer cases detected, and lower detection will thereby bias observed size downwards, 

Table 1. Cluster statistics for each province.
(Top) For each of the four Canadian provinces: number of clusters in the data, number of schools 
reported, number of schools with multiple clusters, fraction of schools with multiple clusters. 
(Bottom) Fraction of clusters with one case, mean observed cluster size, maximum observed cluster 
size, and index of dispersion (variance of number of cases divided by mean number of cases) with 
and without subtracting one for the index case.

Province
Number of 

Clusters
Number of 

Schools
Schools with Multiple 

clusters
Fraction of schools 
Multiple clusters

Manitoba 1754 542 396 0.73

Saskatchewan 1211 466 295 0.63

Ontario 8482 3337 2147 0.64

Alberta 5032 1537 1158 0.75

Province

Fraction with Mean observed Max observed Index of IoD without

One case Cluster size Cluster size Dispersion (IoD) Index case

Manitoba 0.58 2.16 44 3.44 6.43

Saskatchewan 0.66 1.70 16 1.23 2.98

Ontario 0.63 1.83 50 1.87 4.13

Alberta 0.47 2.45 108 4.94 8.35

Figure 3. Two indicators of COVID prevalence over time in the four Canadian provinces. (Left) Estimates of the rate of new clusters (per 100,000 
population) as a function of time in each province. (Right) Incident cases per day (per 100,000 population) in the same province over the corresponding 
time interval. Case counts are averaged over a 2-week window.

https://doi.org/10.7554/eLife.76174
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many single-case clusters will not be detected at all, biasing the observed cluster size upwards again. 
We also consider an alternate model of ascertainment, where the chance of a cluster being reported 
at all depends on the size of the cluster, and vary the rate of ascertainment in that alternate model; 
see Appendix 1.

Another way to visualize the variability of transmission we have inferred from the data is to show 
the distribution of the Poisson parameter ‍ν‍, of which ‍Rc‍ is just the mean. In our model ‍ν‍ is the index 
case-specific expected number of further cases in a cluster, and is a gamma-distributed random vari-
able. Figure 4 (right) shows the estimated distribution of ‍ν‍ for each jurisdiction, and Table 2 shows 
some key properties of the distribution for each of the provinces.

As a way of interpreting dispersion values and what they mean for cluster size, we consider the 
fraction of all cases that occur in the largest 20% of all clusters. (If the distribution of cases follows the 
Pareto principle Wikipedia contributors, 2021 then 80% of the cases will be in the top 20% largest 
clusters.) If we consider only secondary cases (not including the index case) we see from Figure 5 
(right) the fraction that are due to the 20% largest clusters for various values of mean cluster size 
and ‍k‍. For example, for Alberta with a mean cluster size of 2.9 and a dispersion ‍k‍ of 0.53, 69% of the 
secondary cases are in the top 20% of the clusters by size. For Saskatchewan, with a mean cluster size 
of 1.9 and ‍k = 0.37‍, 82% of secondary cases are in the top 20% of clusters by size. When we include 
index cases, the fractions are correspondingly lower, as we see in Figure 5 (right).

Our model does not consider the details of transmission at the individual level, and so does not 
make use of an instantaneous transmission rate per contact pair. However, by making some simple 
assumptions about SARS-CoV-2 transmission, we can infer a distribution of transmission rate ‍β‍ from 
our estimate of the distribution of the parameter ‍ν‍. Recall that ‍ν‍ is a Gamma-distributed random 

Figure 4. Results of our analysis for the four Canadian provinces. (Left) Estimates of mean and dispersion of cluster size for four Canadian provinces 
using the individual ascertainment model with ascertainment rate 0.75. Estimate of mean includes index case. The sample size for estimates for each 
province is the Number of Clusters as shown in Table 1. 95% confidence ellipses are shown, computed using the inverse Hessian method. (Right) 
Estimated distribution of ‍ν ‍ (left axis) and instantaneous transmission rate ‍β‍ (right axis) for different provinces.

