
Pathogen.jl: Infectious Disease Transmission Network

Modelling with Julia

Justin Angevaare
University of Guelph

Zeny Feng
University of Guelph

Rob Deardon
University of Calgary

Abstract

We introduce Pathogen.jl for simulation and inference of transmission network indi-
vidual level models (TN-ILMs) of infectious disease spread in continuous time. TN-ILMs
can be used to jointly infer transmission networks, event times, and model parameters
within a Bayesian framework via Markov chain Monte Carlo (MCMC). We detail our
specific strategies for conducting MCMC for TN-ILMs, and our implementation of these
strategies in the Julia package, Pathogen.jl, which leverages key features of the Julia lan-
guage. We provide an example using Pathogen.jl to simulate an epidemic following a
susceptible-infectious-removed (SIR) TN-ILM, and then perform inference using obser-
vations that were generated from that epidemic. We also demonstrate the functionality
of Pathogen.jl with an application of TN-ILMs to data from a measles outbreak that
occurred in Hagelloch, Germany in 1861 (Pfeilsticker 1863; Oesterle 1992).

Keywords: Epidemic, individual level models, transmission networks, Bayesian, Julia.

1. Introduction

The availability of data to support the use of highly detailed epidemic models is an increas-
ing reality. Individual level models (ILMs) are a framework that accommodates individual
specific risk factor information to describe infectious disease dynamics (Deardon, Brooks,
Grenfell, Keeling, Tildesley, Savill, Shaw, and Woolhouse 2010). In accounting for population
heterogeneity with ILMs, disease dynamics can be captured with more realistic models, and
in turn, control strategies can be evaluated using these models. As the number of individuals
and the associated data for these individuals increases, the computational requirements for
simulation and inference of ILMs are magnified. With epidemic modelling in support of de-
cision making in ongoing epidemics, time, whether for development or computation, is at a
premium. Time constraints aside, the epidemiologists that utilize these models may not have
the training to support development of a high performance implementation of a specialized
ILM in a low level language.

Julia is a high level, high performance language that has been motivated by the needs of
modern scientific computing (Bezanson, Chen, Chung, Karpinski, Shah, Vitek, and Zoubritzky
2018). Previously, the use of lower level compiled languages, such as Fortran or C++, has
typically been required to implement high performance features of packages in high level sci-

ar
X

iv
:2

00
2.

05
85

0v
3

 [
st

at
.A

P]
 2

5
A

ug
 2

02
1

2 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

entific computing languages such as R (Bezanson et al. 2018). This two language problem is
insidious, and generates an unnecessary divide between those that can use software, and those
that can review or advance its development. We use Julia to avoid this problem. As a high
level and high performance language, Julia is well situated to address some of the ongoing
challenges and opportunities in developing and deploying specialized ILMs.

To date, there have been no packages specific for epidemic modelling published on the
Julia General Registry. There are Julia packages however that could be used for this pur-
pose. DifferentialEquations.jl is a comprehensive, general purpose package for differential
equations (Rackauckas and Nie 2017b), and is well suited for population-level epidemic mod-
elling through its discrete stochastic differential equation functionality (Rackauckas and Nie
2017a). Use of these kinds of models can be complementary to the use of ILMs (Webb 2017).
DifferentialEquations.jl can simulate from population-level epidemic models, and provides
several methods of Bayesian parameter estimation through DiffEqBayes.jl. The BioSimu-
lator.jl package provides simulation methods for interacting populations (Landeros, Stutz,
Keys, Alekseyenko, Sinsheimer, Lange, and Sehl 2018), and could also be used for population
level epidemic models. While there are multiple simulation algorithms and full flexibility into
the interaction network of the simulated entities in BioSimulator.jl, there are no inference
methods provided.

