bioRxiv preprint doi: https://doi.org/10.1101/598490; this version posted October 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A Mechanism-based Outbreak Projection Study of Pertussis (Whooping
Cough): Combining Particle Filtering and Compartmental Models with
Pre-vaccination Surveillance data

Xiaoyan Li, Nathaniel D. Osgood

Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract

Particle filtering is a contemporary Sequential Monte Carlo state inference and identification methodology
that allows filtering of general non-Gaussian and non-linear models in light of time series of empirical ob-
servations. Several previous lines of research have demonstrated the capacity to effectively apply particle
filtering to low-dimensional compartmental transmission models. We demonstrate here implementation and
evaluation of particle filtering to more complex compartmental transmission models for pertussis — includ-
ing application with models involving 1, 2, and 32 age groups and with two distinct functional forms for
contact matrices — using over 35 years of monthly and annual pre-vaccination provincial data from the mid-
western Canadian province. Following evaluation of the predictive accuracy of these four particle filtering
models, we then performed prediction, intervention experiments and outbreak classification analysis based
on the most accurate model. Using that model, we contribute the first full-paper description of particle
filter-informed intervention evaluation in health. We conclude that applying particle filtering with relatively
high-dimensional pertussis transmission models, and incorporating time series of reported counts, can serve
as a valuable technique to assist public health authorities in predicting pertussis outbreak evolution and
classify whether there will be an outbreak or not in the next month (Area under the ROC Curve of 0.9) in
the context of even aggregate monthly incoming empirical data. Within this use, the particle filtering mod-
els can moreover perform counterfactual analysis of interventions to assist the public health authorities in
intervention planning. With its grounding in an understanding of disease mechanisms and a representation
of the latent state of the system, when compared with other emerging applications of artificial intelligence
techniques in outbreak projection, this technique further offers the advantages of high explanatory value and
support for investigation of counterfactual scenarios.

Keywords: Particle Filter, Mathematical Modelling, Pertussis, Age-structured Model, Contact Matrix,
Outbreak Prediction

1 1. Introduction

2 Pertussis is a common childhood disease, which is a highly contagious disease of the respiratory tract
s that caused by the bacterium Bordetella pertussis [1]. It is most dangerous for infants, due to risks of severe
+ complications, post-paroxysm apnia [1]. The most frequent complication is pneumonia, while seizures and
s encephalopathy occur more rarely [I]. Pertussis is a highly contagious disease only found in humans, and
s spreads from person to person by coughing, sneezing, and prolonged proximity [2]. Evidence indicates a
7 secondary attack rate of 80% among susceptible household contacts [3]. In contrast to some other prevalent
s childhood diseases, immunity conferred by natural exposure or vaccination to pertussis is widely believed
o to wane relatively rapidly, leading to significant risks of infection even in adults who have been previously
10 infected. It is notable that babies can be infected by adults, such as parents, older siblings, and caregivers
u  who might not even know they have already contracted this disease [2]. Pertussis incidence shows no distinct
12 seasonal pattern. However, it may increase in the summer and fall [3].

13 In the pre-vaccination era, pertussis was one of the most common childhood infectious diseases and a
1 major cause of childhood mortality. In 1860, the mortality rate of all-age pertussis in Demark was 0.015% [4],

Preprint submitted to Elsevier October 20, 2019


https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/598490; this version posted October 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

15 but that burden fell heavily on infants and children. Research into historical mortality rates from pertussis
16 indicate that the death rate in infancy is higher than in other groups [4]. In recent years globally, there are
v an estimated 24.1 million cases of pertussis, and about 160,700 deaths per year [5]. Since the 1980s, there
18 has been a rising trend in the reported cases of pertussis in the United States [5]. The most recent peak year
19 of the reported cases of pertussis in the United States is 2012, when the Centers for Disease Control and
»  Prevention (CDC) reported 48,277 cases, but many more are believed to go undiagnosed and unreported
2 [5]. Research aimed at estimating the level of population susceptibility and predicting the transmission
2 dynamics of pertussis could aid outbreak prevention and control efforts by health agencies, such as performing
»  intervention before the predicted next outbreak, and in targeted outbreak response immunization campaigns
2 [6].

2 Dynamic modelling has long served as an important tool for understanding the spread of the infectious
» diseases in population [7], including pertussis, and for evaluating the impacts of interventions such as immu-
27 nization and hygeine-enhancing. In recent years, particle filtering as a machine learning method has been
;s employed for incorporating empirical time series data (such as surveillance [8] and online communicational
2 behavior data [9]) to ground the hypothesis as to the underlying model state models in some previous re-
s searches [10] [1T] [12] [13], especially for the infectious diseases of influenza [14] [I5] and measles [§]. In this
a paper, we apply the particle filtering algorithm in a more complex and widely used compartmental model [16]
» of pertussis by incorporating the reported pertussis cases in Saskatchewan during the pre-vaccination era.
33 Particle filtering for pertussis is different than for other pathogens on account of the need for state estimation
1 to estimate the population segments at varying levels of immunity. Another need concerns extends from
35 the heterogenous nature of the mixing and incidence burden between different age groups. For this reason,
3 age-structured models are examined here. Specifically, we have examined two categories of age-structured
s particle filtering models — with 2 age groups and with 32 age groups. Moreover, we have proposed and
s explored three methods for calculating the contact matrix, so as to reduce the degrees of freedom asso-
3 ciated with characterization of the contact matrix. This contribution compares the results obtained from
w0 all the particle filtering models by incorporating the empirical data across the whole timeframe evaluating
a the predictive accuracy of the models. Finally, using the minimum discrepancy particle filtering model, we
» demonstrate how we can evaluate intervention effects in a fashion that leverages the capacity of particle
»s filtering to perform state estimation.

4 2. Methods and materials

s 2.1. Mathematical epidemiological models

a6 As noted above, the dynamics of pertussis in the population is more complex than for infectious diseases
«  that confer lifelong immunity — including other prominent childhood infectious diseases such as measles —
s due to the temporary character of the immunity acquired by Bordetella pertussis infection. As the time
» since the most recent pertussis infection increases, the immunity of a person wanes [7]. People with lower
s0 immunity generally tend to be more easily infected, and exhibit a higher risk of transmitting the infection
st once infected.

5 In this paper, we have employed the structure of the popular pertussis mathematical model of Hethcote
53 [I6]. To capture the characteristics of pertussis in waning of immunity and the different level of infectiousness
s« and susceptibility involved with infection in light of pre-existing immunity, the compartmental model in [16]
55 further divides the infectious population into three groups: infective with weak-disease (I, ), mild-disease
ss  (In), and full-disease (I). In a similar fashion, the recovered population is divided into four groups of
57 successively increasing immune system strength: R, Rs, R3 and Ry.

58 Figure [I| shows the mathematical structure of our compartmental pertussis model adapted from [I6];
s readers interested in further introduction of this structure are referred to It is notable that
o0 the model of Hethcote (1997) [16] employs a formulation in which each state variable is of unit dimension,
e representing a fraction of the population in different age groups of the same class. However, for the sake
e of easing comparison against empirical data — the pertussis reported cases in the province of Saskatchewan,
&2 Canada during pre-vaccination era (from 1921 to 1956) — two parts are modified compared to the original
s« model in [I6]. Firstly, the model in this paper is represented in a re-dimensionalized fashion, with the state
es variables representing counts of persons based on the structure in Figure[[] Secondly, because of the focus
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Figure 1: The transfer diagram for the pertussis model without vaccination. adapted from [16]

s of this paper on the pre-vaccination error, all vaccinated-related elements of the original model of [16] are
o7 removed.

68 Finally, four models are considered in this research. Using n to denote the count of age groups incorpo-
e rated in the models, we consider models of the aggregate population (n = 1), of two age groups (n = 2), 32
w0 age groups model (n = 32) with the contact matrix introduced in the paper of Hethcote (1997) [16], and a
n final model with 32 age groups (n = 32) model with a re-balanced contact matrix. The mathematical models
= are introduced in separate sections below.

n 2.1.1. Aggregate population epidemiological model (n=1)

7 In the aggregate model, discordant contacts — contacts of infectious individuals (including the persons in
s stocks of I, I, and I,,) and the others (including the persons in the other stocks, S, Ry, Rz, R3 and Ry) —
7 are mixed homogeneously. Based on the mathematical structure (Figure [1) adapted from Hethcote (1997)
7 [16], the equations of the aggregate compartmental model of pertussis are as follows:
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78 The meaning of the states and parameters are as follows: Compartment .S is the count of susceptible
7 individuals. Compartments I, I,,, and I, are the count of individuals having full-disease infectious cases
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s with all of the usual symptoms, with mild disease and weak disease infectious cases, respectively, and with
a1 correspondingly decreasing infectivity. It is notable that individuals in both class I,,, and I, lack usual
2 symptoms of pertussis, and thus exhibit atypical pertussis [I6]. Compartments Ry, Ra, R3 and Ry are the
s count of recovered people in the population, with correspondingly increasing levels of immunity. N is the
s population size. v is the overall population birth rate, while p is the death rate. It is notable that this
s paper follows [I6] in assuming that all model compartments share identical values for the mortality rate (u),
s although the death rates in the stocks of the infectives (I, I,,, and especially I) are theoretically higher
ez than for the other stocks, due to risk of pertussis-induced mortality. The mean time for waning of immunity
s from the stock of R; to S, and that for successive waning of immunity from successive pairs of R3, Rs, and
s Ry, are :~! and o™, respectively. The three infectious compartments — I, I,,,, I,, — share an identical mean
o infectious periods of y~!. However, the infectiousness of an individual varies across the three infectious
o compartments (I, I,,, I,,), with individuals in compartment I, I,,, and I, having highest, middle and lowest
oo infectiousness, respectively. Parameters p,, and p,, represent the ratios of the infectiousness of those in the
s mild-disease (I,,,) and weak-disease (I,,) infectious classes to those in the full-disease infectious classes of T
o [I6]. The force of infection parameter A characterizes the hazard rate — the probability density with which
s a susceptible (a person in the stocks of S, R;, Ry and Rj) is subject to infection from an infective, and
o is governed by the mass action principles [I7, [I6]. Parameter X is related to the total effectively infectious
o cases (I + pmIm + puwlw), contact rate (denoted as l) and per-discordant-contact transmission probability
e (denoted as p).

o 2.1.2. General age-structured epidemiological model

100 To capture the difference of the contact pattern among different age groups — for example, the fact that
11 children in school age primarily contact with peers, while babies contact more closely with their parents or
02 caregivers — and adapt the simulation models with the empirical datasets (both monthly pertussis reported
03 cases across the whole population and age-group-specific yearly pertussis reported cases), we extended the
s pertussis model in Equation to an age-structured model.

ws  The age-structured demographic model. Before introducing the epidemiological age-structured pertussis math-
10s ematical model, we first introduce the age-structured demographic model. The demographic model mainly
w7 captures the age structure and the birth and death in the population related to the empirical data (per-
108 tussis reported cases in province of Saskatchewan in Canada during the pre-vaccination era — from 1921
00 to 1956) employed in this paper. Suppose we have n age groups in the whole population, by divided by
wo a sequence of ages a;,1 < ¢ < n — 1. The age groups can be characterized as a series of n intervals —

w [0,a1),[a1,a2), -, [an—1,00). The demographic model can then be written as follows [, [16] [18].
dN1(t) <
= 2 uiNi() = (e1 4 )N (1)
j=1 (2)
dN;(t .
dt( ) =ci1Ni—1(t) — (¢ + pa)Ni(t), ©>2
112 where N; is the number of people in age group 4; v; and p; are the birth and death rate of age group ¢,
us respectively; ¢; is the aging rate of age group i, given by ¢; = (a; — a;_1)~!, and ¢, = 0.
114 In this paper, we assume that the population is in equilibrium; this reflects the fact that the empirical

us  Saskatchewan population size from 1921 to 1956 does not change dramatically [19], as will be discussed below
us in greater detail. This approximation assumes that the total population N;(t) of age group ¢ will remain
w  invariant over the model time horizon, that is, dN;(t)/dt = 0. Thus, according to Equation (2), for this
us simplified context, the death rate u; can be calculated as follows:

2 v () — eaNi (1)
1= N(D)

- ci—1Nij_1 — ¢;N;
Hi = —Ni(t) )

12> 2
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119 The values of parameters in the demographic model are estimated from the empirical data. Specifically,
o the population in each age group N; is estimated from the age pyramid of Saskatchewan [19], and the birth
=1 rates v; are estimated from the Public Health Annual Report of Saskatchewan [20] published yearly by the
12 Government of Saskatchewan.

123 The age-structured pertussis epidemiological model. By incorporating the age-structured demographic model
122 shown in Equation , and the structure of the compartmental epidemiological model shown in Figure (1} we
125 obtain the age-structured pertussis epidemiological model given below. Readers interested in the detailed
s mathematical derivation are referred to our previous contribution [§].
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127 In this age-structured epidemiological model, the definition of most quantities are consistent with (mu-

s tatis mutandis) the aggregate population epidemiological model (Equation ) and the age-structured de-
120 mographic model (Equation ), with the notable exception of the force of infection \; for age group 1.
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130 As noted above, this work followed [I6] in characterizing transmission of pertussis infection between
1 infectives and susceptibles according to mass action principles. The force of infection defined as the hazard
12 rate with which susceptibles are infected by infectives, and is related to contact rate, transmission probability,
113 and the fraction of infectives in the whole population. In the model with aggregate population, the individuals
13« are assumed contact homogeneously, and the force of infection can be simply calculated as in Equation .
135 However, in the age-structured model, contacts between individuals are assumed to occur homogeneously
136 within age groups and heterogeneously across different age groups. Thus, the calculation of force of infection
137 in the age-structured models are considerably more complex than for aggregate population model, being
s mediated by a contact matrix. Readers interested in the mathematical representation of the contact matrix
10 could are referred to our previous contribution [8]. In the current paper, we have employed three different
1w methods of calculating the contact matrix and — by extension — the force of infection in the models. These
w1 three methods are introduced as follows.

w2 2.1.3. Force of infection models

w3 General mass action-based contact matriz. Under the assumption of mass action, the force of infection — the
1 hazard rate (probability density) with which a susceptible is transmitted the pathogen by infectives — can
s be calculated by the sum of the hazard rates associated with transmission from infectives in each age group
s in turn. The force of infection of each age group is correspondingly represented as follows.