Table 2. Properties of the estimated distribution for the Poisson parameter ‍ν‍, the index case-specific 
expected number of further cases in a cluster.
The expected value of ‍ν‍ is ‍Rc‍ and its distribution gives important information about overdispersion 
of clusters. In units of hours-1.

Province Mean Standard deviation Median 90th percentile 99th percentile

Alberta 1.86 2.55 8.9e-01 5.0 11.9

Manitoba 1.43 2.45 4.3e-01 4.1 11.7

Saskatchewan 0.88 1.46 2.9e-01 2.5 7.0

Ontario 1.04 1.70 3.5e-01 3.0 8.1

https://doi.org/10.7554/eLife.76174
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variable that gives mean number of secondary cases. Another way to estimate mean cluster size is 
to use an individual contact model where when an infectious person is in contact with a susceptible 
person, the susceptible person is infected with rate ‍β‍. In such a model we assume that infected indi-
viduals are in a classroom for 2 days before isolating (when they develop symptoms), and that the 
total contact time with their classmates is ‍T = 12‍ hr. Assuming that all individuals are in the same class, 
the infected individual is in contact with ‍n = 25‍ other susceptible students for that time period. Then 
the infected individual will on average infect ‍βnT ‍ other students. So we estimate ‍β = ν/(nT)‍. Since ‍ν‍ 
is Gamma-distributed, our estimate of ‍β‍ is too. For estimating the distribution of ‍β‍ we used a 4-day 
window for the definition of clusters, since this is more likely to include only people directly infected 
by the index case. Figure 6 shows our estimated distribution of ‍β‍ for the different Canadian prov-
inces. Table 3 shows some of the features of the estimated distribution for ‍β‍.

One application of these estimates of the distribution of ‍β‍ is that we can explore the consequences 
of different types of interventions in the classroom setting. In Tupper et al., 2020 the authors consider 
a simple model of SARS-CoV-2 transmission among a group of contacts and investigate the quantity 
‍Revent‍, the average number of secondary infections due to the presence of a single infectious indi-
vidual. ‍Revent‍ is determined by ‍T ‍, the total length of time the infectious individual is with others; ncontact, 
the number of contacts at any point in time, ‍τ ‍ the length of time the individual is with a fixed set of 
contacts; and ‍β‍, the instantaneous transmission rate. The parameter ‍τ ‍ can vary between some frac-
tion of ‍T ‍ (e.g., ‍T/3‍, if the index case divides their time equally between three sets of ncontact contacts) or 
‍T ‍ if the set of contacts is fixed. Interventions can be classified according to which of these parameters 
they modify: reducing transmission reduces ‍β‍, social distancing reduces ncontact, and ‘bubbling’ (staying 
with the same small group rather than mingling) increases ‍τ ‍ to ‍T ‍. If we use our distributions for ‍β‍ with 
the model of Tupper et al., 2020 we can estimate how the distribution of cluster sizes is changed with 
different interventions under different values of the parameters ‍Rc‍ and ‍k‍.

In Figure  7 we show estimated size distributions of clusters under different interventions. Our 
baseline simulation settings intend to capture a pre-COVID high school classroom: ‍T = 12‍ hr (2 days 
of exposure before the index case isolates), ‍τ = 3‍ hr (each student has four different classes that they 
attend for equal periods of time), ‍nclass = 25‍, and ‍β‍ is sampled from our estimated distribution for a 
given choice of ‍Rc‍ and ‍k‍. We consider three interventions: transmission reduction (e.g., by introducing 
masks) reduces β by a factor of 2; social distancing cuts the size of a class in half; strict bubbling 
increases ‍τ ‍ to ‍T ‍. For all values of ‍Rc‍ and ‍k‍ we consider, we simulate 107 clusters to obtain a histogram 
of the number of secondary cases as well a mean and standard deviations, for the baseline conditions 
and for each of the three interventions, as shown in Figure 7. Means and standard deviations are accu-
rate to the number of digits reported, and are shown with the corresponding histogram in the figure.