Modelling of heterogeneous populations can be done with Agents.jl, which provides a gen-
eral purpose package for stochastic simulation of agents on grid systems in discrete time
(Vahdati 2019). Agent Based Models (ABMs) can incorporate agent movement and com-
plex behaviours into the epidemics they generate. They prove to be powerful tools in the
consideration of individual decision making, especially in the context of learning and be-
havioural shifts by individuals during an epidemic, and relating those individual actions to
higher level disease dynamics, such as seen in Abdulkareem, Augustijn, Filatova, Musial, and
Mustafa (2020). Such dynamics are not readily modelled by other methods, but ABMs are
also limited in their ability to fit with traditional inference procedures. Approximate Bayesian
Computation (ABC) is one avenue for ABM parameterization, where prior beliefs on realistic
parameter values are refined using measures of similarity between flexibly summarized ABM
simulations and experimental or observational data (Ross, Baker, Parker, Ford, Mort, and
Yates 2017). Which is to say, ABMs, like ILMs, and stochastic differential equation models
all have their place in epidemics research.

While not registered on the Julia General Registry at this time, Shoukat, Wells, Langley,
Singer, Galvani, and Moghadas (2020) use Julia in the construction of an agent based model
specific to the application of predicting hospital and ICU capacity in Canada during the
COVID-19 pandemic. Using a population of 10000 agents, they perform simulations to assess
different scenarios in regards to resulting proportions of the population requiring care in a
hospital or ICU.

Outside of Julia, there are several packages for epidemic modelling on R’s CRAN (R Core
Team 2017). Amongst these epidemic modelling packages, there are two for working with
ILMs specifically: EpiILM (Warriyar K. V. and Deardon 2018) and EpiILMCT (Almutiry,

Justin Angevaare, Zeny Feng, Rob Deardon 3

Deardon, and Warriyar K. V. 2020). EpiILMCT is a package for network and spatial contin-
uous time ILMs. This package offers a high performance low level implementation in Fortran
for performing MCMC for continuous time ILMs. To maintain performance, functions of
risk factors are limited to the form of coefficient and power-parameter. This package offers
data augmentation for epidemics in which event times are assumed to be unknown. EpiILM,
on the other hand, supports network and spatial ILMs in discrete time, and does not have
data augmentation functionality. EpiILM similarly has its core functionality programmed in
Fortran for performance reasons.

Beyond the R epidemic modelling packages that utilize the ILM framework of Deardon
et al. (2010), there is also epinet which provides tools for modelling epidemics that spread
over contact networks described by exponential-family random graph models (Groendyke
and Welch 2018). This capable package can perform simulations and inference with optional
event time augmentation. Its core functionality is implemented in C. Another is EpiModel,
which provides functionality to build and simulate individual based epidemic models over
stochastic and dynamic contact networks (Jenness, Goodreau, and Morris 2018). The R
package surveillance is also notable for its implementation of several spatio-temporal epidemic
models, including individual level epidemic models (Meyer, Held, and Höhle 2017). However,
the individual level models in surveillance do not impute transmission networks or event
times.

The remainder of the paper is organized as follows. In Section 2, we describe ILMs (Deardon
et al. 2010), and then an extension of ILMs, the Transmission Network Individual Level Model
(TN-ILM). Section 3 presents methods for simulating epidemics and fitting TN-ILMs. In
Section 4, we introduce and present in detail, our high performance package, Pathogen.jl, for
implementing the simulation, model fitting, and inference of TN-ILMs with data augmentation
capability in continuous time. Section 5 demonstrates how to use Pathogen.jl to simulate
epidemics and how to fit TN-ILMs via MCMC to simulated data sets through an example.
An application to the measles epidemic in Hagelloch, Germany in 1861 (Pfeilsticker 1863;
Oesterle 1992) is then provided in Section 6. The paper concludes in Section 7 with a brief
discussion of future work.

2. Individual level models

In an ILM, each individual is considered to be in one of several disease states at any time,
and the rates governing their transition through the disease states are a function of both
individual specific risk factors and the disease states of other individuals in the population at
that time. As a whole, the disease state transitions, and subsequent disease state transition
rate updates constitute a time-heterogeneous Poisson process.

ILMs may be continuous or discrete with respect to time. In continuous time ILMs, we think
of the temporal data structure as consisting of variable time periods, and these representing
the length of time between events; i.e., inter-event periods. Here, events are considered to
be the disease state transitions in the population. A discrete time ILM approximates its

4 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

continuous time counterpart, and generally uses time periods that are equal in duration. The
likelihoods and strategies for inference for these models are different, however the disease state
transition rates each uses can be defined in the same way.