LitpmImitpwle
A1 Lfiu hfiz - lifin D1 11 £ INi £ | :
A2 lafor  lafa2 -+ lafon Pz%ﬁpw“
= : A I . ()
An Infor Infaz - lafan pn—l"L+p7"I%:1+pwl'w"
147 The above can be rewritten as the following equation:
n
Ij + memj + prwj
i = lip; Z fij N, (6)
j=1
148 where X\;, l;, pi, I;, Im; and I,,; are the force of infection, contact rate, transmission probability, number

19 of persons in full-disease infectious, number of persons in mild-disease and weak-disease infectious classes in
10 age group %, respectively. For an individual in age group 4, f;; is the fraction of that individual’s contacts
151 that occur with others in the age group of j. Thus, for a given age group i: Y ., fi; = 1. l; fi; are then the
12 elements in the contact matrix.

153 An advantage of this method in calculating the contact matrix in the age-structured model is that the
154 contacts between any two age groups (e.g., ¢ and j) is balanced (symmetric) — the number of total contacts
155 of an age group 7 to group j equals to the number of total contacts of the age group j to group i; that is,
16 N;l; fi; = Njlj f;:. However, this method has a notable disadvantage that the count of unknown parameters
157 in calculating the contact matrix grows quadratically with the count of age groups (denoted as m) in the
158 model; a demonstration of the super-linear growth of the total number of unknown parameters in the contact
15 matrix with the total number of age groups is shown in This disadvantage makes challenging
w0 parameter estimation for models incorporating a large number of age groups. To address this challenge,
11 we have explored two other methods for characterizing the contact matrix and force of infection in which
12 the count of parameters grows sub-linearly or linearly with the total number of age groups. The first
163 is a method of obtaining an un-balanced contact matrix contributed by Hethcote (1997) with a constant
1« number of unknown parameters [16]. The second approach calculates a re-balanced contact matrix in which
165 the number of unknown parameters grows linearly with the total number of age groups. Each of these
166 approaches are characterized below.

w7 The Unbalanced Contact Matriz. This unbalanced contact matrix is introduced in the research of Hethcote
s (1997) [16], which assumes that only adequate contacts are sufficient to transmit the disease. This method
169 based on a simple proportional mixing assumption that the number of total persons contacted by one person
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o in the age group j is distributed among the population in the age group i in proportion to the fractions
wm  l;/D*, where D* is the total number of contacts per unit time received by all people, I; is the contact rate —
12 average number of persons contacted by a person per unit time — of age group 7, and D* = Z?:I I;N; [16].
s The elements in the contact matrix are {;1;/D* [16]. Finally, the re-dimensionalized force of infection (X)
e used in Equation and in [I6] is given as follows:

lLil;
Di (I] + mem] + prwj) (7)

j=1

175 However, in this paper, we employ the dimensionless representation of the “force of infection” in Equation
we  ([8]), which is consistent with [I6], instead of the re-dimensionalized one in Equation . The motivation for
w7 this lies in our use of the values of parameters related to the mixing matrix from [16], which will be detailed
s below in the section “particle filtering implementation”. The dimensionless equation of force of infection in
wo  [I6] is as follows:

n

N=Y Lily Ij + pmdmj + puwlu,

(8
180 where D is the dimensionaless total contacts across all population, and D = Z?Zl I;N;/ Z?:I N; =
181 D*/Z‘;llej.
18 The advantage of this method is that — if one adopts the values of the contact rate in each age group

13 given in [I6] — there are no unknown parameters required for calculating the contact matrix. And it is
18« straightforward to calculate the contact matrix as long as those age-specific contact rate parameters are
155 known. However, this method of calculating the contact matrix suffers from a notable disadvantage — a lack
186 of guaranteed symmetry between the contacts exerted between pairs of age groups. Specifically, it can be
17 readily shown that the value of the total contacts occurring from age group 4 to age group j is not in general
188 equal to the value of the total contacts occurring from age group j to age group i. This reflects the fact
s that the number of total contacts of the age group j to age group k is N;l;l;/D*, while the number of total
wo contacts of the age group k to age group j is Nil;l;/D*. In general, these two quantities need not be equal.
191 To address this shortcoming, we explored a previously contributed method to calculate a balanced contact
12 matrix. While the above method does not require additional parameters, for the balanced method, the total
13 number of the unknown parameters grows linearly with the number of age groups.

w4 The Re-balanced Contact Matriz. To calculate the balanced contact matrix, we have employed the method
s introduced in research by Garnett and Bowden (2000) [21I]. The elements of the contact matrix I;; f;; and force
106 of infection \; are as follows; readers interested in the detailed mathematical deduction of the re-balanced

w7 contact matrix can refer to

0.5
€; Nil;
gl = 1 (ﬂ) (10— ey e | el
o € ’ > i1 Nyl

“~ i fij (L + podmj + puwlws)
Ai = Ds Z N,

(9)

j=1

108 where p; is the transmission probability of age group ¢, f;; is the fraction of the contacts of an individual
10 in age group ¢ that are made with others in age group j, d;; is the identity matrix, mixing parameter ¢;
20 determines where mixing occurs on a scale from fully homophilic — persons only contact with the individuals
20 in the same age group (representing e¢; = 0) — to random mixing in which the contact among the total
22 population is non-preferential (representing ¢; = 1.0).

203 Finally, based on the above discussion, we have employed four pertussis epidemiological models as the
20 state-space models to be used in corresponding applications of particle filtering — the aggregate population
25 model (shown in Equation (I])), the age-structured model with two age groups (Equation with n = 2)
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25 with the general contact matrix based the mass action assumption (Equation @), the age-structured model
27 with 32 age groups (Equation with n = 32) with an un-balanced contact matrix (Equation ) and the
208 age-structured model with 32 age groups (Equation with n = 32) with a re-balanced contact matrix
20 (Equation @[)) It is notable that the 32 age group division applied is directly adopted from Hethcote (1997)
a0 [I6], with age groups from 0-1 month, 2-3 months, 4-5 months, 6-11 months, integer ages for 1 through
an and including 19, 20-24 years, 25-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years, 70-79 years,
a2 80-89 years, 90 years and older. The age structured model with two age groups dichotomizes the population
a3 into 0—4 years and 5 years and older age categories. It bears noting that while more detailed age structure
a1 can better capture both the effects of population aging and inter-group heterogeneity, in terms of particle
a5 filtering, it entails estimation of a larger underlying model state space — potentially adversely affecting the
a6 accuracy of that estimation; in many models, it also requires specification of additional parameter values.

ar 2.2. Particle Filter Implementation

218 Particle filtering is a contemporary state inference and identification methodology that allows filtering
a0 of general non-Gaussian and non-linear state space models in light of time series of empirical observations
20 [10, 111 22] 15 8, 23]. This approach estimates time-evolving internal states of dynamic systems where
21 random perturbations are present, and information about the state is obtained via noisy measurements
2 made at each time step. The state space model characterizes the processes governing evolution over time of
23 internal states with stochastics consisting of random perturbations. The states in the state space model are
24 assumed in general to be latent and unobservable. Information concerning the latent states is obtained from
25 a noisy observation vector. The means by which the particle filter method operates includes the Recursive
26 Bayes Filter [22], Sequential Importance Sampling [22], 23] [10], and Resampling [22, 23], [10].

27 Sequential importance sampling (SIS) is the most basic Monte Carlo method used to sample when the
»s  predict-and-update equations of the recursive Bayes filter are not analytically tractable [22]. The key idea
29 of SIS is to estimate the posterior distribution at a given time with a weighted set of samples. SIS then
20 recursively updates these prior samples to obtain samples approximating the posterior distribution at the
a1 next time step. These importance-weighted samples are also named particles [22]. The SIS particle filter
22 commonly suffers from a strong degeneracy problem — as the algorithm continues, many — and eventually
23 most — particles will develop a negligible weight. This occurs because we are sampling in a high dimensional
2 space, using a myopic proposal distribution [23].

235 The key idea underlying resampling is a variant of the principle of “survival of the fittest”. To achieve this,
26 the resampling step will monitor the effective sample size following each observational update. Whenever the
27 effective sample size drops below a threshold, the algorithm will draw a new set of particles from the existing
28 set, where the probability of drawing a given particle is — in accordance with the principle of importance
20 sampling — proportional to its weight. Within such resampling, particles with higher weight will tend to be
x0  reproduced, and particles with lower weight will tend to die out. The new particles inherit their parent’s
an values but carry a uniform normalized weight. At a given time, each particle contributing to the distribution
22 (represented collectively by the particles according to the principles of sequential importance sampling [23])
23 can be seen as representing a competing hypothesis concerning the underlying state of the system at that time.
s The particle filtering method can be viewed as undertaking a “survival of the fittest” of these hypotheses, with
s fitness of a given particle being determined by the consistency between the expectations of the hypothesis
xus  associated with that particle and the empirical observations.

207 Interested readers are referred to more detailed treatment in [22] 24] 23] [10].

us  2.2.1. State Space Model

29 The state space model depicts the processes governing the state — both latent and observable — of a
20 noisy system evolving with time. In this paper, we employ the deterministic pertussis epidemiological
1 models as base models. Reflecting the fact that particle filtering offers value in the context of underlying
2 state equation models exhibiting stochastic variability, we then extend these deterministic models by adding
»3  random perturbations in some processes or parameters, so as to represent the stochastic processes in the
»s real world; the extended, stochastic model then serves as the basis for a corresponding particle filter. Thus,
»s  we have built four particle filtering models based on the respective pertussis compartmental epidemiological
26 models introduced previously — the aggregate population model, two-age group model with the general
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7 contact matrix, and the 32-age group models with both un-balanced contact matrix and re-balanced contact
258 matrix.

w0 Stochastic Adaptation of the Aggregate Population State Space Model. In the aggregate population state
0 space model, we employ the aggregate population pertussis compartmental epidemiological model (equation
s (1)) as the base model. Stochastics are added to this base model in three areas — in the rate of new infections,
»%2 for the contact process between susceptibles and infectives, and in the reporting process for infected cases.
%3 The mathematical structure of the pertussis aggregate population state space model is shown in Figure
264 The stochastics associated with these factors represents a composite of two factors. Firstly, there is
s expected to both be stochastic variability in the pertussis infection processes and some evolution in the
%6 underlying transmission dynamics in terms of an evolving reporting rate, as well as changes in mixing.
»7  Secondly, such stochastic variability allows characterization of uncertainty associated with respect to model
s dynamics—reflecting the fact that both the observations and the model dynamics share a high degree of
x0 fallability. Given an otherwise deterministic simulation model such as that considered here, there is a
a0 particular need to incorporate added stochastic variability in parameters and flows to provide the model
o1 with the requisite openness to correction when observing a new empirical datum [§].
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Figure 2: The mathematical structure of the aggregate particle filtered model.

272 In characterizing transmission process, we consider a stochastic process — specifically, a Poisson process —
a3 associated with incidence of infection, including cases of full-disease infectives (I), mild-disease infectives (I,,,)
xe  and weak-disease infectives (I,,). This process reflects the small number of cases that occur over each small
25 unit of time — denoted as At (carrying the value of 0.01 months in all models in this paper, or roughly 7.3
o days) [10,8]. The new infection flows incorporating stochastic process (Poisson process) are correspondingly
a7 listed as follows:

s = Poisson(ASAL)
- At
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Poisson(AR1At)
Ap = 10
Ln Ar (10)
Poisson(ARyAt)
A, =
v At
278 The second stochastic process considered in the aggregate population pertussis state space model is the

270 mixing process between susceptibles and the infectious. We know that the transmission probability of the
20 disease of pertussis is normally a constant. Thus, to simplify the model, we incorporated an effective contact
»  rate parameter, denoted as 8, where the effective contact rate is the multiplication of a per-month contact
22 rate and transmission probability (of unit dimension), denoted as ! and p (8 = Ip) in the deterministic
3 aggregate population compartmental pertussis epidemiological model characterized in Equations . We
23 posit that parameter will undergo some evolution in value in accordance with contact rates — such as due to
25 social distancing, as the school year starts or stops, and enhanced hygenic awareness during outbreaks. We
s thus characterized effective contact rate 5 as evolving stochastically within the model.

287 To estimate changing values of the stochastic effective contact rate parameter 5, and to investigate
s the capacity of the particle filter to adapt to parameters whose effective values evolve over simulation,
250 we incorporated the parameter 8 into the state of the particle filter model, as seen in Figure [2| Moreover,
20 reflecting the fact that the effective contact rate g is conceptually bounded to the non-negative real numbers,
21 we treat the natural logarithm of the effective contact rate 5 as undergoing a random walk according to
22 Brownian Motion, as characterized by a Wiener Process [25] 26] §]. The stochastic differential equation of
203 the effective contact rate 8 can thus be described according to Stratonovich notation as:

din(B) = sgdW, (11)

204 where dW; is a standard Wiener process whose perturbations follow a normal distribution with 0 of mean
25 and unit rate of variance; sg is the diffusion coefficient. Thus, the perturbations in the value of in(3) are
26 normally distributed with 0 of mean and variance sg?.