Figure 7 (left) shows results for ‍Rc‍ and ‍k‍ close to that of Manitoba with a 4-day window for cluster 
definition (‍Rc = 1.0‍, ‍k = 0.4‍). We see that both reducing transmission and social distancing are effective 

Figure 5. For a range of mean cluster size and dispersion ‍k‍, the fraction of cases in the 20% largest clusters, counting only secondary cases (left), or all 
cases, index and secondary (right). Dots indicate the location of the four provinces in the plots.

https://doi.org/10.7554/eLife.76174
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in reducing the total number of cases, whereas bubbling does not contribute much to reduce cluster 
sizes. This is characteristic of what (Tupper et al., 2020) call the linear regime: the number of secondary 
infections depends linearly on the time the infectious person is present with others. Figure 7 (right) 
shows the results in a hypothetical setting where ‍Rc‍ is much larger (‍Rc = 2.5‍, ‍k = 0.4‍), perhaps due to 
the existence of a more transmissible variant such as Omicron. Here, transmission reduction is less 
effective than in the linear regime, and strict bubbling more so; increasing ‍β‍ has moved us closer to 
the so-called saturating regime, where transmission reduction is relatively less effective than bubbling.

Figure 6. Estimated distribution of ‍β‍ for different provinces.

Table 3. Properties of the estimated distribution for the instantaneous transmission rate β.
In units of hours-1.

Jurisdiction Mean Standard deviation Median 90th percentile 99th percentile

Alberta 4.8e-03 6.7e-03 2.2e-03 1.3e-02 3.2e-02

Manitoba 3.3e-03 5.5e-03 1.1e-03 9.5e-03 2.6e-02

Saskatchewan 2.5e-03 4.4e-03 7.4e-04 7.4e-03 2.1e-02

Ontario 2.5e-03 4.1e-03 7.8e-04 7.1e-03 2.0e-02

https://doi.org/10.7554/eLife.76174
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Discussion
We have used cluster size data to estimate the mean and dispersion in cluster sizes, accounting for 
imperfect case detection. We have found that in each of the provinces we consider, the majority of 
school transmission occurs in a small number of classrooms, with the top 20% of clusters containing 
between 70% and 80% of the secondary cases in school settings. We developed a method to esti-
mate the transmission rate per contact per unit time, with reference to a simple model of classroom 
transmission. Having a direct estimate of the transmission rate allows us to compare the benefits of 
different control measures. We find that with parameters estimated from Canadian jurisdictions during 
the 2020–2021 school year, interventions that reduce transmission rates (such as masking) and reduce 
number of contacts at any one time (class size reduction), are more effective than strategies aimed at 
keeping sets of contacts consistent (such as bubbling).

Overdispersion in transmission of SARS-CoV-2 and other infectious diseases is well documented 
(e.g., Woolhouse et al., 1997) and is often described with reference to the 20/80 rule: that 20% of 
the infected individuals account for 80% of the transmission. Naturally, if the more infectious 20% can 
be identified, interventions targeting that portion of the population are likely to have a high impact. 
For SARS in 2003, Lloyd-Smith et al., 2005, estimated that 20% of the cases were responsible for 
almost 90% of the transmission. Estimates for SARS-CoV-2 also find considerable overdispersion, with 
the parameter ‍k‍ between 0.1 (Endo et al., 2020) and 0.5 (Laxminarayan et al., 2020) (with ‍R0 = 2.5‍ 
this gives the top 20% of cases causing 69–96% of the transmissions; see Sneppen et al., 2021, for 
a survey). These estimates focus on the distribution of the number of people an infectious person 
infects directly during the whole course of infection (with mean R0), which is of obvious epidemiolog-
ical importance, but for which it is difficult to obtain high-quality data. When a case is identified, we 
are not always able to determine who they infected, and indirect methods must be used. We may miss 
cases, and others may be wrongly attributed to a given index case.