There is flexibility in the disease states that are considered, with susceptible and infectious
states being the only necessary states. In the following, the structure of a more complex
framework, the susceptible-exposed-infectious-removed (SEIR) ILM, will be described.

In an SEIR ILM, the rate that an individual, i, transitions from the susceptible state to
the exposed state during the tth time period is given as:

λSE(i, t) =

ΩS(i)
∑
k∈I(t)

ΩT (k)κ(i, k)

+ ε(i) for i ∈ S(t), (1)

where,

• I(t) is the set of infectious individuals during the tth time period,

• S(t) is the set of susceptible individuals during the tth time period,

• ΩS(i) is a function of risk factors associated with the risk of susceptible individual i
contracting the disease (susceptibility),

• ΩT (k) is a function of risk factors associated with the risk of infection transmission from
the kth individual (transmissibility),

• κ(i, k) is an infection kernel, a function of risk factors involving both the ith and kth

individuals, which often describes the connectivity between these individuals, and,

• ε(i) is a function of risk factors associated with exposure to the ith individual that the
model otherwise fails to explain. Typically this refers to exposure from a non-specified
source outside of the observed population. This is also referred to as the sparks function.

Transition between exposed and infectious states for the jth individual during the tth time
period occurs with rate:

λEI(j, t) =ΩL(j) for j ∈ E(t) (2)

where,

• E(t) is the set of exposed individuals during the tth time period, and

• ΩL(j) is a function of risk factors associated with the latent period, the length of time
between exposure and onset of infectious in the jth individual.

Justin Angevaare, Zeny Feng, Rob Deardon 5

Lastly, the kth individual transitions from the infectious to the removed state during the tth

time period with rate:

λIR(k, t) =ΩR(k) for k ∈ I(t) (3)

where,

• ΩR(k) is a function of risk factors associated with the removal of the kth individual
from an infectious state. Removal can refer to recovery with acquired immunity, death,
quarantine, etc.

In combination, the rates λSE(i, t), λEI(j, t), and λIR(k, t) describe the spread of disease
in an SEIR ILM.

In a continuous time SEIR ILM, no change occurs to the sets S(t), E(t), I(t), and R(t)

during an inter-event period. It follows that the rates λSE(i, t), λEI(j, t), and λIR(k, t) remain
constant during each of these time periods, and that the occurrence of any single event (disease
state transition) marks the end of the tth inter-event time period. Movement of an individual
into or out of a modelled population may be represented through a deterministic change of
state membership of that individual to or from R(t), followed by the appropriate rate updates.
For the remainder of this paper we focus exclusively on continuous time ILMs.

2.1. Transmission Network ILM extension

In ILMs, a susceptible individual’s risk of being infected by an infectious disease is based on
the culmination of various risk factors, such that the influence of specific sources of exposure
are masked. We introduce Transmission Network ILMs (TN-ILMs), that instead are explicit
with respect to exposure sources. In an SEIR TN-ILM, a set of competing transition rates
for each susceptible individual, i, to the exposed state are defined as

λ∗SE(i, k, t) =ΩS(i)ΩT (k)κ(i, k) for i ∈ S(t), k ∈ I(t) (4)

describing transition rates specific to each infectious individual, k, and with,

λ∗SE(i, t) =ε∗(i) for i ∈ S(t) (5)

describing the transition rate specific to any exogenous exposure source. While ε(i) in an
ILM is not necessarily specific to exogenous sources, that assumption is made with ε∗(i) in
TN-ILMs.

3. Methods

6 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

This section starts with a description of simulation methods for continuous time ILMs and
TN-ILMs in Subsection 3.1. In Subsection 3.2, the TN-ILM likelihood function is presented,
again drawing comparisons to continuous time ILMs. Lastly, in Subsection 3.3, an approach
is detailed for Bayesian inference of TN-ILMs via Markov Chain Monte Carlo (MCMC).