207 The third stochastic process considered in the noisy state space model relates to the reporting process
28 for infected pertussis cases. Over the multi-decadal model time horizon (as circumscribed by the span of
20 the empirical data from 1921 to 1956), and particularly on account of shifting risk perception, there can be
w0 notable evolution in the degree to which infected individuals or their guardians seek care. To capture this
s evolution, we incorporated another stochastically evolving parameter — the fraction of underlying pertussis
s cases that are reported (denoted as C..); as for the above parameters, this parameter is also treated as an
s element of evolving model state. Reflective of the fact that the reporting rate C, is a probability limited to
s0¢  the range [0, 1], we characterize the logit of C,. as also undergoing Brownian Motion according to Stratonovich
305 notation [ as follows:

Cr
d(logit(Cy)) = d(ln(1 — ) = s,dW; (12)
306 where dW; is as above; s, is the diffusion coefficient. Perturbations in the value of l”(1—06r) with time

a7 follow a normal distribution with mean 0 and variance s,-2.

308 Moreover, to calculate the reported number of pertussis cases in the particle filtering model, which is used
30 in the measurement model discussed below, we incorporated an extra state, denoted as I, which accumulates
s0  the count of pertussis infectious cases from time k£ — 1 to time k. It is notable that the state of cumulative
sn  infectious cases from time k — 1 to k — I — is different from the original infectious states I, I,,, or I, in
sz the deterministic compartmental model in Equations . Specifically, the state of the cumulative count of
a3 infectious cases I, purely integrates all the inflows to the infectious states as a whole (and without all the
ae  outflows), so as to simulate a similar process of successively tallying up the pertussis cases over the course
a5 of some period of time as is undertaken in the real world. Moreover, we further assume that the individuals
s with mild-disease infectious cases (I,,,) and weak-disease infectious cases (I,,) are also subject to reporting.
av The reporting rates of the mild-disease infectious cases (I,,,) and weak-disease infectious cases (I,,) that have
s symptoms are considered to be p,, and p,,, in this paper. It is notable that the sequence of the values of k
a0 correspond to the sequence of historical reporting times (per Month in this paper). Then, the cumulative
a0 infectious cases from time k — 1 to k in state Iy is represented as follows:

10
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k . . .
Poisson(ASAt) Poisson(ARy At) Poisson(ARyAt)
I, = dt 13
k Al( At + Pm Al + Puw Al (13)
31 It bears emphasis that the model implementation of Equation (13)) made use of identical values drawn for

3 the stochastic components used in the flows that it serves to accumulate. Thus, the reported pertussis cases
33 calculated in the state space model at the measure time k, denoted as I, can be represented as follows:

L = I;C, (14)

32 Finally, we obtained the noisy state space model of the pertussis particle-filtered aggregate model by
35 incorporating into the base model — as given by the deterministic compartmental epidemiological model in
36 equations of — the adjusted stochastic parts in equations of , , , and (Figure .
37 Readers interested in the complete mathematical equations, parameter values, and initial state assumptions
28 for the state space model can refer to those seeking better understanding of basis for the pa-
20 rameters related to the transmission of pertussis in this model are referred to the research of Hethcote (1997)
s0  [16]. The demographic parameters of this model are sourced from the Annual Report of the Saskatchewan
s Department of Public Health [20] and the age pyramid of Saskatchewan [19]. The initial values of states in
s this model are estimated by tuning the particle-filtered model (the assumptions regarding the distribution
a3 of the initial states, as given by constants) and sampled by the particle filtering algorithm. Both the values
s of parameters and initial values of states in this model are listed in

35 The two-age group population structure state space model. In the two-age-group population structure state
35 space model, we employ the age- and population-structured pertussis compartmental epidemiological model
s (Equation ) with n = 2 as the base model, where the variable of “force of infection” is calculated according
18 to the mass-action based formulation of the general contact matrix (Equation ) In this model variant,
330 we use subscripts “c” and “a” to denote the child- and adult-specific values, respectively, where the child age
uo  group includes all individuals from newborns to the end of the fourth year, and the remaining individuals
s are in the adult age group. Similar to the state space model with an aggregate population, noise is imparted
w2 to this base model in three elements — the new infectious occurrence process, the contact process between
a3 susceptibles and infectives, and the reporting process for infected cases. The mathematical structure of the
s pertussis aggregate population state space model is shown in Figure [3]

35 As discussed in the aggregate population state space model, we consider occurrence of infections within a
us  given small interval to be characterized by a Poisson process. Then, the flows of new infections incorporated
wr  into the model are given by the following equations:

A, = Poisson(A.S.At)
¢ At
A, — Poisson(AgSeAt)
“ At
A - Pozssoné);chcAt) (15)
A, = Poisson(AgR1,At)
me At
A, - Poisson(A.Ra.At)
we At
A, = Poisson(AqRaqAt)
wa At
348 Characterization of the stochastic mixing process between susceptibles and infectives within the stratified

uo  model is more involved than the same process in the aggregate population model, due to the need to include
0 both homogeneous mixing within the same age group and heterogeneous mixing amongst different age groups.
31 In the two-age structured model, we assume that all the differences in transmission from an infected
2 adult vs. an infected child is due to differences in contact rates, and thus that the transmission probability

11
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Figure 3: The mathematical structure of the particle filtering age-structured model with two age groups.

33 of pertussis (denoted as p; in the force of infection model of Equation and Equation @ for age group 1)
3¢ are the same between child and adult age groups (i.e., that p. = p,). Then, according to the general contact
35 matrix model based on mass action introduced previously, we obtain the following equations:

fcc + fca =1
fac+faa:1 (16)
Nclcfca = Nalafac

356 where [. and [, are the contact rates of child and adult age groups; N, and N, are the total populations
57 of the child and adult age groups; fij, 4, € [c,a] indicates the fraction of the contacts of age group ¢ occur
s with age group j.

350 Then, similarly to the aggregate population state space model, we import the parameters — effective
w0 contact rates of the child and adult age groups — denoted as . and ,, respectively. We know the effective
1 contact rate is the multiplication of the parameter of contact rate and transmission probability. Then, we
s get B. = l.pe and B, = lyp,. Substituting the equation with 5. and , to the Equation , we can get []]:

fca =1- fcc
FBe (1= foe), i | N85 (1= fee)| < 1O

fac = . N.8 (17)
1.0, if NG (1—fee)| =210

faa =1- fac

12
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363 To represent the stochastic characteristics of the mixing process of the two-age group state space model,
e we allowed three parameters to change with time according to a random walk (with the values of these
s parameters being estimated as part of model state upon each observation during particle filtering) — the
w6 effective contact rate of the child age group S, the fraction of the contacts of the child age group that occur
s with the child age group f.., and the ratio of the adult age group’s effective contact rate (3,) to that of
s the child age group (f.), denoted as M,. Reflecting the fact that both 5. and M, vary over the entire
w0 range of positive real numbers and f.. varies in the range of [0, 1], we treat the natural logarithm of each
s of B. and M,, as well as the logit of f.., as undergoing a random walk according to a Wiener Process, and
sn thus undergoing Brownian Motion) [25] 26, [§]. Drawing on notation from the Stratonovich calculus for the
s random walks involved, we obtain the equations as follows:

d(Inp.) = s, dW;

d(ln(1 {ccf ) = SecdWs (18)
d(InM,) = spr, dWy
ﬁa = Mch

a3 The third stochastic component in the two-age group model relates to calculation of the reported cases of

s pertussis in the model. As in the aggregate population model, for comparison with reported case counts, we
s also make use of two convenience states — denoted as I, and I, — to accumulate pertussis infectious cases
s from time k£ — 1 to k for the child and adult age groups. Moreover, we assume that the pertussis reporting
a7 rates of child and adult age groups are the same. Thus, the equation of reporting rate — denoted as C,. — is
s identical to that in the aggregate model in Equation . The mathematical equations characterizing the
s reporting process are listed as follows:

d(logit(Cy)) = d(In( T f’TCT ) = srdWy

k
Ie = / (Ar. + pmAr,, + puwAr,,)dt
k

-1

k
Ira = / (AL, + pmAL,, + pwdr,,) dt (19)
k—1

Irck = CrIkc

Irak = CrIka
380 where dynamic variables I,.., and I,.,; indicate the reported pertussis cases calculated from the two-age
s group model.
382 Finally, the noisy state space model of the two-age group pertussis particle-filtered transmission model is

3 the combination of the base model of the deterministic compartmental epidemiological model in Equations
384 and the adjusted stochastic parts in Equations , and (Figure . Readers interested in the
ss  full mathematical equations of the state space model, values of parameters, and initial states can refer to
38 |Append D

w7 32-age group population structure state space models. In this paper, we have explored two pertussis particle
s filtering models with 32-age group population structure — with the unbalanced contact matrix introduced by
3 [16] (Equation () and re-balanced contact matrix (Equation (9])) — taking the deterministic epidemiological
s model of Equation with n = 32 as the base model. As in the state space models above, we also
sn  incorporated three stochastic elements within the 32-age group state space models — the new infectious
32 occurrence process, the contact process between susceptibles and infectives, and the infected case reporting
303 process (Figure [4).

13
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Figure 4: The mathematical structure of the particle filtering age-structured model with 32 age groups.

304 Similar to the aggregate and two-age group population state space models introduced above, we con-
35 sider the new infectious individuals occurrence processes follows the Poisson process, and the mathematical
36 equations are listed as follows:

Ay = Poisson(\;S;At) l<i<32
At
Poi ARy At )
A = ozssonit 1:At) 1<i<32 (20)
A, = Poisson(A; Ra; At) 1 <i<32
wg At
307 Similarly to those previous models, in the stochastic process of reporting the pertussis cases in the 32-age

s group state space models, we consider the reporting rate of each age group to be the same, denoted as C,.,
w0 the logit of C). undergoing Brownian Motion. The resulting mathematical equations related to the reporting
wo process are listed as follows:

d(logit(C,)) = d(In(———
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mi
—1

Ingi = I G 1 <6 <32

k
I,ﬂ:/ (A7, + pmAr,, + pwAr,,)dt 1<i<32 (21)
k

201 where Ij; represent the new states incorporated into the state space model to capture the accumulative
w2 number of pertussis cases from time k—1 to time & for age group ¢, and dynamic variable I,; is the estimated
w3 occurrence of reported cases calculated by the state space model for age group 1.

o Then, in characterizing the mixing process between susceptibles and infectives, we separately implement
ws the 32-age group state space model with the un-balanced contact matrix introduced in [16] and re-balanced
w06 contact matrix.

a07 In the un-balanced contact matrix method introduced in [I6], we consider the parameter of I;/v/D to
ws evolve stochastically in the state space model (i.e., the natural logarithm of l;/ v'D undergoes Brownian
w0 Motion). Then, a vector represents how the contact rate of each successive age group compares with that of
a0 the first age group; specifically, fi, represents the ratio between the contact rate for the first age group and
a1 the contact rate of age group i. This vector is then used to calculate the parameter of I;/v/D for each age
a2 group 4. fj, is calculated from the value assumed for contact rate of all age groups, which are taken from
sz [16). The value of f;, is (1, 6.03, 8.03, 10.03, 12.04, 15.06, 20.08, 28.10, 47.18, 47.18, 47.18, 47.18, 47.18,
as 25.09, 25.09, 25.09, 25.09, 25.09, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 15.06, 10.03, 10.03, 5.02,
as  5.02, 5.02, 5.02). Moreover, another vector f,, is incorporated to represent the ratio of the transmission
as  probability of pertussis of each age group compared to the first age group in the state space model. The
ar  original mathematical model of [I6] lacks a dedicated transmission probability parameter. However, one
as would expect transmission probabilities to different among different age groups. For example, transmission
a0 probability from a young child is usually higher than that of the adults due to hygienic disparities. The
w20  mathematical equations of the stochastic mixing process are listed as follows:

ly
d(ln—=) = s;p,dW,
(In—=) = s1p, dW;

L
=hxf, 2<i<32 (22)

S

- l]ll Ij + memj + prwj
j=1 D Zj:l N;j

D =Y 1N/ > Ny
k=1 k=1

21 The value of fp, in the 32-age-group models of pertussis in this paper is (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2 1,1,1,1,1, 1,1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05). We assume that
w23 the transmission probability of individuals under 15 years old are the same and is the highest, while the
24 transmission probabilities of individuals in the age groups from 15 to 19 years and over 20 years are half and
w5 1/20 compared to the individuals under 15 years, respectively. The population of each age group — which is
w6 collected from the age pyramid of Saskatchewan [19] and is assumed to be invariant — is (3349, 3330, 3320,
w27 9950, 19843, 19733, 19647, 19571, 19486, 19394, 19289, 19161, 19002, 18809, 18577, 18318, 18033, 17724,
w28 17386, 17021, 16629, 16218, 15802, 73256, 65935, 117771, 97621, 70964, 44313, 19332, 4377, 387). To let the
w0 arrival rate of newborns in each pertussis particle filtering model per unit time (here, month) be the same
a0 across all models, the yearly birth rate of the 32-age-group models are assumed as (0, 0, 0, 0, 0, 0, 0, 0, 0,
=« 0,0,0,0,0,0,0, 0,0, 0.03, 0.03, 0.03, 0.03, 0.03, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0). This is done to ensure the
22 new born population each year are the same in all the models. The values of birth rates are informed from
«3 the [20]. Readers interested in a complete characterization of the mathematical equations of 32-age group
s state space model with an un-balanced contact matrix [16] and the initial values of all states can refer to
135 |Append D