In our present study, we examined a different random quantity, the number of additional cases 
‍Z ‍ infected, either directly or through intermediaries, by a given index case in a given setting. We 
denoted the mean of ‍Z ‍ by ‍Rc‍. Including the index case means that the cluster size is ‍Z + 1‍, with mean 
‍Rc + 1‍. Compared to estimates of R0, ‍Rc‍ does not count people infected at other sites, but it does 
include additional cases, because it includes both direct and indirect transmission. ‍Z ‍ and its mean 
‍Rc‍ are therefore more focused on the particular setting (in this case a school) than R0 is. In general it 
will depend on the infectiousness of the index case, as well as how conducive the environment is to 
transmission, and what activities are undertaken there. Determining the distribution of ‍Z ‍, as we have 
done here, provides an alternative means of investigating transmission.

However, these two measures of transmissibility (R0 and ‍Rc‍, the mean of ‍Z ‍) may be close enough 
that it is instructive to compare our estimates for ‍Z ‍ with the traditional R0, and our dispersion estimates 

Figure 7. Distribution of the number of secondary infections under baseline conditions and under three interventions. Left: under parameter choice 

‍Rc = 1‍ and ‍k = 0.4‍. Right: with ‍Rc = 2.5‍.
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with dispersion estimates for the number of secondary infections. Our ‍Rc‍ ranges from 0.9 in Saskatch-
ewan to 1.9 in Alberta. These low values of ‍Rc‍ are inconsistent with R0 estimates (which range from 2 
to 6; Alimohamadi et al., 2020), and indicate that in the pre-Delta time frame in these jurisdictions 
schools were unlikely to be a major contributor to SARS-CoV-2 spread. However, with increased trans-
missibility with new variants such as Omicron, this situation may have changed. The discrepancy is 
even greater when we consider clusters defined by the 4-day window, which are even smaller. Our 
estimates for ‍k‍ range from 0.34 (in Manitoba) to 0.53 (in Alberta), corresponding closely to earlier 
estimates of dispersion.

Overdispersion has consequences for controlling transmission and for estimation. Estimating the 
average transmission rate from a small number of clusters will be difficult, and will result in a high 
variability. Most likely what will be observed in a small number of sampled clusters will be little to 
no onward transmission, which would lead to underestimates of the transmission rate. But if one or 
more larger clusters are included in a sample by chance, then this could lead to an overestimate of 
the transmission rate.

If we could identify the conditions under which the rare larger clusters occur (high-risk individuals, 
activities, and settings) we could achieve a disproportionately large effect on reducing transmission 
by applying new measures in these settings. There are myriad possible reasons for overdispersion 
of transmission for SARS-CoV-2, including variation in viral load (Chen et al., 2020), behaviour, and 
number of contacts. But a key factor in higher dispersion with SARS-CoV-2 in comparison to other 
pathogens such as influenza is aerosolization (Goyal et al., 2021), which allows the index case to 
infect others in the room even if they are not a close contact. Properties of the setting may be very 
important, with some settings (cramped, poor ventilation) being especially conducive to transmission. 
It would be good to identify classrooms or schools where there is a high risk of larger clusters. For 
example, if data were available on the occupancy, ventilation standards, mask use, classroom size, 
distancing behaviour, and other features of classrooms, we could investigate how this related to the 
cluster size. Rapid tests may be especially good for identifying the most infectious individuals, given 
that they are sensitive to viral loads (Mina and Phillips, 2021), but additional data collection is likely 
needed to quantify setting-level risks.

Two important changes have happened since the majority of the data here was collected. Firstly, 
in the jurisdictions studied, effective vaccines have been developed and deployed for those aged 5 
and up (The New York Times, 2020). There are several ways in which this may effect cluster sizes 
in the school setting. To the extent that the general population (including adults) being vaccinated 
reduces incidence of COVID (Wilder-Smith and Mulholland, 2021; Leshem and Wilder-Smith, 
2021; Mallapaty, 2021), there will be fewer introductions of SARS-CoV-2 into the classroom, and so 
fewer exposures will occur leading to fewer clusters. This effect may be dampened by relaxation of 
distancing and other measures that were keeping COVID-19 at bay and are no longer necessary in 
the context of vaccination. The distribution of cluster sizes when clusters do occur will also change: 
many students who might otherwise be infected will be protected by the vaccine, others who are 
vaccinated but infected (breakthrough infection) may have reduced symptoms and therefore may not 
be detected. We therefore expect the mean cluster size to be reduced by vaccination, in age ranges 
where vaccination has been deployed. It is unclear what the consequences will be for the dispersion.