3.1. Continuous time-to-event simulation

As a Poisson process, an epidemic following a continuous time ILM can be stochastically
simulated using the Gillespie (1977) algorithm. Here, the inter-event period is the minimum
of competing exponential random variables, with each of these exponential random variables
representing a possible event given the disease status of the population. The minimum, and
the inter-event time, is generated directly from an exponential distribution with rate

υ(t) =
∑
i∈S(t)

λSE(i, t) +
∑
j∈E(t)

λEI(j, t) +
∑
k∈I(t)

λIR(k, t). (6)

The specific event that occurs at this time is generated from a multinomial distribution with
probability vector

π1(t) =
[
λSE(1,t)
υ(t) , . . . , λSE(N,t)

υ(t) , λEI(1,t)
υ(t) , . . . , λEI(N,t)

υ(t) , λIR(1,t)
υ(t) , . . . , λIR(N,t)

υ(t)

]>
,

(7)

for a population of size N . Which is to say, the probability of a specific event, being the
first event to occur amongst competing events, is proportional to its contribution to υ(t). If
the generated event is the transition of a susceptible individual to the exposed state, and a
TN-ILM is used, the transmission source is then generated from a multinomial distribution,
with probability vector

π2(t) =
[
λ∗SE(i,1,t)

λSE(i,t) , . . . ,
λ∗SE(i,N,t)

λSE(i,t) ,
λ∗SE(i,t)

λSE(i,t)

]>
, (8)

following the same logic. With the generation of an inter-event interval, and generation of
the specific event occurrence, the population is then updated (i.e., membership in the sets of
S(t+1), E(t+1), I(t+1), and R(t+1)), and the process repeats, until either no further events are
possible (i.e., π1(t) is a vector of zeros), or until some earlier stop condition is met.

3.2. Continuous time ILM likelihood

The likelihood of the continuous time-to-event SEIR ILM is the product of likelihoods at
time periods indexed by t = 1, . . . T − 1, where T is the total number of events that have
occurred. With the length of time since the beginning of the tth time period denoted as ∆t,
the likelihood function for the associated parameters, θ, is given as:

Justin Angevaare, Zeny Feng, Rob Deardon 7

L(θ) =
T−1∏
t=1

ψ(t)υ(t) exp {−υ(t)∆t} , (9)

where,

ψ(t) =


λSE(i,t)
υ(t) if i ∈ (S(t) ∩ E(t+1)), i.e. i transitioned from susceptible to exposed,

λEI(j,t)
υ(t) if j ∈ (E(t) ∩ I(t+1)),

λIR(k,t)
υ(t) if k ∈ (I(t) ∩R(t+1)),

(10)

and,

N =|S(t)|+|E(t)|+|I(t)|+|R(t)| ∀t. (11)

Modification is required for TN-ILMs to account for specific transmissions sources, with the
TN-ILM, the likelihood function is given as:

L(θ) =
T−1∏
t=1

ψ∗(t)υ(t) exp {−υ(t)∆t} , (12)

where,

ψ∗(t) =



λ∗SE(i,k,t)

υ(t) if i ∈ (S(t) ∩ E(t+1)) by endogenous exposure from individual k,
λ∗SE(i,t)

υ(t) if i ∈ (S(t) ∩ E(t+1)) by exogenous exposure,
λEI(j,t)
υ(t) if j ∈ (E(t) ∩ I(t+1)),

λIR(k,t)
υ(t) if k ∈ (I(t) ∩R(t+1)).

(13)

This likelihood mirrors the simulation process described in Section 3.1. That is, inter-event
periods follow exponential distributions, which are paired with multinomial distributions for
the occurrence of specific events. The product of the likelihoods of these distributions, com-
pose the likelihood of the epidemic as a whole.

3.3. Bayesian inference via Markov chain Monte Carlo

In the Bayesian framework, beliefs about a parameter are described by a posterior distri-
bution. The posterior distribution is a probability distribution for model parameter values,
θ, conditioned on observational data D. From a posterior distribution, credible intervals and
point estimates for parameters can be obtained, and hypothesis testing can be conducted.
Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) methods are typically
used to generate a sufficient quantity of samples from the posterior distribution, such that
the properties of the posterior distribution can be estimated through the generated samples.