236 In the re-balanced contact matrix method, to represent the stochastic mixing process, we assume that
«r  the changes of the logarithm of I;p; (the effective contact rate of the first age group) undergoes a random

A = fp, 1<i<32
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s walk according to a Wiener Process (Brownian Motion) [25] 26, [§]. The logit of the six mixing parameters
a0 (6,1 < i < 6) are similarly treated as evolving according to a Wiener Process. The reason that the total
wo  number of mixing parameters is 6, instead of 32 — as might be expected if there are a mixing parameter
w1 related to each age group each — lies in the fact that the yearly empirical datasets could only be split into
w2 6 age groups — less than 1 year, 1 to 4 years, 5 to 9 years, 10 to 14 years, 15 to 19 years and 20 years and
w3 older, as is characterized in detail below. Finally, the force of infection for the the 32-age group structured
aas  pertussis particle filtering model with a re-balanced contact matrix is given as follows:

L f l<6j>0'5 (10— )b, + e [ ili 1<i<32, 1<j<32
ijlig =t | — U €)045 T €& n 1% 94 )=
o € ! > i Nily

)\i:piz JfJ(J+pN‘]+p i) 1<i<n (23)

J

i=1
d[ln(lyp1)] = s1,dWs
Lpi=lpr*fi,*fp, 2<i<n

d(logit(c;)) = d(in(5 S =s,dW, 1<i<6
.

s where f;, and f,, are the ratios of the contact rate and transmission probability between age group ¢ and
us the first age group, respectively. Both the values of f;, and f,, are the same as in the un-blanced contact
«7  matrix model. It is notable that we treat the effective contact rate (I;p;) — the multiplication of the contact
ws  rate and the transmission probability of age group ¢ as a single parameter in this re-balanced model, to
s be simplify and consistent with the previous models. Thus, we use N;l;p;/ Z;—;l Njlip; to approximately
0 represent the value of Njl;/ E?Zl Nj;l; during implementing the model. Readers interested the complete
s mathematical equations of the 32-age group state space model with a re-balanced contact matrix [16] and

w2 the initial values of all states can refer to

w3 2.2.2. Likelihood function

454 In the condensation method version [23] of the particle filtering method [22], the weight update rule for
s a particle given a new observation yj involves multiplying the previous weight by the value of the likelihood
6 function p(yg|xr), where the latter represents the probability of observing the empirical data (denoted as
7 Yk) given the particle state xj at time k. In this paper, following several past contributions [10] [I4] 8, 27],
s we select the negative binomial distribution as the basis for the likelihood function. We treat the likelihood
w0 of observing yj individuals at time & given an estimated count of incident individuals from the model iy, as
w0 follows:

. yp +r—1 )
plondin) = ( )i (24)
Yk
a61 where y; is the empirical data (reported pertussis cases) at time k; p = ir/(ix + r) represents the

w2 probability that a given reported case is in fact a true incident case, and r is a dispersion parameter. In all
w3 scenarios reported in this paper, the value of r is chosen to be 10.

ws  Aggregate model. Because the aggregate particle filtering model lacks the capacity to distinguish between
w5 individuals with different age groups as necessary to compare to the yearly age-stratified reported values, the
ws measured data for that model consists of a one-dimensional vector giving the reported cases for successive
w7 months. The likelihood function in the aggregate model can then correspondingly be calculated by the value
a8 Of P(Ymp|lrk), where y.,p is the empirical data as given by the monthly reported measles cases at time k,
w0 and I is the expected reported cases as calculated by the particle filtering model for each particle.

ao  Age structured model. The weight update rule in the age structured model is similar to that in the aggregate
an model, with the exception of the updates associated with the close of each year. Specifically, we take the
a2 likelihood function at the close of the last month (December) of each year as the product of the likelihood
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a3 functions as formulated for each empirical dataset — including both monthly pertussis reported cases across
s the whole population and the yearly reported cases related to each of the reported age groups considered.
as The likelihood formulation of age structured models is as follows:

n

LAgeStructuredModel = Lmonth * H Lyearlyi

=1
Lmonth = p(ymk| Z Irik) (25)
=1
1, if (k mod 12) #0
Lyearlyi = k . _
P(Yyikl D ieg_12 Iric), if (k& mod 12) =0

476 where L.,ontn is the likelihood function based on the monthly empirical data across the total population,
a1 Lyearty, is the likelihood function based on the yearly empirical data for group 7, y, is the yearly empirical
s data for age group 4, and I,.;; is the reported pertussis cases of age group ¢ at time k.

479 In the two-age group particle filtering model, we have three empirical datasets — the monthly reported
w0 pertussis cases across the whole population and yearly reported cases for each of the two age groups (n = 2
w1 in Equations ) In the 32-age group particle filtering models, we have employed seven empirical datasets
w2 — the monthly reported pertussis cases across the whole population and six datasets of yearly reported cases
w3 (n =6 in Equations ) As noted previously, the yearly empirical datasets could only be split into 6 age
484 groups.

ws  2.2.8. Proposal distribution

286 The Condensation Algorithm [28] 23] is applied in this project to implement the particle filter model. It
a7 is the simplest and most widely used proposal algorithm, making use of the prior as the proposal distribution
w2322

wo  2.8. Empirical data resources

wo  2.8.1. The surveillance data

a01 This paper benefits from the fact that pertussis is formally classified as a notifiable illness for the mid-
w2 western Canadian province of Saskatchewan. Pertussis reporting data for Saskatchewan are used as empirical
w3 data for the particle filtering models. These data are public aggregate data obtained from the Government
as  of Saskatchewan’s “Annual Report of Department of Public Health in the Province of Saskatchewan” [20].
w5 This paper employs two categories of datasets drawn from that report — monthly reported cases aggregated
w6 across the entire population, and yearly reported cases in each age group. The latter reflects the fact that
w7 in the yearly empirical datasets, the annual reported cases are split into different age groups. Within this
w8 dataset, age stratification is inconsistent; as a result, the splitting in some years fails to precisely match
w0 stratification of the age groups in the models. For these cases, we proportionally split the yearly empirical
so  reported cases into overlapping age groups within the model. Readers interested the detailed introduction
su  of age deviation of the empirical data can refer to

502 This study employs pertussis reported cases in Saskatchewan specifically during the pre-vaccination era.
s3 The monthly empirical data extends from Jan. 1921 to Dec. 1956, with the dataset offering a total of 432
s records. Reporting of age-specific data initiated in 1925, and continued through 1956. Every record contains
s three features — date, reported cases and population size [I9]. To make them consistent with the population
sos  size of the dynamic model — the average population from 1921 to 1956 (863,545) — the reported cases are
s7  normalized to the same population size as the model, as shown in Figure |5 yielding estimated incidence
ss rates rather than incident case counts. It can be readily appreciated that the time series demonstrate the
so0  classic patterns of waxing and waning incorporating both stochastic and regular features characteristic of
s many childhood infectious diseases in the pre-vaccination era.
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Figure 5: The monthly reported pertussis cases in Saskatchewan from 1921 to 1956 normalized by the population
employed in the model (863,545)

su 2.3.2. The demographic data

512 The demographic parameters play a significant role in the models, particularly the age structured variants.
53 The parameters related to the population are abstracted from the empirical population of Saskatchewan from
sie 1921 to 1956 [19]. The empirical demographic data indicate that the total population of Saskatchewan does
sis not show drastic fluctuation [I9] over the year range from 1921 to 1956. During these years, the empirical
si population lie in the interval from 757,000 to 932,000. The population of Saskatchewan from 1921 to 1956 of
sz each age is depicted in Figure[6] Thus, we let the model population constantly stay in 863,545, which is the
sis  average reported population over the years 1921 to 1956 within the Saskatchewan age pyramid [19]. It bears
sio emphasis that for simplicity, we assumed an equilibrium in the population structure — the total population
s0 and population among each age group (in the age-structured models) — remain invariant. Similarly, the
sn model assumes fixed values of the population in each age group, according to the previously noted average
s» population.

Population of Saskatchewan of Each Age 1921-1956

Figure 6: The age-specific and overall population of Saskatchewan from 1921 to 1956.

s 2.4. Introduction of the aggregate population model with calibrated parameters

524 To evaluate the performance of the particle filtering model when compared to the traditional calibration
s method, combining with the empirical data, we further constructed a calibration model with the aggregate
s population using the deterministic epidemiological compartmental model of Equation . To be consistent
so7 with the particle filtering aggregate model, the parameters and initial values sampled in the particle filtering
ss model are estimated in the calibration model, which are the effective contact rate 3, reporting rate C,
s and the initial value of the stocks of S, I and R;. In this calibrated model, the values of the parameters
s30 obtained from calibration against the empirical dataset are listed below. The initial value estimated from
s the calibration process in class S, I and R; are 19420, 500, 9960. The value of the effective contact rate
s2 (B) is 56.692; it bears emphasis that this value incorporates both a rate of contact and the probability of
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533 transmission. The calibrated value of the reporting rate of pertussis is 0.01. The other parameters are the
su  same as the particle filtering models.

s 2.5. Classifying outbreak occurrence

536 The pertussis particle filtering models — combining the particle filtering algorithm and the compartmental
s models with empirical data — are capable to estimate and predicting the full (continuous) model state
s33  over time. Moreover, in this paper, on the basis of having particle filtered up to a certain month, we
s further perform classification outbreak (outbreak vs. non-outbreak) analysis based on the predicted results
s0 (in the next time unit — month) of the particle filtered models. Referred from our previous contribution
sa [8], the function mapping from the continuous predicted results of particle filtering models — predicted
s reported pertussis cases in the next month — to dichotomous categories of outbreak and non-outbreak can
s3 be represented as follows [23] [8]:

2 = F(IY) (26)

Sy N Y Tr
s where {{I gc) } 1} indicates the matrix of reported cases of pertussis predicted by the particle filtering
=) k=1
sss - model of particle ¢ (1 <17 < N,) at time k (1 < k < T¥). T} is the total running time of the model.{zk}zil is
s the vector of dichotomous predicted classes — 2z, € {0, 1}, where 0 indicates non-outbreak, and 1 indicates
s outbreak. The value Iy is generated by the particle filtering models. Specifically, I, equals Z?:l I,.;1 (where
ss I 1S the reported pertussis cases of age group ¢ at the time k) in the particle filtering models introduced
se0  above.
550 Two processes are then used to perform classification analysis of the results from the particle filtering
ssi. models [8]. In the first process, we define a threshold (¢) — mean plus 1.5 times the standard deviation of the
ss2  empirical monthly reported cases, above which that particle is considered as positing an outbreak. In the
3 second process, we define a threshold of the fraction () of particles required to posit an outbreak at time
s« k for us to consider there as being an outbreak. Then, the vector determining whether there is an outbreak
s of measles in each month — z; — is calculated. We further denote {ylk}gi , as the binary empirical vector
ss6  of whether a pertussis outbreak indeed obtained at time k, y;, € {0,1}. The calculation method of yy, is
ss7  similar to that of each particle. If the count of measles reported cases is greater or equal to the threshold
sss 0, the related element in vector yyy is labeled to be outbreak (the value is 1). Otherwise, a non-outbreak is
0 assumed (the value is 0).
560 Finally, to summarize the performance of the classifier, we employ as a metric the area under the Receiver
s Operating Characteristic (ROC) curve. Readers interested in additional detail are referred to our previous
s contribution utilizing a comparable methodology for measles [g].

563 3. Results

ssa  3.1. Results of models incorporating empirical datasets across all timeframe

565 Recall that to explore the predictive performance of particle filtering in different compartmental pertussis
sss  models, four distinct particle filtering models have been built in this research — the aggregate particle
so7 filtering pertussis model (denoted as PFuggregate), the age-structured particle filtering model with 2 age
s groups (denoted as PF,g4c o), the age-structured particle filtering model with 32 age groups with the original
s0  Hethcote contact matrix (denoted as PFoge 32 Hetheote), and the age-structured particle filtering model with
so 32 age groups with the re-balanced contact matrix (denoted as PFuge 32 rebalanced). In each of the four
sn particle filtering models, 3000 particles are used in the particle filtering algorithm; for clarity in exposition, we
sz sampled the same number when generating the plots of the 2D histogram and for calculating the discrepancy.
s3 ' To compare the accuracy of a particle filtered model against that of a traditional model of pertussis calibrated
s against comparable data, we have further built a calibrated model of the aggregate population, henceforth
s denoted Calibrated.

576 By comparing the discrepancy — the root mean square error (RMSE) between the model results and
s7 - the empirical data — associated with each model, we sought to identify the model offering the greatest
sis - predictive validity. We then use the most favorable model to perform prediction and intervention analysis.
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Table 1: Comparison of the average discrepancy (RMSE) for the calibrated model and all four particle filtered
pertussis models, considering empirical data across all observation points; parentheses give the 95% confidence

intervals.
Model Monthly Yearly in Month | Total
Calibrated 34.2 NONE NONE
PFoggregate 20.9 (20.0, 21.9) | NONE NONE
PFogc2 19.9 (18.8, 21.0) | 21.0 (19.2, 22.7) 40.9 (38.1, 43.6)
PFoge32_Hethceote 20.6 (20.1, 21.2) | 25.8 (23.0, 28.6) 46.4 (43.1, 49.7)
PFoge 32 rebaianced | 19.8 (19.5, 20.1) | 28.1 (24.2, 31.9) 47.9 (43.9, 51.9)

Each of the five particle filtering models was run 5 times (the random seed generated from the same set).
Shown here are the average and 95% confidence intervals (in parentheses) of the mean discrepancy for each
model variant.