Secondly, new, more transmissible variants of SARS-CoV-2 have emerged (CDC, 2021a), most 
notably the Alpha variant, the Delta variant, the Omicron variant, and most recently the BA.2 strain of 
the Omicron variant, each with a substantially higher transmissibility than its predecessors. A natural 
way to implement this change in our model is to multiply ‍Rc‍ by an appropriate factor, boosting the size 
of clusters, without changing the dispersion parameter ‍k‍. Data from the period in which Delta was the 
prevalent strain is not available, but schools in the Canada and the US saw resurgences in clusters in 
schools around school openings (Cravey, 2021; Star staff wire services, 2021; CNN, 2021).

Our data and model have some limitations. The data rely on crowdsourcing, and there is reason 
to believe that reporting is incomplete. Inequity may effect data collection, as wealthier districts are 
more likely to have the resources to identify and track transmission. In general, larger clusters may be 
more likely to be reported. In the modelling, we assumed a Poisson random variable for the cluster 
size, with an underlying gamma-distributed rate variable. This is a flexible model allowing for consid-
erable overdispersion, but it is simple and does not explicitly handle complexities such as the differ-
ences between elementary and high schools. Our estimates of the transmission rate were derived 
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(where feasible) from a model with a fixed number of hours that the index case would be infectious in 
the classroom, and fixed class sizes. Accounting for variation in these would result in more variability 
in the estimates.

A major limitation of our analysis is how we assigned cases to clusters. Since the only data avail-
able was the number of cases reported on a given day at a school, we put cases in the same cluster if 
they occurred within 7 days of each other. The choice of 7 days was informed by the serial interval of 
COVID-19, but unavoidably, some cases will have been put in clusters that were not linked by trans-
mission, whereas other that were linked were not put in the same cluster. Furthermore, we assumed 
that all clusters consisted of an index case and a number of other cases directly infected by the index 
case. In reality, there may be longer chains of transmission. Any of these assumptions may bias our 
estimates of the distribution of ‍ν‍ and ‍β‍. Finally, our illustrative modelling of the impact of interven-
tions was simple, and used simple assumptions for the impacts of masking, distancing, and cohorts 
(bubbling). Our estimates of the per-contact transmission rate per unit time could, however, be used 
in more sophisticated simulation modelling to compare interventions.

Despite these limitations, our approach has distinct advantages. We have developed estimates 
of the person-to-person transmission rate derived directly from data. The data we use (cluster sizes) 
are relatively easy to access. This approach does not require individual-level data or contact tracing 
information, which are often not available; individuals may be identifiable and data are held within 
public health institutions. However, we note that if it were available, contact tracing data would be 
an excellent gold standard against which to check our assumptions about cluster identification. Our 
estimation approach, together with cluster size data, offers a high-resolution view of transmission: 
we can estimate the distribution of cluster sizes in specific settings, accounting for reporting and 
overdispersion, and in some contexts we can estimate the transmission rate, all without requiring 
either individual-level data or assumptions on transmission parameters such as the serial interval (see, 
in contrast, Cori et al., 2013; Wallinga and Teunis, 2004, which require serial interval estimates). The 
results offer context-specific tools to simulate interventions in particular settings (here, schools). The 
methods are readily generalizable to other structured settings, such as workplace outbreaks where 
workplaces are similar in size and structure. Our results also suggest the need for data collection activ-
ities that can relate cluster sizes to setting variables such as occupancy, density, ventilation, activity, 
and distancing behaviour. Ultimately this would provide the data needed to design interventions that 
best reduce school and/or workplace transmission.
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Appendix 1
Model for cluster size
We consider two models for ascertainment (whether a case is actually detected), though we only 
consider the first in the main text.

In the first ascertainment model (individual ascertainment) each of the infected individuals is 
detected with a probability q1. So ‍X ‍, the total number of infected individuals is binomial ‍(n, p)‍ with 
parameters ‍n = Z + 1‍ and ‍p = q1‍. If by chance none of the individuals are observed, we do not 
observe the cluster. This is meant to model a situation where cases are detected independently of 
each other, and one detected case does not lead to further tests or screening.