8 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

The Metropolis-Hastings (M-H) MCMC algorithm is used to perform Bayesian parameter
estimation for continuous time ILMs. The M-H algorithm generates a Markov chain consisting
of a sequence of samples within the parameter space, the distribution of which converges to the
target distribution - the posterior distribution of the parameters in this case. To generate such
a Markov chain, some initial values, here denoted as θ1, must be first selected or generated.
Following initialization of the Markov chain, new samples are proposed with a transition
kernel. For a symmetric transition kernel, a sample proposed for the wth iteration, θw

′, is
accepted with probability

α(θ′w) = P (θw = θ′w) = min

(
1,

L(θ′w)P (θ′w)

L(θw−1)P (θw−1)

)
. (14)

If the proposal θ′w+1 is rejected, θw remains at θw−1 (Hastings 1970; Robert and Casella
2013).

Sampling from the posterior distribution of continuous time ILMs using the M-H algorithm
is straightforward when an epidemic is fully observed; i.e., with event times that are known
exactly with certainty. While for certain epidemics complete or nearly complete case iden-
tification may occur, exact event times are rarely known. Here, unknown event times are
imputed using a data augmentation process, in which they are treated as additional parame-
ters to be estimated. This tends to result in a massive increase in the dimensionality of the
parameter space, and with that computational challenges arise. With TN-ILMs these chal-
lenges are exacerbated by the transmission network, which is latent and requires imputation.
A compatibility must be enforced in the generation of MCMC proposals between the trans-
mission network and event times. Without this incorporated into the proposal mechanism,
the rejection rate using M-H would be unreasonably high (i.e. we must avoid transmission
network proposals that are impossible given the order of infection of individuals, as dictated
by the event time set). As such, a specialized MCMC algorithm is required for inference of
TN-ILMs.

Initialization strategy

Initialization is an important step to facilitate efficient MCMC in these models. High dimen-
sionality and event time interdependence results in vast areas of the parameter space having
near-zero posterior density, which is approximated to zero in computation. With MCMC, it
may take a long time to move into and sample from areas of the parameter space that have
non-zero computationally approximated posterior mass. This also impacts adaptive tuning
of transition kernel variance and further contributes to bottlenecks in MCMC convergence.
Our strategy is to generate many potential sets of initial values, and to select the set with
the highest posterior density. Multiple Markov chains, and a higher number of initializa-
tion generations per Markov chain are recommended for higher dimensional applications of
TN-ILMs, as is common when implementing MCMC in general (Robert and Casella 2013).
These independently initialized Markov chains allow for a more substantiated assessment of
Markov chain convergence, in comparison to assessing the behaviour of a single Markov chain
in isolation.

Justin Angevaare, Zeny Feng, Rob Deardon 9

The initialization of each Markov chain begins with sampling a set of model parameters
from their corresponding prior distributions. A set of event times is also generated for obser-
vation delays, as well as latent periods if applicable. Since the transmission network can be
generated directly from its conditional distribution with TN-ILMs, we marginalize the TN-
ILM likelihood over all possible transmission networks, simplifying it to the standard ILM
likelihood for the purposes of Markov chain initialization. The ILM likelihood is calculated
by iterating through each event in the generated set of event times. While this calculation is
computationally intensive, conveniently, it can be stopped early when its running result drops
below some threshold. This convenience is leveraged in our initialization generation process
such that computational cost does not increase linearly with an increase in the number of
initialization attempts.

Iteration strategy

Each MCMC iteration can be broken down into several sub-steps: event time sampling,
parameter sampling, and transmission network sampling.

Event times A random walk Metropolis-Hastings sampling procedure is used to sample event
times from the TN-ILM posterior distribution. Specifically a bounded normal distribution is
used as the transition kernel, with its mean set to the event time in the previous iteration,
and with a pre-specified variance. These bounds are determined by the times of the events
that are dependent through the transmission network or model structure.

The event times relevant to determining the bounds of event time proposal distributions
include: the times of other state transitions by the involved individual (e.g., an individual
may not transition to a removed state prior to being in an infected state); the infection
and, if applicable, removal times of their transmission source (e.g., a susceptible individual
may only transition to the exposed state while their transmission source is in an infected
state). Similarly, if an individual transmits the disease themselves, they must be in the
infected state prior to their earliest transmission, and must not be removed until after their
final transmission. This ensures the transmission network remains compatible with the set of
event times.