60 80 100
1 1

Discrepancy in Month
40

i
i

e -
+

Calibrate_M  PF_al_M  PF_a2_ M PFa2¥ PF_a32H_M PF_a32H_Y PF_a32R_M PF_a32R_Y

Model

Figure 7: Boxplot of monthly and yearly discrepancy of all models at monthly observation points, considering
empirical data across all observation points. “Calibrate” indicates the calibration model with aggregate population
structure; “PF_al” indicates the particle filtering model with aggregate population structure; “PF_a2” indicates the particle
filtering model with 2 age groups; “PF_a32H” indicates the particle filtering model with 32 age groups and the contact matrix
introduced in [16]; “PF_a32R” indicates the particle filtering model with 32 age groups and the re-balanced contact matrix. “_M”
indicates the discrepancy of the model comparing model-based monthly results with the monthly empirical data — the pertussis
reported cases among all population; “_Y” indicates the sum of discrepancy (of each age group) of the models comparing
model-based yearly results with the yearly empirical data — the pertussis reported cases classified into age groups and having
adjusted the unit to Month by dividing by 12. It is also notable that the dot in the boxplot indicates the mean value, while the
horizontal line indicates the median value.
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s To assess model results, each of the four particle filtering models was run 5 times with random seeds
ss0  generated from the same set. We calculated the average and 95% confidence intervals of the mean discrepancy.
s Table [1] displays the average discrepancies of the four pertussis particle filtering models and the calibrated
s deterministic pertussis compartmental model, where the discrepancy considers the entire timeframe. These
s3  results suggest that particle filtering models significantly improve the predictive accuracy beyond what is
s achieved via calibration. It is notable that both the calibrated deterministic model and the aggregate particle
ses  filtering model only offer monthly average discrepancy, because the yearly observations are stratified by age,
s but age stratification absent in both such models. Table [I] indicates that the particle filtering models are
ss7 - significantly more accurate than the calibrated model — the average discrepancies of the particle filtering
sss  models are significantly lower than those for the calibrated deterministic model. Moreover, although the
ss9  monthly average discrepancies among the four particle filtering models with different population structure
s0 and contact matrix structure are quite close, the particle filtering models PFy4. 2 and PFuge 32 rebalanced
s exhibit smaller average discrepancies. With respect to the yearly average discrepancies, Table [1| shows that
s2  the age-structured model with two age groups offers better predictive performance than the model with 32 age
s3  groups; as noted, the aggregate model lacks the age stratification required to calculate yearly discrepancies.
s It is notable that the total number of the yearly empirical datasets against which the calibration is assessed
s 1s different between the age-structured models with 2 age groups (which is compared with 2 yearly empirical
s6 datasets) and that with with 32 age groups (which is compared with 6 empirical yearly datasets). The yearly
so7  average discrepancies listed in Table[l| are the sum of the average discrepancy across each empirical dataset.
se ' Thus, this difference may contribute to the result that the yearly average discrepancies of the model with 32
s9  age groups are greater than the model with 2 age groups; at the same time, this effect will tend to be limited
eo by the fact that both the model and the empirical values will tend to have smaller counts when applied to a
e1 greater number of age groups, yielding a smaller per-age-group discrepancy. On balance, we chose to employ
e the particle filtering model with two age groups as the minimum average discrepancy model to explore the
603 performance of pertussis outbreak prediction.

604 Figure [7] shows a boxplot of the distribution of discrepancies among the calibrated model and the four
es particle filtering models, where a given box in the boxplot summarizes monthly discrepancy estimates for
es a given model, where those discrepancies are considered over different points in time. Each of the particle
sor  filtering models was run 5 times (with the random seed being generated from same set). Then the average
ss monthly and yearly discrepancy among these five runs at each observation time between the particle filtering
oo models and the empirical data are recorded for the boxplot. Both the monthly and yearly (adjusted to units
s of one Month by dividing by 12) distributions of the discrepancies of each of the age structured models
en are plotted in Figure [7] This boxplot also indicates that when considered over time, the the discrepancies
ez of all the particle faltering models tend to be smaller than for the calibrated model, although there are
sz  similar median discrepancy values. More notable yet is the fact that the discrepancies associated with the
s1a calibrated model are significantly more variable than those for the particle filtered models. This suggests
eis  that particle filtering improves the consistency of the model’s match against empirical data, when compared
e to a traditional deterministic model with calibrated parameters. Finally, it bears note that the datasets
sz of the discrepancy of the model PFy . o have a particularly narrow distribution, especially when judged in
ss  terms of yearly discrepancy.

619 Figure [§ compares the output of the calibration model and the empirical data. It indicates that the
60 deterministic model even with parameters calibrated against the entire scope of data encounters difficulties
en in tracking oscillations associated with waning and waxing of pertussis almost across the entire model time
622 horizon, reflecting the approach of the deterministic model towards a stable equilibrium. These results
&3 indicate that the particle filtering models considered here can not only decrease the discrepancy between
6« model results and the empirical data, but can further track the oscillation of outbreaks of pertussis.

625 Taken together, the results shown in Figure [7]and Figure [§ suggest that incorporating particle filtering
e in the compartmental model of pertussis could enhance simulation accuracy and support more accurate
67 outbreak tracking.

628 Figure [J] presents the posterior results of the pertussis particle filtering model with aggregate population
69 structure over the entire timeframe. For this diagram at time ¢, the results of the particle filtering model at
60 time ¢ are sampled according to the weight of all particles following the update to those weights resulting
631 from incorporating the empirical data from time ¢. Those time-specific values are then plotted; the values of
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Figure 8: Reported pertussis cases predicted by the calibration model (monthly).
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Figure 9: 2D histogram posterior result over the total timeframe for the aggregate particle filtering pertussis
model. The posterior result is sampled following weight updates in light of observations of empirical data arriving at each unit
time.
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Figure 10: 2D histogram prior result over the total timeframe for the aggregate particle filtering pertussis

model. The prior result is sampled before the weight updates in light of observations of empirical data arriving at each unit
time.
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Figure 11: 2D histogram posterior result over the total timeframe of the two-age stratified pertussis model. (a)

the monthly particle filtering result summed over the entire population. (b) the yearly particle filtering result for the child (top)
and adult (bottom) age groups.
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Figure 12: 2D histogram posterior result over the total timeframe of the age structured model of 32 age groups

with the Hethcote contact matrix. (a) the monthly particle filtering result summed over the entire population. (b) the
yearly particle filtering results of each age group of empirical datasets; age groups are successively older from top to bottom.
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62 empirical data points are shown in red, while the sampled posterior distribution of particle filtering model
613 are shown in blue. The blue color saturation indicates the relative density of sampled points within a given
su 2D bin. Figure[J]demonstrates that most of the empirical data points are located in or near the high density
65 region of the posterior distribution of the particle filtering model. The results shown in that figure further
ess indicate that the particle filtering model has the capability to track the outbreak of pertussis over time,
e37  especially compared with the calibrated model whose results are shown in Figure [8| It bears emphasis that
es the particle filtered results can follow the patterns of empirical data as they arrive; this capacity to update
639 its estimate of model state — both latent and observed — in with new arriving data is central to the function
so of particle filtering. By contrast, calibration lacks a means of updating the estimate of the model state over
e1  time, and is instead relegated to estimating parameter values, rather than the values of the state at varying
62 points in time.

643 Figure shows the prior results of the pertussis particle filtering model with aggregate population
ea structure for the entire timeframe. For the prior diagram, the results are sampled before the weight update
ws  step triggered by arrival of an empirical data point. Compared with the posterior results shown in Figure[J]
s the prior values of sampled particles of Figure [I0] are distributed over a wider range. This difference in
o7 dispersion indicates that the weight update process of particle filtering algorithm in this paper has the
as capability to use an empirical datum to concentrate the distribution of particles in the state space of the
a0 particle filtering model into a tighter range offering greater consistency with the empirical datum.

650 Figure displays the 2D histogram plots comparing both the monthly and yearly empirical datasets
1 (on the one hand) with the distributions of samples from the posterior distribution of incident cases from
sz the age structured pertussis particle filtering model containing 2 age groups (denoted as PF,4c 2) (on the
s other). This figure demonstrates that the model PF, . o is capable of tracking and simulating outbreaks
¢ of pertussis, as evidenced by the fact that most of the monthly and yearly empirical data (shown in the
s red dashes) in each month are located in or near the high density region of the sampled distribution of the
6 particle filtering model (shown in blue in the 2D histogram plots).

657 Figure |12 displays the 2D histogram plots comparing both the monthly and yearly empirical datasets (on
s the one hand) with the sampled posterior distribution of incident cases from the age structured pertussis
o particle filtering model with 32 age groups and the Hethcote contact matrix (denoted as PFage,sz,Hethcote)
0 (on the other). It is notable that the total number of the yearly empirical datasets employed is 6. This figure
1 also demonstrates that the model PFig4e 32 Hetheote is capable of tracking and simulating the outbreaks of
62 pertussis, as reflected in the fact that most of the monthly and yearly empirical data for each observation
&3 point are located in or near the high density area of the results of the particle filtering model.

664 Figure [ Figure[II] and Figure [I2) represent the 2D histogram posterior result of all the particle filtering
es models, except for the age-structured model of 32 age groups with a re-balanced contact matrix. Results
es are omitted for this final model as they are highly similar to those for the 32-age-group model using the
7 Hethcote contact matrix, which is itself shown in Figure [I2] The 2D histogram plots shown indicate that
es  both the age-structured particle filtering models and the aggregate population particle filtering model have
eo the capability to closely track the outbreak pattern of pertussis. The results of the models could match the
o0 empirical datasets quite well, including both monthly empirical dataset and yearly empirical datasets. In
en contrast to the calibrated model whose results are shown in Figure[§] the particle filtering models are capable
ez of localizing the model’s prediction of empirical data near the empirical data, as achieved by concentrating
o3 the distribution of particles across the underlying state space. Although the results in Table |1} Figure [7| (for
e discrepancy), Figure @ Figure and Figure (for posterior distribution) suggest that all four pertussis
es  particle filtering models are capable of tracking and estimating the pertussis outbreaks, in the interest of
e brevity of exposition, we selected the minimum discrepancy model — the age-structured particle filtering
o7 pertussis model with 2 age groups — to perform the prediction and intervention analysis below.

os  3.2. Prediction of outbreaks with the minimum discrepancy model

679 To assess the predictive capacity of the pertussis particle filtering models in anticipating outbreaks, we
e0 performed out-of-sample prediction experiments. Informally, each such experiment examines the capacity
61 of the model to project results into the future, having considered data only to some “current” time. That
ez 18, the model is particle filtered so as to incorporate data only to up to — but not including — a “Prediction
83 Start Time” (T7%), and then begins projecting (predicting) forward, starting at T*. More specifically, in
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esa this process, the weights of particles will cease updating in response to observations at time T™; following
es that point, all of the particles run without new empirical data being considered. In this paper, all of the
es prediction experiments are run for 4 years following the “Prediction Start Time” T*. To evaluate the
e7 predictive capacity of the model, we examined the effects of changing the prediction start time 7 so as to
es  pose different archetypal types of prediction challenges. It is notable that the minimum discrepancy model —
e the age structured model with 2 age groups where the child age group represents children in the first 5 years
eo of their life, and incorporating both the monthly and yearly empirical datasets, as identified in the previous
s1 section — is employed to perform all of these experiments.

02 (1) Prediction started from the first or second time points of an outbreak.
693 (2)
s¢  (3) Prediction started from the peak of an outbreak.
(4)

Prediction started before the next outbreak.

695 Prediction started from the end of an outbreak.
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Figure 13: 2D histogram depicting prediction using the minimum discrepancy model from the first or second
time points of an outbreak. (a) prediction from month 190. (b) prediction from month 269.

696 Figures display the prediction results of these situations with respect to the monthly 2D histogram
eor of population-wide reported case counts. In the 2D histogram plots of Figures the empirical data
s having been considered in the particle filtering process (i.e., incorporated in training the models) are shown
s00 in red, while the empirical data considered in the particle filtering process (and only displayed to compare
w0 with model results) are shown in black. The vertical straight line labels the “Prediction Start Time” (7%)
w1 of each experiment.

702 These prediction results suggest that the pertussis particle filter model offers the capacity to probabilisti-
03 cally anticipate pertussis dynamics with a fair degree of accuracy over a year or so. From the 2D histogram
s plots, empirical data lying in the projection interval after the prediction start time — and thus not considered
s by the particle filtering machinery — mostly lie within the high-density range of the particles. Reflecting the
6 fact an ability to accurately anticipate a high likelihood of a coming outbreak could offer substantial value
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Figure 14: 2D histogram depicting prediction using the minimum discrepancy model from the peak of an
outbreak. (a) prediction from month 176. (b) prediction from month 233.
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Figure 15: 2D histogram depicting prediction using the minimum discrepancy model from the end of an outbreak.
(a) prediction from month 209. (b) prediction from month 296.