In the second ascertainment model (cluster ascertainment), at first each case is identified with 
probability q2, but then if any of the students are identified they are all subsequently identified. 
This is intended to capture a situation where a single detected case triggers testing for the whole 
class. Again, if no cases are detected we do not observe the cluster. This is equivalent to saying that 
clusters of size ‍m‍ are detected in their entirety with probability ‍1 − (1 − q2)m

‍.
The number ‍Z ‍ of new cases given the presence of one infectious case is a Poisson-distributed 

random variable with a rate ‍ν‍ that is itself a Gamma-distributed random variable with a shape ‍k‍ and 
scale ‍θ‍. This means ‍Z ‍ has a negative binomial distribution ‍NB(r, p)‍, where ‍r = k‍ and ‍p = θ/(1 + θ)‍. 
Letting ‍Θ = (k, θ)‍, the pmf of ‍Z ‍ is

	﻿‍ VΘ(j) = P(Z = j) = Γ(j+r)
j!Γ(r) (1 − p)rpj.‍�

Under the individual ascertainment model with ascertainment probability q1, ‍X ‍, the number of 
observed cases, is binomial ‍(n, p)‍ with ‍n = Z + 1‍ and ‍p = q1‍. So, the probability that ‍i‍ individuals are 
observed is

	﻿‍ WΘ,q1 (i) =
∑∞

j=0
(j+1

i
)
VΘ(j)qi

1(1 − q1)j+1−i
‍�

for ‍i = 0, 1, . . . .‍ Since we do not observe clusters with no observed cases the probability of observing 
a cluster of size ‍i‍ is actually ‍P(X = i) = C−1

Θ,q1
WΘ,q1 (i)‍ for ‍i = 1, 2, . . .‍, where ‍CΘ,q1 =

∑∞
i=1 WΘ,q1‍.

If the observed cluster sizes are ‍Xi‍, ‍i = 1, . . . , n‍, the log-likelihood function for ‍Θ = (k, θ)‍ under the 
individual ascertainment model is then

	﻿‍
∑n

i=1 log
[
C−1
Θ,q1

WΘ,q1 (Xi)
]
‍�

Under the cluster ascertainment model, the cluster is observed or not with probability 

‍1 − (1 − q2)Y+1
‍. So the probability of observing ‍X = j‍ in a cluster is

‍UΘ,q2 (i) = [1 − (1 − q2)i]VΘ(i)‍ for ‍i = 0, 1, . . .‍ but then since we cannot observe clusters of size 0, an 
observed cluster has size ‍i‍ with probability

‍P(X = i) = D−1
Θ,q2

UΘ,q2 (i)‍ for ‍i = 1, 2, . . .‍, where ‍DΘ,q1 =
∑∞

i=1 UΘ,q2 (i)‍.
If the observed cluster sizes are ‍Xi‍, ‍i = 1, . . . , n‍, the log-likelihood function for ‍Θ = (k, θ)‍ under the 

cluster ascertainment model is then

	﻿‍
∑n

i=1 log
[
D−1
Θ,q2

UΘ,q2 (Xi)
]
‍�

Under both ascertainment models, we then go from our estimates of ‍k‍ and ‍θ‍ to estimates of ‍Rc‍ 
via the formula

	﻿‍ Rc = pr
1−p = kθ.‍�

We use the Delta method to obtain confidence intervals for ‍Rc‍ from confidence intervals on ‍k‍ 
and ‍θ‍.

Analysis of US data
The US data was gathered from the National Educational Association website (Canadian Doctors, 
Professionals, & Citizens for Masks, 2021) (originally started by Alisha Morris, an educator at a 
Kansas high school) which collected data from news media and from reports submitted by volunteers 

https://doi.org/10.7554/eLife.76174
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(Walker, 2021). We selected the eight states with the most data available, and covering the period 
between August and November 2020. For the US data we used confirmed student cases listed on a 
particular date for the cluster size, excluding teachers and staff. We did not collect cases reported on 
different days at the same school in the same cluster as we did with the Canadian data.