Due to event time interdependence, event time proposals are generated one at a time. The
order in which event times are updated is randomized at each iteration. A decision to accept or
reject proposed event times can be conducted in batches such that fewer likelihood calculations
occur. Successful tuning of the event time batch size and transition kernel variance results
in effective sampling of the event time posterior distribution while minimizing computational
costs. To achieve this, experimental tuning is required for each TN-ILM application by the
user.

TN-ILM parameters Following updates to the event times, a new set of TN-ILM parameters
is proposed, and the proposed values are subject to the acceptance rule for M-H MCMC
algorithms shown in Equation 14. For these proposals, a multivariate normal transition

10 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

kernel is used. The covariance matrix of the transition kernel can be automatically tuned
during sampling, using the adaptive sampling method of Roberts and Rosenthal (2007).

Transmission network Finally, the transmission network is updated using the Gibbs sampler.
Each transmission source is sampled from a multinomial distribution corresponding to its
conditional distribution. The probability vector of each multinomial distribution is generated
following Equation 8, for each applicable time period using the current set of event times and
model parameters.

4. Software implementation with Julia

We have implemented simulation and inference methods for TN-ILMs as described in Sec-
tion 3 in Julia with the Pathogen.jl package. Pathogen.jl is open source and released with an
MIT (Expat) license. Our description of Pathogen.jl is consistent with its v0.4.12 release.

Pathogen.jl leverages several of the features of the Julia Language. First is the ability for the
user to define functions for disease state transition rates with a high level of flexibility without
sacrificing performance. While Julia is an interactive language, with a familiar Read-Evaluate-
Process-Loop (REPL) interface, behind that, Julia code is Just-In-Time (JIT) compiled to
highly optimized machine code. In a set of benchmarks performed by Bezanson, Edelman,
Karpinski, and Shah (2017), Julia was usually found to be within a factor of two in regards
to computation time of equivalent C code.

In Julia, new user-defined types are implemented without performance penalty in compar-
ison to the basic types provided by the language. This is made no clearer than by the fact
that much of Julia’s features, are written in Julia itself. Julia’s multiple dispatch enables both
generalist and specialist function methods that are invoked based on argument types. The
type system results in code that can often be common across a set of types. Pathogen.jl
provides types to support SEIR, SEI, SIR, and SI TN-ILMs. With only some basic meth-
ods defined for these types or across unions of these types, higher level code such as that
involved in epidemic simulation, likelihood calculations, and performing MCMC is able to
be kept common across all disease model classes. This same functionality in theory would
reduce the development time required to implement additional disease model classes. The
types implemented by Pathogen.jl, and their hierarchy are shown in Figure 1.

Distributed computing functionality is highly relevant, if not essential for large data applica-
tions. For TN-ILMs, this would be for modelling large populations and/or higher complexity
models. Julia has been designed for simple, but powerful distributed computing. Some of
this is leveraged in Pathogen.jl for conducting MCMC for TN-ILMs. Independent Markov
chains are easily initialized, and ran across multiple cores, or on a high performance cluster
in parallel.

4.1. Installing Pathogen.jl

Justin Angevaare, Zeny Feng, Rob Deardon 11

Pathogen.jl

MCMC{T}s

MarkovChain{T}s

Simulation{T}s

AbstractTNa

TNDistributions

TransmissionNetworks

TransmissionRateCaches

TransmissionRatess

Transmissiona

NoTransmissions

EndogeneousTransmissions

ExogeneousTransmissions

EventExtents{T}s

EventObservations{T}s

Events{T}s

Event{T}s

EventRates{T}s

AbstractRisks{T}a

RiskPriors{T}s

RiskParameters{T}s

RiskFunctions{T}s

Populations

EpidemicModela

SIa

SIRa

SEIa

SEIRa

DiseaseStatep

Figure 1: The hierarchy of the types provided by Pathogen.jl are shown above. Type names
followed by {T} indicate that that type is parametric - in all cases the type is parametrized
by a subtype of EpidemicModel. Subscripts are used to indicate the kind of type: pprimitive:
elementary data representations; aabstract: types used for organization purposes or to invoke
specific function methods but do not contain data; sstruct: types that have fields containing
other types.