28


https://doi.org/10.1101/598490
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/598490; this version posted October 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

400

£ 350

H

s

E 300

=

S 250

&

3

2 2004 -

o -

L 150 H

H g

E w0 5

= B -&

£ 504 ﬁ :;E.E-g T

g B

& - -

g 0
i 20 40 80 a0 100 120 140 160
o Simulation Dutput Time (month) g Enpirical Data Considered in Particle Filter
= Enpirical Data Wot Considered in Particle Filter s Frediction Started

(a)

400
350
300
250
200
150

100

Reported Infective Population (monthly)

0 60 a0 100 120 140 160 180 200 220 240 280 280
i Simulation Dutput Time (month) & Enpirical Data Considered in Particle Filter
= Enpirical Data Not Comsidered in Particle Filter & Prediction Started

(b)

Figure 16: 2D histogram depicting prediction using the minimum discrepancy model prior to the next outbreak.
(a) prediction from month 99. (b) prediction from month 216.
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o7 for informing public health agencies with accurate predictions of the anticipated evolution of pertussis over
708 coming months, the next section formally evaluates the performance a simple classifier as to whether the
700 next month will be subject to an outbreak or not, where that classifier uses a very simple prediction scheme
7m0 constructed atop the particle filter model.

m  3.8. Prediction of classifying outbreak occurrence of the minimal discrepancy model

2 Beyond assessing the use of particle filtering models for predicting forward pertussis transmission more
73 generally, we also used the lowest discrepancy particle filter pertussis model (PFgc2) to dichotomously
na  predict occurrence of a pertussis outbreak within the next month.

715 Figure [I7] displays an evaluation of the predictive performance in the form of an ROC curve. The Area
76 Under the Curve (AUC) of the ROC curve is 0.913, suggesting that it is possible to achieve both high
nr specificity and high sensitivity. Figure|18|shows the boxplot of residuals (difference between predicted model
ns  result and empirical data) of sampled particles (by weight) at each time point where empirical data comes
7o in (each month). Two points bear emphasis. Firstly, these results depict prior model predictions — that
=0 is, those predicted by the model before the new data is observed. Secondly, Figure [18] excludes the first 10
= months (empirical data points) of the time horizon, during which the particle filtering model is not stable
22 enough due to insufficient incorporation of empirical data. Figure indicates that for results of the next
73 time point (month in this paper), the prior prediction of the particle filtering model are quite close to those
74 of the empirical data — although the empirical data at each predicted time point are not yet incorporated to
s  ground the model.

10 ‘ ROC Curve .

0.8

0.6 |

TPR

0.4+

02

FPR

Figure 17: ROC curve of the binary outbreak classifier of the minimum discrepancy model.

26 3.4. Intervention with the minimum discrepancy model

727 The capacity of particle filtering to accurately estimate (sample from) the latent state of a pertussis model
s makes this technique capable of both estimating the entire latent state and using that estimation to project
79 patterns of pertussis spread and waxing and waning of incidence in the near term, and to anticipate outbreak
70 occurrence. The capacity to perform such state estimation within a mechanistic model also supports particle
7 filtering models in more accurate simulation of the tradeoffs between intervention strategies, despite their
2 counterfactual character.

733 In this section, we have implemented several experiments to simulate stylized public health intervention
7 policies, based on the minimum discrepancy particle filtering pertussis model identified above. The stylized
75 intervention strategies are characterized in an abstract way for demonstration purposes, and are typically
73 performed before or at the very beginning of an outbreak. For simplicity, we examine them as a historical
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Figure 18: Boxplot of the residuals of results of prior prediction by sampled particles of the minimum discrepancy
model.

77 counterfactual that takes place at a certain historic context. Moreover, to support easy comparison with the
78 baseline prediction results of the minimum discrepancy model absent any interventions, all of the intervention
10 strategies are simulated starting at the start month of an outbreak (month 269) in this project. Moreover,
no in order to appropriately characterize how such techniques could be employed in public health scenario
1 planning, we assume here that the start month of the intervention (month 269) is the “current time” in the
2 scenario — that we wish to asses the effects of that intervention considering only the data available up to but
73 not including month 269, and simulate the results of the intervention forward from that point. The baseline
e prediction result of the minimum discrepancy model absent any interventions is shown in Figure |13 (b). We
ns  examine below the impact of two stylized intervention policies — hygeine-enhancing and vaccination.
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Figure 19: 2D histogram of model-based projections of pertussis incident case counts when simulating a hygeine-
enhancing intervention during a pertussis outbreak. This is realized by decreasing the contact rate by 20%.

746 Figure [19 and Figure [20] display results from simulation of hygeine-enhancing intervention strategies [29]
u7  whose effects are characterized as decreasing the contact rate parameter by 20% and 50% when compared
ns  to its pre-intervention value, respectively. Similarly to the 2D histogram plot of the baseline prediction
o result shown in Figure (b), the red dots represent the empirical data incorporated into the particle
w0 filtering model (here, up to just prior to the point of intervention); by contrast, the black dots represent
1 empirical data not incorporated in the model, but presented for comparison purposes. It bears emphasis that
2 because the interventions being characterized are counterfactual in character — i.e., did not in fact take place
73 historically — the empirical data shown in black reflect the baseline context, which lacked an intervention
¢ of the sort simulated here. By comparing the hygeine-enhancing intervention results (see Figure and
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Figure 20: 2D histogram of model-based projections of pertussis incident case counts when simulating a hygeine-
enhancing intervention during a pertussis outbreak. This is realized by decreasing the contact rate by 50%.
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Figure 21: 2D histogram of model-based projections of pertussis incident case counts when simulating an
outbreak-response immunization campaign. This is realized by characterizing a stylized elevated vaccine-induced protec-
tion level among 20% of the population.
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Figure 22: 2D histogram of model-based projections of pertussis incident case counts when simulating an
outbreak-response immunization campaign. This is realized by characterizing a stylized elevated vaccine-induced protec-
tion level among 50% of the population.

s Figure with the baseline model result without intervention shown in Figure (13| (b) and the empirical data
6 during the intervention period (the black-markers indicating historic data points lying after the triggering
7 of the intervention, and not incorporated into the particle filtering model), we can see that, although the
s interventions are implemented in a stylized fashion, by virtue of the particle filter’s ability to estimate the
7o underlying epidemiological state at the point of intervention through the transmission model, the particle
w0 filtered pertussis model is capable of using the estimated latent state to serve as the basis for probabilistically
1 evaluating pertussis related intervention policies.

762 To simulate an immunization intervention during a pertussis outbreak, a vaccination parameter is in-
w3 corporated into the simulation model, so as to represent the fraction of the population whose immunity
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wa  status is elevated as a result of the intervention. Specifically, recall that the pertussis model characterizes a
s chain of successively higher levels of vaccine-induced protection. This parameter specifies the fraction of the
s population that should be moved from their pre-vaccination classification — as characterized by the model
77 compartment in which they reside — to the compartment representing the next higher level of vaccination
s (following vaccination). Figure[21|and Figure [22[show the results of the vaccination intervention. The layout
wo and organization of the 2D histogram plots of the vaccination interventions with Figure and Figure
70 mirrors that of the hygeine-enhancing plots of Figure [19| and Figure

m The results of pertussis interventions demonstrate that by virtue of its ability to estimate the underlying
m epidemiological state of the model (and thus the system characterized by that model), the use of particle
73 filtering with pertussis models supports evaluation of public health intervention policies to prevent or control
e pertussis outbreaks.

s 4. Discussion and conclusion

776 This paper contributes a new method for anticipating, tracking, controlling and preventing pertussis
77 outbreak patterns by integrating a particle filtering algorithm with a mechanistic pertussis compartmental
s model and empirical incidence data. This contribution represents the first time that particle filtering has ap-
o plied to pertussis transmission dynamics, and demonstrates the great promise of this technique. The models
0 examined here demonstrated a notable degree of accuracy in predicting pertussis dynamics over multi-month
w  timeframes — the 2D histogram plots comparing the empirical data and samples from the posterior distri-
2 butions of the particle filtering models’ projected monthly and yearly reported cases of pertussis indicates
73 that the high probability density region of the model’s prediction of empirical data encompasses or lies
7 near the historic data. The results of prediction analysis based on the minimum discrepancy model suggest
s that particle filtering approaches offer notable strengths in predicting of occurrence of pertussis outbreak
s in the subsequent month. Moreover, the discrepancy of the pertussis particle filtering model’s predictions
w7 vs. observed data is reduced by approximately 60% when compared with a traditional calibration model,
s demonstrating a significant enhancement in model prediction ability. Additionally, it bears emphasis that
70 the calibrated deterministic model encounters marked difficulties in tracking the fluctuation of the outbreak
0 pattern of the calibration model; by contrast, the particle filtered model is capable to tracking stochastic
1 fluctuations associated with pertussis, while still mechanistically capturing the impacts of such stochastics
72 on the latent underlying dynamics of susceptibles, exposed individuals, etc. Further to this point, it is of
73 great significance to the success and promise of these methods that pertussis particle filtering models support
s effective estimation of the entire state of the pertussis transmission models — and thus the systems that they
75 represent — during those periods when the empirical datasets are available, including latent states of strong
6 interest, such as those associated with waning of natural immunity and differing levels of infection sever-
w7 ity. Combined with the capability to perform outbreak projections, such particle filtering models can serve
e as powerful tools for understanding the current epidemiology of pertussis in the population, for projecting
0 forward evolution of pertussis spread — including occurrence of outbreaks.

800 Beyond that, in a further contribution that also benefits strongly from the capacity to estimate latent
s1  state, this research further marks the first instance of research demonstrating the capacity to perform public
sz health intervention experiments using particle filtered models.

403 Despite the strengths of these contributions, there remain a number of important limitations of this work,
sa and priorities for future research. We briefly comment on several below.
805 This work investigated the performance of four particle filtering models, including an aggregate population

s model, a two age group-stratified population model, and 32 age group population models using — alternatively
g7 —a contact matrix derived from Hethcote (1997) [16] and (separately) a re-balanced contact matrix. Although
ss the results of all four of these particle filtering models matched the empirical data quite well, the minimum
a0 discrepancy model proved to be the 2 age group age-stratified particle filtering model in which individuals
s in the child age group represent children in the first 5 years of life, and which incorporates both monthly
s and yearly empirical datasets. In this regard, it is notable that according to the mathematical deduction
sz of the age structured population model introduced in [8] — and adapted to pertussis in this research —
a3 the model can simulate the aging rate (c¢;) more accurately with more age groups considered in the age-
sia  structured model. However, in this paper, the 32 age group particle filtering models fail to demonstrate
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a5 improved performance — as measured by the discrepancy of model predictions from the empirical data —
sis  when compared with the two age group particle filtered models. We provide below some comments on
a7 possible reasons. Firstly, the stochastic processes considered in both the 32 age group age-structured model
sis  and the two age-group stratified model are different, especially in their characterization of the stochastic
a9 evolution of the contact rate. Secondly, the likelihood functions employed in this project — which are captured
s0 as the product of negative binomial density functions across all empirical datasets and sharing a common
e dispersion parameter — may be too naive to capture the difference between the age groups within the empirical
s datasets. Thirdly — and perhaps most significantly — as the number of age groups increase, the the state space
223 dimensionality of the particle filtering models increases dramatically. This latter issue must be considered
g4 in light of the limitations of the particle filtering algorithm, particularly the fact that the particle filtering
&5  method employing the condensation algorithm may encounter problems in high-dimensional systems. In
a6 such systems, the probability density functions would be more involved; addressing this using the functional
e2r  form of the likelihood functions employed may require high dispersion, due to the difficulty of representing
@8 the details of the multivariate likelihood function using the product of simple probability density functions.
229 Research is needed into more effective multivariate likelihood function design. The relationship between the
s the nominal state space dimensionality and the number of particles required for effective particle filtering
s also merits additional research, particularly in light of observed limitations in the benefit of particle filtering
s for high dimensional models [I3]. Finally, when comparing the discrepancy for distinct models, our lack of
s3  normalization for the count of datasets used may lead to artificially stacking the comparison against the 32
s age group model; while the 32 age group does not exhibit markedly better discrepancy against the monthly
g5 aggregate observations than does the 2 age group model, this consideration suggests that it may be stronger
ss  than the yearly discrepancy numbers would suggest.

837 It is also worth emphasizing the critical role that stochastic process noise within the state space models
ss  plays within successful particle filtering, and the practical challenges associated with managing such noise.
a0 The stochastics associated incorporated into the model represent a composite of two factors. Firstly, there is
a0 expected to be both stochastic variability in the measles infection processes (e.g., those that are prominent for
s small incident case counts) and some evolution in the underlying transmission dynamics in terms of changes in
a2 mixing and the reporting rate. Secondly, incorporation of such stochastic variability into the particle filtered
a3 model allows for characterization of uncertainty associated with respect to model dynamics — reflecting the
sa  fact that both the observations and the model dynamics share a high degree of fallibility, and allowing a
a5 requisite variety in the distribution over particle states, such that the particle filtered model is more open
ss  to correction by new observations. While results in both the estimation and prediction periods are sensitive
a7 to the degree of stochastics involved, such model stochastics impact the particle filtered model in distinct
ws distinct ways during these periods. Taking into account these influences, the investigations demonstrated
a9 the importance of keeping the noise in the particle filtering models controlled within a proper range, by
so tuning the parameters of diffusion coefficients in the stochastic processes related to the Brownian motion.
1 The need to characterize and tune stochastic noise effectively can impose limits on the speed with which
ss2  particle filtering models can be prepared for a new sphere of application.

853 The initial values of the age-structured population models in this paper are estimated both manually
s and by the particle filtering algorithm. Specifically, the population distribution among the different age
g5 groups are tuned manually, while the population distribution among different compartments within a given
g6  age group is estimated by the particle filtering algorithm by setting the initial values of compartments in a
es7  proper range following a uniform distribution, but maintaining a total number of individuals for that age
es  group across the compartments. Especially in building the 32-age-groups particle filtering models, much
so  time and efforts is dedicated to estimation of the population distribution among the latent states.