In Appendix 1—table 1 we show some statistics associated with the data for each state. In the 
top we show the number of clusters, the number of schools appearing, the number of schools with 
more than one reported cluster, and the fraction of schools with multiple clusters. In the bottom we 
show the fraction of clusters that have only one observed case, and the average number of observed 
cases in the clusters, the maximum observed cluster size, the index of dispersion (variance divided by 
mean) of cluster size, and index of dispersion of the number of cases in a cluster subtracting one for 
the presumed index case. Comparing with Table 1, we can see several striking differences between 
the US and Canadian data. There are substantially more clusters reported in Canada than in the US, 
despite the US states having greater population on average. This may partly be explained by the 
Canadian data being collected over a longer period than the US data, but this is likely not the full 
explanation: in Appendix 1—figure 2 we show the rate (in clusters per day) that cases appear in the 
dataset over time. We can compare with Figure 3 (left) that shows the same thing for the Canadian 
data. Even at times when both US and Canadian datasets record clusters, Canadian rates are higher 
than US rates by an order of magnitude, despite incidence rates being similar in US states versus 
Canadian provinces (Appendix 1—figure 2 (right) versus Figure 3 (right)). This suggests that the 
method used for gathering cluster reports in different jurisdictions varied substantially between the 
two datasets, especially when we look at daily incident cases in each. Furthermore, the majority of 
schools in the US datasets only report one cluster., whereas the opposite is true of the Canadian 
data.

There are also substantial differences in statistics of cluster sizes. Mean observed cluster sizes 
were without exception larger in the US states than Canadian provinces, and Canadian provinces 
tended to have a higher fraction of clusters with only one case. Given the incomplete nature of the 
US data, we cannot determine whether these differences are due to real differences in transmission 
in the jurisdictions, or because smaller clusters were less likely to be reported in the US states.

Appendix 1—table 1. Cluster statistics for each state in the US data.
(Top) For each of the eight US states: number of clusters in the data, number of schools reported, 
number of schools with multiple clusters, fraction of schools with multiple clusters. (Bottom) Fraction 
of clusters with one case, mean observed cluster size, maximum observed cluster size, and index 
of dispersion (variance of number of cases divided by mean number of cases) with and without 
subtracting one for the index case.

State Number of Clusters
Number of 
Schools

Schools with Multiple 
clusters

Fraction of Multiple 
schools clusters

Texas 369 326 30 0.09

Florida 147 134 10 0.07

Ohio 122 95 12 0.13

Pennsylvania 322 247 46 0.19

Wisconsin 130 118 11 0.09

Georgia 68 53 10 0.19

Indiana 105 84 13 0.15

Illinois 81 76 5 0.07

State

Fraction 
with One 
case

Mean observed 
Cluster size

Max observed 
Cluster size

Index of 
Dispersion (IoD)

IoD without 
Index case

Texas 0.69 1.73 21 2.29 5.40

Florida 0.69 5.31 90 27.28 33.62

Ohio 0.69 2.11 21 4.30 8.18

 Continued on next page
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State

Fraction 
with One 
case

Mean observed 
Cluster size

Max observed 
Cluster size

Index of 
Dispersion (IoD)

IoD without 
Index case

Pennsylvania 0.73 1.75 28 3.84 8.95

Wisconsin 0.46 4.02 31 6.28 8.36

Georgia 0.46 4.76 38 10.09 12.77

Indiana 0.81 2.19 36 9.00 16.56

Illinois 0.52 3.47 36 11.07 15.55

Appendix 1—figure 1. Histograms of observed cluster sizes in eight US states. We only show clusters of size 30 
or fewer. Each dot represents a single cluster of size 8 or larger, and indicates the presence of (more rare) larger 
clusters.

Appendix 1—figure 2. Two indicators of COVID prevalence over time in the eight US states. (Left) Estimates of 
the rate of new clusters being reported (per 100,000 population) as a function of time in each province. (Right) 
Incident cases per day (per 100,000 population) in the same province over the corresponding time interval. Case 
counts are averaged over a 2-week window.