12 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

Pathogen.jl v0.4.12 is available for Julia version 1.1 and higher, and is listed on Julia’s
General Registry. Julia has a built-in package manager, Pkg. Pkg provides a special REPL
that is entered from the Julia REPL by typing a single]. From the package REPL, Pathogen.jl
v0.4.12 is installed with add Pathogen@v0.4.12. Users also have the option to install Plots.jl
to make use of custom plotting tools provided by Pathogen.jl. This can be done with add

Plots from the package REPL. Once installed, Pathogen.jl can be immediately used with
using Pathogen from back in the Julia REPL. This entire process takes only a few seconds.

4.2. Pathogen.jl basics

Whether using Pathogen.jl for simulation or inference of TN-ILM epidemics, a population
must be first defined. We represent populations in our package with a Population type. More
specifically, our Population type is a struct. In Julia, a struct is a type that is composed of
other types - perhaps other structs, or primitive types such as Float64 or Bool.

To construct a Population, a DataFrame containing individual specific risk factors must
be specified. DataFrame is a type provided by the DataFrames.jl package, which is a depen-
dency of Pathogen.jl. In this DataFrame, each row will represent an individual. There is also
an option to provide a distance matrix when describing a population. Distance measures are
common components of infectivity kernels. The distance matrix can be used to avoid repeated
calculation of these distances from individual specific risk factor information. Population in
Pathogen.jl is declared as

struct Population

risks::DataFrame

distances::Union{Nothing, AbstractArray}

individuals::Int64

end

The structure of TN-ILMs is described with RiskFunctions{T}, which is a collection of
functions that calculate individual specific disease state transition rates. RiskFunctions{T}

is a parametric struct, declared as shown below, with slightly different construction and be-
haviour for different values of T.

struct RiskFunctions{T<: EpidemicModel}

sparks::Union{Nothing, Function}

susceptibility::Union{Nothing, Function}

infectivity::Union{Nothing, Function}

transmissibility::Union{Nothing, Function}

latency::Union{Nothing, Function}

removal::Union{Nothing, Function}

end

Parametric structs are used throughout Pathogen.jl to provide specialization to different
disease model classes. This allows for modified functionality where it is needed for the var-
ious model class implementations in otherwise common code. For instance, construction of

Justin Angevaare, Zeny Feng, Rob Deardon 13

RiskFunctions{SIR} when compared to RiskFunctions{SEIR} does not involve specifica-
tion of a function describing the transition rate between exposed and infectious classes (i.e.,
ΩL in Equation 2).

There is full flexibility in the form of TN-ILM risk functions used in RiskFunctions{T},
as long as these risk functions follow an expected signature for their arguments. Each risk
function must accept a Population, a parameter vector (VectorFloat64), and an Int64

individual identifier, as arguments. Infectivity kernels are an exception to this, and must
accept two Int64 identifiers - for infection source and newly infected individual. Each risk
function should return a Float64. A complete example of constructing RiskFunctions{SIR},
including the construction of the risk functions that compose it, is provided in Section 5.

The parameterization of TN-ILM risk functions is represented by a separate type,
RiskParameters{T}. For each of the risk functions required by a TN-ILM, a parameter vector
must be provided in RiskParameters{T}, which has been declared as:

struct RiskParameters{T<: EpidemicModel} <: AbstractRisk{T}

sparks::Union{Nothing, AbstractVector}

susceptibility::Union{Nothing, AbstractVector}

infectivity::Union{Nothing, AbstractVector}

transmissibility::Union{Nothing, AbstractVector}

latency::Union{Nothing, AbstractVector}

removal::Union{Nothing, AbstractVector}

end

4.3. Simulation with Pathogen.jl

To simplify the simulation interface, we have provided a Simulation{T} struct with Pathogen.jl.
Simulation{T}s include all of the information required to iterate and track the progression
of an epidemic. Once constructed, the simulate! function is used to run the simulation,
updating event times, individual disease states, and the transmission network within the
Simulation{T} as appropriate. The simulate! function will iterate until a specified stop
condition is met (processing time, simulation time, and/or number of iterations) or if there
are no further events possible. Simulation{T} is a parametric mutable struct, which is like
a parametric struct, except it allows for its values to be changed or updated. For instance,
the Int64 value for iterations, shown in the type declaration below, is incremented at each
iteration, which is possible because of this mutability. Explicitness about struct mutability in
Julia allows for certain optimizations by the compiler when dealing with structs that do not
change in composition.