860 While application of particle filtering to pertussis dynamics is not without its challenges, the approach
s examined here demonstrates great promise for creating models that are automatically kept abreast of the
sz latest evidence, for understanding the underlying epidemiology of pertussis in the population — including
s3 the balance of the population at varying levels of immunity — for projecting forward pertussis dynamics
s and outbreak prediction over a year’s time, and for evaluation of counter-factual interventions. The results
ss of this paper — which represents both the first application of particle filtering to pertussis, the first to
ss demonstrate the capacity to accurately predict pertussis outbreaks in the pre-vaccination era, and the first
s7 to use particle filtering to assess the tradeoff between public health applications — suggest that particle
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ss filtering may represent an important element in the arsenal of public health tools to address the increasingly
so  difficult challenge of controlling pertussis in the context of vaccine hesitancy and waning of both natural-
so  and vaccine induced- immunity.

sn b. Future work

872 The growing risk of pertussis outbreaks triggered by combinations of vaccine hesitancy and waning
g3 dynamics from earlier generations of pertussis vaccination, has elevated the urgency and prominence of
sra  questions about the rate at which immunity to pertussis wanes, especially about vaccine effectiveness over
o5 time [30, B B2, 33]. We identify here two notable needs for future work responsive to such dynamics
ars  Firstly, there is a keen need for application of the models presented here to data and dynamics from the
sz vaccination era. While vaccination elements of the models discussed here are only glancingly tapped by this
ss  research (in the context of demonstrating capacity to reason about the effects of a stylized immunization
s9  intervention), because of their incorporation into the existing model structure, extension of this work to
a0 vaccine-era dynamics should require only limited changes to the models involved.

881 A second need relates to the fact that we choose to employ a constant value for the waning of immunity
sz that is drawn from [I6]. In the future, to arrive at more informed parameter estimates for models and
83 to contribute to discussion concerning the empirical rate at which vaccine-induced as well as (separately)
s« naturally induced pertussis immunity wanes, and drawing on the success of our past work in this area [34], we
ss  propose to formally estimate the value of waning immunity for the the particle filtered pertussis models from
s a posterior distribution within Particle Markov Chain Monte Carlo (PMCMC) techniques, by incorporating
sz empirical data on reported pertussis cases from the vaccination era.

888 These and other lines of future work offer substantial promise in extending the already strong potential
g0 demonstrated here for using mechanistic transmission models informed by the machine learning approach of
s0 particle filtering to contribute to enhancements in pertussis prevention and control by providing a tool to
g1 improve understanding of underlying complex epidemiology of pertussis, to anticipate pertussis dynamics in
sz the population, and to rigorously assess the tradeoffs between counterfactual intervention tradeoffs in light
a3 of uncertainties in both model and empirical data.

s Appendix A. The introduction of mathematical models

895 In this compartmental model of pertussis in the pre-vaccination era, the total population is divided into 8
a6 distinct epidemiological classes. Newborns enter directly into class S of fully susceptible individuals. If a fully
sor  susceptible individual contacts an infective individual and is successfully transmitted pertussis, this previous
s susceptible person becomes infectious and enters the class (state) I of full infectives. Infective individuals
a0 in state I of have full cases of pertussis, with all of the usual symptoms. When individuals recover from the
wo state I of infectives, they achieve full immunity and enter state R4. In this state, they are fully protected
o1 and can not be infected by pertussis. However, as time goes by, their immunity wanes and they enter into a
o2 less strong immunity class of R3. When individuals in class R3 are exposed to an infective, they are assumed
o3 to return to the highest immunity class of R4 without becoming infectious. Otherwise, their immunity keeps
oa fading, and they enter to the relatively lower immunity class of R;. When a person in the class of Ry is
s sufficiently (re-)exposed to an infective for transmission to occur, the infected individual enters the I,, state
os with weak infectivity. Individuals in the I, class have the weakest infective capability to infect a susceptible.
wr  After they recover, the individuals in class of I, then secure the highest immunity, (re-) entering the class
ws of R4 from which they originally waned. By contrast, if people in the class of Ry are not re-exposed to the
wo infectives, their immunity continues waning, and they enter the minimally immune class of R;. Similarly, if
o0 a person in class R is re-exposed to an infective, this person gets infected with mild infectivity and enters
o the class of I,,,. Individuals in the class of I, have a higher infectious capability compared with those in
a2 the class of the weak infective (I, ), but exhibit a lower infectious capability compared to the fully infective
oz individuals in I. When recovered, the individuals in class I,,, enter the class R4 again. If the individuals
ouu in the class of R; are not re-exposed, they eventually lose all of their immunity and move back to the class
as  of S whence they originated at birth. Given the presence of multiple infection states (I, I, I, ) as well
a6 as multiple levels of immunity (Ry, R2, Rs, R4), three invariants bears noting. Firstly, regardless of the
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o7 pre-existing level of immunity, following recovery from an infection, that individual always returns to the
as  full level of natural immunity (R4). Secondly, in any of the recovered states (Ry, Ro, Rz, R4), immunity
a9 continues to wane absent re-exposure. Thirdly, as the level of immunity is reduced, the severity of resulting
o0 infectiousness rises, with no infectiousness being possible at all from exposure in states R3 and Ry.

o1 Appendix B. Proof of the n-square grows of the unknown parameters

02 In this part, we prove that the unknown parameters grows with n-squared with the total number of age
923 groups in the model. The contact matrix has been introduced, which is
Br1 Bz - P l fuu fiz o fin
Po1 P2z ... Pon l2 Jor fe2 oo fon
S =1 1. . . . (B.1)

Bnl ﬁnQ R ﬁnn ln fnl fn2 s fnn

o where © indicates the Hadamard (element-wise) product; the parameter of I; (1 < ¢ < n) is the contact
o5 rate of age group 4. In this research, the [; is known variables; the parameters of f;; (1 <i<n,1<j<n)
o6 indicates the fraction of the age group j of the contact rate of the age group 3.

027 The f;; are normally unknown. And the total number of f;; is n?. However, there are two relationships
os under this method. One relationship is that the sum of the fraction to all the age groups of the age group
a0 (e.g. 7) is 1.0. The other relationship, related to the characteristics of balance of the contact matrix, is that
o0 the total contacts of the age group ¢ to the age group j should be equal to the total contacts of the age group
o1 j to the age group i. Based on these two relationships, two equations could be generated as follows:

Z fij =1
j=1

Nili fij = Njl; fji

(B.2)

032 the total number of equations in Equation (B.2)) is n + <T2L) =n+n(n—1)/2 = (n?+n)/2. Finally, in

o33 this method of calculating the contact matrix, the number of unknown parameters is (n? —n)/2. It indicates
a1 that the number of the unknown parameters grows in n-squared with the total number of age groups (n) in
o35 the model.

s  Appendix C. The mathematical deduction of the force of infection with re-balanced contact
937 matrix

038 In the beginning, we introduce the method of calculating the basic contact matrix which is balanced
o0 already and with one unknown parameters. Before introduced, we import a mixing parameter, denoted as
ao €. The mixing parameter e determines where mixing occurs on a scale from fully associative — persons only
w1 contact with the individuals in the same age group (e.g. ¢ = 0) and random mixing — the contact among the
w2 total population is homogeneous (e.g. € = 1.0). Then, the fraction of the average persons that an individual
w3 In age group ¢ that contact with the persons in the age group of j, which is the parameters of f;; in the
we contact matrix are represented as follows:

fij = (10 — 6)517' +e€ (Af]lj) (Cl)

> i Nl
945 where d;; is the identity matrix. And the elements in the contact matrix is I; fi;.
946 The total contacts of age group ¢ to age group j (N;l; fi;) equal the total contacts of age group j to age

w7 group 4 (Njl; f;i), in this basic contact matrix. And the only unknown parameter is e. However, in general,
ws the mixing parameter related to each age group should be different. For example, the mixing parameter of €
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ae of young children in school age maybe lower than the e of the little baby, because the children in the school
o0 age contacts more to their peers in the school than the other groups, while the little baby contacts more with
os1  their parents or care-taker than the other babies. Thus, in the next step, we expend the mixing parameter
o2 € to a vector, where each element represents the mixing parameter of each related age group ;.

053 Then, in this method of calculating the contact matrix with a vector of mixing parameters, the equation
ws  Of fj; is listed as follows:

Nl
055 Similarly, the elements in this contact matrix with a vector of mixing parameters are [; f;;. It is notable

o6  that the total contacts between any two age groups calculated based on this contact matrix are unbalanced.

o7 Specifically, the number of total contacts of age group ¢ to age group j is N;l; [(1.0 —€)0i; + € (ZanlJ{,,l , )] )
j=11V3tj

s while the number of the total contact of age group j to age group ¢ is IN;I; [(1.0 —€)0ji + €5 (%)} . In
o0 general, the mixing parameters of any two age groups are not the same. Thus, the total numbers of contacts
o0 calculated by this contact matrix between any two age groups are not always the same.

961 To make the contact matrix balanced, we have employed the method introduced in [21] to re-balance
s2 the contact matrix. A parameter, denoted as A;;, is imported to represent the ratio of the number of total
w3 contacts between any two different age groups (i # j) (for the same age group, the total number of contacts
e are always the same). Then, the equation of A;; is:

Nilifi;  &N;iN;l; &
Ai': widig _ CiiVat J]:i’ i . C3
J lejfji ejNililej €j %] ( )

965 Then, the main idea of re-balancing the contact matrix is to extend the vector of contact rates (the
ws elements of the contact rates are denoted as l;) to a new matrix of contact rates l;;. The elements in the
s matrix of contact rates [;; represent the number of persons in the age groups j that a person in the age group
s 4 could contact in average. Then, according to [2I], the equations of [;; and [;; could be defined separately:

0
_ 6 _ €j

(1-0) e\ 9 (G4
Li =LA = (2

J =g J (Q’)

969 where 6 is the re-balanced parameter.

070 Because both [;; and [;; represent the same matrix, a relationship could be generated, which is l;; = I};.

on  Then, we could get the value of the parameter of § (6 = 0.5). Substitute the value of 6 (§ = 0.5) to Equation
2 (C.4), the matrix of contact rate — [;; could be generated as follows:

lij =1l (9)0'5 (C5)

€

9

N

o73 Finally, the element of contact matrix [;; f;; and force of infection \; are:

0.5
. Nyl
Lifii =1 [ 2 1.0 —€)6i; + € | =n—22—
ifis <61> [< €)0i + € (E:j—lelj>]

"l fi (I I L;) (©6)
A = pi 3 Jig\Lj J J
ny :!
Jj=1
o7 where p; is the transmission probability of age group 1.
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as Appendix D. The state space models in Particle filter implementation

o76 The mathematical system dynamics models are employed as the governing equations underlying the state
oz space model. Then each particle at time k, noted as X ,iv (2), represents a complete copy of the system states
ors  at that point of time. Except for the basic states in the mathematical model — pure Ordinary Differential
a0 Equations (ODEs), models of infection transmission are often related to more complex dynamics — such as
o0 parameters evolving according to stochastic processes.

081 In this paper, we employ the identity method introduced in the previous contribution of [§ to let some
s2 constant parameters in the pure mathematical models change dynamically. Specifically, if the parameter
o3 varies over the entire range of positive real numbers, we treat the natural logarithm of this parameter as
¢ undergoing a random walk according to a Wiener Process (Brownian Motion) [25, [26] [§]. Otherwise, if the
s parameter varies over the range [0,1], we characterize the logit of this parameter as also undergoing Brownian
sss  Motion.

wr  Appendiz D.1. The aggregate model (n =1)

In the aggregate model, the individuals contact with the infectious (in the stocks of I, I, and I)
homogeneously. Then, three stochastic processes are considered in the implementation of the aggregate
particle filtering model. The first is the transmissible contact rate linking infectious and susceptible persons,
which is represented by the parameter 8. The second is also with respect to the disease reporting process.
Specifically, a parameter — representing the probability that a given pertussis infectious case is reported C.,
and a state Iy — calculating the accumulative pertussis infectious cases per unit time (per Month in this
project) — are implemented. The final part is the Poisson process associated with the incidence of infection.
This process reflects the small number of cases that occur over each small unit of time — A¢ (0.01 in this
model). We also treat the natural logarithm of the transmissible contact rate (denoted by /) and the logit
of C, as undergoing a random walk according to a Wiener Process (Brownian Motion) [25] 26l [8]. It is
notable that we assume the individuals under the medium infectious (I,,,) and weak infectious (I,,) also have
the probability to be confirmed and reported. The rates of the medium infectious (7,,,) and weak infectious
(I,) that have symptoms are also considered as p,, and p,,. Finally, the state space model of the aggregate
pertussis particle filtering model is listed as follows:

ds
E:N’U—AI—,LLS‘FLRl
dl
oA - I
7 1= (v+n
dl
Mo A, — I,
o L, — (v +w)
dl
WA — I,
pn r,— (v +u
dR
d—tl =aRy— A1, —(u+ )Ry
dR
7152 = CKRJ - AIw - (,Uz"_a)RQ
dR:
dRy
N — ﬂ(IJFPmImJFPwIw)
o N

N=S+I+1,+1,+ R +Ry+ Rs+ R4
din(B) = sgdWy
c,

d(logit(C,.)) = d(ln(l —C,

)) = 87-th
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k
I, = / (Ar + pmAr, + pwAr,)dt
k

-1

IT'k‘ = IkJOT
s - Poisson(ASAt)
= At
A - Poisson(AR1 At)
Im — At
a - Poisson(ARg At)
fw At
088 The parameters related to the transmission of pertussis in this model are referred from the research

w0 of Hethcote (1997) [16]. The demographic parameters of this model are got from the Annual Report of
s the Saskatchewan Department of Public Health [20] and the age pyramid of Saskatchewan [19]. Then, the
o1 parameters of the pertussis aggregate state space model — Equations are specified in Table while
o2 the initial values of the stocks are listed in Table [D.3l

Table D.2: Table showing the value of parameters in the pertussis aggregate particle filtering model.