 Continued

https://doi.org/10.7554/eLife.76174


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Microbiology and Infectious Disease

Tupper et al. eLife 2022;11:e76174. DOI: https://doi.org/10.7554/eLife.76174 � 20 of 22

Appendix 1—figure 3. Estimates of mean and dispersion of cluster size for eight American states using the 
individual ascertainment model with ascertainment rate 0.75. Estimate of mean includes index case. The sample 
size for estimates for each state is the Number of Clusters as shown in Appendix 1—table 1. 95% confidence 
ellipses are shown, computed using the inverse Hessian method.

Appendix 1—figure 3 shows the estimated mean cluster size (‍= Rc + 1‍) and dispersion ‍k‍ same for 
the eight US states. In the US data, mean cluster size was estimated to range from about two in Texas 
to almost eight in Florida. Dispersions ranged from 0.05 to 0.3, showing considerable overdispersion 
compared to the Poisson distribution. However, given that we are very probably substantially 
undersampling clusters in the US data, and the clusters that we are observing are likely larger ones, 
these estimates of mean cluster size are biased upwards in a way we are not able to control for.

Varying the rate and model of ascertainment
In the main text we estimated parameters with the assumption of the individual ascertainment model 
with an ascertainment probability of 0.75. Here, we investigate how our main parameters ‍Rc + 1‍ 
(expected cluster size) and ‍k‍ (dispersion) vary with this ascertainment probability. We also consider 
the alternate ascertainment model discussed in the previous section ‘Model for cluster size’.

Appendix 1—figure 4 shows the parameter estimates for the two models. The left plots show 
results for the individual ascertainment model where we set q2 = 1 and vary q1 from 0.2 to 1. The 
right plots show results for the group ascertainment model with q1 = 1 and q2 varying from 0.2 to 
1. We see that the parameters do vary with the model and the ascertainment fraction, but relative 
magnitudes of the parameters in different jurisdictions do not change.

https://doi.org/10.7554/eLife.76174
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Appendix 1—figure 4. Estimates of mean and dispersion of cluster size for eight US states (left) and four 
Canadians provinces (right) using the individual ascertainment model (left) and the group ascertainment model 
(right) with varying ascertainment rate. Estimates of mean includes index case.

Varying the window for assigning cases to a cluster
In the main text, we reported results when clusters were defined by assigning cases to the same 
cluster if they were reported within 7 days of each other, or if they could be linked by a chain of 
such cases. We investigate here how changing the window for defining clusters affects our results. In 
Figure 5 we show how our estimates for dispersion (‍k‍) and mean cluster size (‍Rc + 1‍) vary when the 
window width is set to either 4, 7, or 10 days. Dispersion does not change much with changing the 
window, but as expected longer windows lead to larger clusters. However, the change in average 
cluster size from 7 to 10 days is modest, as we see in Appendix 1—table 2.

Appendix 1—table 2. Estimates of dispersion ‍k‍ and mean cluster size ‍Rc + 1‍ for the four provinces 
for three choices of the cluster definition window: 4 days, 7 days (the choice in the main text), and 
10 days.

Province

Dispersion‍k‍ Mean cluster size‍Rc + 1‍

4 days 7 days 10 days 4 days 7 days 10 days

Manitoba 0.36 0.34 0.35 1.99 2.43 2.71

Saskatchewan 0.34 0.37 0.36 1.76 1.88 1.98

Ontario 0.36 0.37 0.40 1.74 2.04 2.24

Alberta 0.50 0.53 0.54 2.43 2.86 3.16

https://doi.org/10.7554/eLife.76174
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Appendix 1—figure 5. Estimates of mean and dispersion of cluster size for the four provinces with four different 
choices of the window for defining clusters. Choices are 4, 7, and 10 days, with thicker lines on the error ellipse 
indicating more days. The sample size for estimates for each province is the Number of Clusters as shown in 
Table 1 of the main text. 95% confidence ellipses are shown, computed using the inverse Hessian method.  

https://doi.org/10.7554/eLife.76174
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