Parameter | Description Value | Units

71 mean time for infectives to recover from pertussis 21 Day

v birth rate of the total population 0.03 1/Year

m death rate of the total population 0.03 1/Year

N total population 863,545 | Person

T mean time to lose immunity from the stock of Ry to .S 10 Year

a1 mean time to lose immunity from R; down to R;_1 5 Year

Pm the relative infectivities of the individuals in the stock I,,, | 0.5 Dimensionless
Puw the relative infectivities of the individuals in the stock I, | 0.25 Dimensionless
sg the diffusion parameter of in(3) 0.5 Dimensionless
Sy the diffusion parameter of In( 1?&) 0.05 Dimensionless

Table D.3: Table showing initial values of the stocks in the pertussis aggregate particle filtering model.

Parameter | Value Unit

So Uniform[5000, 30000) Person

1y Uniform[500, 5000) Person

Imo 1000 Person

Lo 2500 Person

Rig Uniform|[10, 10000) Person

Ry 10000 Person

Rsg 20000 Person

Ryp N —Sy—1Iy— Lo — Iwg — Rig — Reg — R3g | Person

8 Uniform[5,100) Person/Month
C, Uniform[0,0.2) Dimensionless

w3  Appendiz D.2. The age-structured model of 2 age groups (n =2)

004 The mathematical model with two age groups is employed as the base model of the state space model
os of the age-structured model with 2 age groups. Then, the pure ODEs model — mathematical model — is
o6 extended by several stochastic processes. Except for the similar three stochastic processes considered in the
wr aggregate state space model — the infectious contact rate of the child age group (denoted as f3.), the report
ws rate of pertussis cases (denoted as C,.), and the Poisson process related to the incidence of the infectious — two
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Table D.4: Table showing the value of parameters (only related to the demographic model and stochastic
processes) in pertussis two-age-groups particle filtering model.

Parameter | Description Value | Units

Vg birth rate of the adult age group 0.034 1/Year

N, the population of the child age group 98743 | Person

N, the population of the adult age group 764802 | Person

w the aging rate from child to adult age group | 0.2 Dimensionless
s the diffusion parameter of in(3) 0.5 Dimensionless
Sp the diffusion parameter of In( 19&) 0.05 Dimensionless
SM, the diffusion parameter of in(M,) 0.2 Dimensionless
Sece the diffusion parameter of In(5 b °'f"cc) 0.15 Dimensionless

Table D.5: Table showing initial values of the stocks in the pertussis two-age-groups particle filtering model.

Parameter | Value Unit

Seo Uniform[500, 35000) Person

Sao Uniform[10, 10000) Person

I Uniform[30, 2500) Person

Iag Uniform[0, 500) Person

Lneo 50 Person

Lo 50 Person

Lweo 100 Person

Lo 100 Person

Rico Uniform[5, 10000) Person

Riap Uniform[0, 10000) Person

Rocq 10000 Person

Roqg 10000 Person

Rsco 10000 Person

Rsao 10000 Person

R4c0 Nc — SCO - IcO - Ich - Iwco - RlcO - R2c0 - RB(:O Person

R4a0 Na — SaO — IaO — ImaO — IwaO — RlaO — R2a0 — RSaO Person

Be Uniform[5,100) Person/Month
M, Uniform[5,100) Dimensionless
Cyr Uniform[0,0.2) Dimensionless
fee Uniform[0,0.2) Dimensionless
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other stochastic processed are also considered. These two stochastic processes are related to the parameter of
the multiplier of the adult age group model (M,) of the infectious contact rate and the fraction of children’s
infectious contacts that occur with other children (f..). Specifically, the natural logarithm of the multiplier
of the infectious contact rate of the adult age group (M,) and the logit of f.. are treated as undergoing a
random walk according to a Wiener Process (Brownian Motion) [25] 26 [§]. Finally, the state space model
of the pertussis age-structured model of 2 age groups is listed as follows:

i ddsitC _ Navg + I o HeSe + teRye
djta 0 AI ﬂaSa taR1q
e
dl,
| Gt wl, A I, tala
d{ﬁw _ |:_WImc:| + |:AI,,LC:| — 5 |:Imc:| _ |:,U/c[mc:|
_(Hd% Wlne Alma Ina talma
-%- _ -_WIwc:| + |:AIWC:| — 5 |:Iwc:| o |:,U/chc:|
L diliiga ] wlye Alwa Iy Halwa
-@- [ T M T ‘A
dgt _ WRlc +a RQC B I . Rlc _ /chRlc
_Tla_ L whRic ] _R2a_ _Alma Riq ,U/aRla
[ 48] [ —wRy.] [Rs.]  [Ai, Rac preRac
= + a — = —
d1§t2a L wRae J -R3a_ —AIwa Ra, taRRoq
% _ [ —wR3. | ‘a [ Ryc | _ [ Ac o | Rac ., R _ peR3e
dld?tSa L wRs. i _R4a_ _)\a Rs, Rs, /JfaRSa
% _ —_WR4C_ + _Ic+Imc+Iwc + A o | 3¢ —a Ry _ telge
dljga L wRye ] v _Ia + Ima + Twa Aa Rs, Ry, /j,aR4a
r IetpmImetpwlowe
Ae - Befee Befea % %
_)\a B ﬁafac 6afaa —Ia+l~7m1}y\}z+ﬂwlwa
_Nc Sc Ic Imc Iwc Rlc RQ(: R3c R4c
= D.2
_Na:| |:Sa:| + |:Ia:| + |:Ima:| + |:Iwa:| + |:R1a:| + |:R2a:| + |:R3a + R4a ( )
d(Inp.) = s, dW,
d(ln(1 fa}cc)) = 5..dW;
d(InM,) = spr, dW;
5a = Maﬁc
C,
d(ln(1 — Cr)) = 5. dW;
fca =1~ fcc
Foe = 1]\\/]:283; (1= fee), if ]]\\Zggz (1—fee)| <1.0
“ )10, if [Nebe (1 fo)| > 1.0
faa =1- fac
_Na
He N, Vg — W
_Ne
Ha N,
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k
The = / (A1, + pmAr,,, + pwAr,,)dt
k

-1

k
Irg = / (A]a +,0mA]ma + pr[wﬂ)dt
k—1

Irck o Ikc
|:Irak:| N CT |:Ika:|

A, = Poisson(A.ScAt)
i At

A, = Poisson(Ag Sy At)
° At

A, = Poisson(A.Ri.At)
me At

A, = Poisson(AgR1,At)
ma At

A, = Poisson(A:Ra At)
we At

A = Poisson(Aq Raq At)
we At

1005 In this paper, we have built a two-age-group particle filtering model, where the individuals in the age

ws  group of “child” are from newborn up to the end of 4 years. The parameters with constant values related to
wor  the pure compartmental model (v, ¢, a, pm and p,,) in the two-age-group pertussis model are the same as
wos  the aggregate model. All these parameters and the parameters related to the demographic model and the
w00 stochastic processes of the two-age-group particle filtering model are listed in Table The initial values
w0 of each stocks in this two-age-group particle filtering model are listed in Table

wn Appendiz D.3. The age-structured model of 32 age groups (n = 32) with the Hethcote contact matriz

1012 We employ the pure ODEs model — the age-structured model of 32 age groups introduced in the paper
i3 of Hethcote (1997) [16] as the base model. Similarly, three stochastic processes are added to the base model
w1a  as the state space model. These three stochastic processes are related to the Poisson process related to the
s incidence of infectious, the contact rate of the first age group and the reporting process of the pertussis cases.
s Similarly, the natural logarithm of the parameter related to contact rate of the first age group (denoted as
w7 11 /v/D) and the logit of the report rate (denoted as C,.) are treated as undergoing a random walk according
s to a Wiener Process (Brownian Motion) [25] 26] [§]. :

ds -
7; = ZUij + 1Ry — A[l — (Cl —|—,u1)S'1
i=1
ds; .
T Ci—1Si—1+ LRy — A, — (i +13)Si 2<i<n
dl
—==Ap, — (1 +v+ )
dt
dl; .
I Cioilii+ A —(ci+y+ )i 2<i<n
dl,,
1 = A[ml - (Cl + v + Ml)lml
dt
dImi .
T CiciImi—1+Ar,, —(ci+7v+pi)lmi 2<i<n
dl,
dtl = A, — (a1 +v+ p1)lun
dei .
- Ciilwi-1+Ar,, —(ci+v+p)lw 2<i<n
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d?tn =aRy — Ap,, — (L4 e+ m)Ru

d?tli =ci1Rii—1+aRy —Ar,, —(t+ce+p)Ry 2<i<n

d?tm = aRs — Ay, — (t+ ¢+ )R

d?tzi =¢i—1Roi1+aRg; — Ar,, — (t+ci+ )Ry 2<i<n

dil%t31 =Ry — (M + o4+ )R

dgfi =c¢i1R3i1+aRy —(Ni+t+c +pi)Ry 2<i<n

d?;l =yl + L1 + Lp1) + M Rs1 — (a+¢1 + 1) R

d?;i =c¢i1Ra i1 +v(Li + I + Twi) + MiRsi — (a+ ¢+ )Ry 2<i<n (D.3)

Ni=8i+1li+Ini+1Twi+Rii+Roy+Rgi + Ry 1<i<n
Z?:l ’Uij —ClNl

H1 = N
i1 N1 — ¢ N; .
Ni:% 2<i<n
- Uil Ii + pmd i + puwlw; .
Az:fl J . nj J ]-Sjgn
p;D Zj:le

D =Y 1iNe/ Y Ny
k=1 k=1

Cr
C )) = Srth

- Yr

d(logit(Cy)) = d(In(y

k
Bi= [ (An+ pnAs,, + puds,)dt 1<i<n
k

1
Igi = IiCr 1<i<n

A, — Poisson(A;S;At) l<i<n
' At
A, = Poisson(A; Ry;At) l<i<n
: At
A = Poisson(\; Re; At) l<i<n
: At
1019 The values of the parameters are the same as the ones listed in the aggregate particle filtering models

w0 and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model
102 are listed in the Table [D.6l

w2 Appendix D.4. The age-structured model of 32 age groups (n = 32) with re-balanced contact matriz

1023 The age-structured model of 32 age groups with re-balanced contact matrix are employed as the base
124 model of the state space model of the age-structured particle filtering model of 32 age groups with re-balanced
w2s contact matrix. The mathematical equations of state space model are listed as follows:
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Table D.6: Table showing initial values of the stocks in the pertussis 32-age-groups particle filtering models.

Parameter

Value

Unit

S 1<i<32

Uniform[1000, 3000), Uniform[1000, 3000), Uniform[1000, 3000),
Uniform[1000, 9000), Uniform[1000, 10000), Uniform[1000,
10000), Uniform[1000, 10000), Uniform[100, 5000), Uniform[100,
2000), Uniform[100, 2000), Uniform[100, 2000), Uniform[100,
2000), Uniform[100, 2000), Uniform[10, 500), Uniform[10, 500),
Uniform[10, 500), Uniform[10, 500), Uniform[10, 500), Uni-
form[10, 500), Uniform[10, 500), Uniform[10, 500), Uniform[10,
500), Uniform[10, 500), Uniform[100, 2000), Uniform[100, 2000),
Uniform[100, 2000), Uniform[100, 5000), Uniform[100, 5000), Uni-
form[0, 2000), Uniform[0, 1000), Uniform[0, 500), Uniform[0, 100)

Person

Uniform[0, 10), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20),
Uniform[0, 20), Uniform[0, 20), Uniform[0, 20), Uniform[0, 20)
Uniform[0, 20), Uniform[0, 10), Uniform[0, 10), Uniform[0, 10),
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A, — Poisson(A;S;At) l<i<n
! At
A = Poisson(A;R1;At) <i<n
: At
A = Poisson(\; Ra; At) l<i<n
: At
1026 The values of the parameters are the same as the ones listed in the aggregate particle filtering models

w2 and two-age-group particle filtering model, and the initial values of the stocks in this particle filtering model
w2s  are listed in Table [D.6

w9 Appendix E. Further introduction of split the pertussis yearly reported cases to each age
1030 group

1031 The yearly empirical data related to multiple age categories are available from year 1925 to 1956 [20].
w2 During the process in preparing the yearly empirical data for the two-age-group and 32-age-group particle
3 filtering models (the yearly empirical data divided into 6 groups), we need to split the data in some age
1 categories in the original datasets [20] due to two reasons. The first reason is because the division of the age
103 group in empirical dataset does not match the division of the age groups in the pertussis particle filtering
w3 models. Specifically, from year 1926 to 1941, we need to split the reported pertussis cases in age category
w7 “1-6 years” in age 5 proportionally (four fifths goes to the “ 1-4 years” age group, and one fifth goes to “5-9
0 years” age group); from year 1942 to 1955, we need to split the reported pertussis cases in age category ”5-14
0 years” in age 10 proportionally (half goes to the “5-9 years” age group, and half goes to “10-14 years” age
w0 group). The second reason is because there is a category in the empirical yearly dataset of ”age not stated”.
wa  Thus, we need to split the counts in this category to corresponding age groups in the particle filtering models
w2 proportionally (based on the proportion calculated by the age categories has labeled age clearly).
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