mutable struct Simulation{T <: EpidemicModel}

time::Float64

iterations::Int64

population::Population

14 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

risk_functions::RiskFunctions{T}

risk_parameters::RiskParameters{T}

disease_states::Vector{DiseaseState}

transmission_rates::TransmissionRates

event_rates::EventRates{T}

events::Events{T}

transmission_network::TransmissionNetwork

end

The use of {T} throughout the declaration of Simulation{T} ensures matching type param-
eterizations for all of the types that compose it. This also means that the parameterization
of Simulation{T} can be inferred during its construction.

There are several ways to construct a Simulation{T}. The simplest construction method
requires only specification of a Population, RiskFunctions{T}, and RiskParameters{T} for
the TN-ILM. In this case, an entirely susceptible population is assumed for a starting time of
0.0 time units. The internal code of this basic Simulation{T} construction method is shown
below. Individuals can start the simulation from other specified DiseaseStates and/or the
simulation may have a different start time using the other construction methods (not shown).

function Simulation(pop::Population,

rf::RiskFunctions{T},

rp::RiskParameters{T}) where T <: EpidemicModel

states = fill(State_S, pop.individuals)

tr = initialize(TransmissionRates, states, pop, rf, rp)

rates = initialize(EventRates, tr, states, pop, rf, rp)

events = Events{T}(pop.individuals)

net = TransmissionNetwork(pop.individuals)

return new{T}(0.0, 0, pop, rf, rp, states, tr, rates, events, net)

end

Finally, observational data can be generated from a completed Simulation using the pro-
vided observe() function, with statistical distributions specified for observation delays, in
the form of UnivariateDistributions from the Distributions.jl package (Besançon, Anthoff,
Arslan, Byrne, Lin, Papamarkou, and Pearson 2019), another dependency of Pathogen.jl.

4.4. Inference with Pathogen.jl

As with simulation in Pathogen.jl, performing parameter estimation for TN-ILMs via
MCMC requires the definition of a Population and of RiskFunctions{T}. RiskParameters
are now unknown, and will be sampled from the posterior distribution through MCMC.
In order to do this, specification of prior distributions for each risk parameter is first re-
quired. These priors are structured through the RiskPriors{T} type. This parametric
struct has the same form as RiskParameters, but in place of each parameter value, a
UnivariateDistribution must be provided.

Justin Angevaare, Zeny Feng, Rob Deardon 15

We also must specify priors for the event time data augmentation process. Currently
Uniform prior distributions are supported and applied broadly through an EventExtents{T}

struct. These are upper bounds on the length of time between observations of infectiousness,
and the actual onset of infection, as well as the length of time between removal observations
and actual removal times. For TN-ILMs that have an exposed class, a bound on the length
of the latent period is also specified in use of EventExtents{T}.

struct EventExtents{T <: EpidemicModel}

exposure::Union{Nothing, Tuple{Float64, Float64}}

infection::Union{Nothing, Tuple{Float64, Float64}}

removal::Union{Nothing, Tuple{Float64, Float64}}

end

Finally, an MCMC{T} struct is constructed, containing all of the information required for
performing MCMC, common across individual Markov chains (e.g., observational data, pop-
ulation data, prior distributions), as well as the individual Markov chains that sample from
the TN-ILM posterior distribution. The composition of MCMC{T} is:

mutable struct MCMC{T <: EpidemicModel}

event_observations::EventObservations{T}

event_extents::EventExtents{T}

population::Population

starting_states::Vector{DiseaseState}

risk_functions::RiskFunctions{T}

risk_priors::RiskPriors{T}

transmission_network_prior::Union{Nothing, TNDistribution}

markov_chains::Vector{MarkovChain{T}}

end

MarkovChain{T} includes vectors of event times from data augmentation, networks, as well
as TN-ILM parameters, and is declared as:

mutable struct MarkovChain{T <: EpidemicModel}

iterations::Int64

events::Vector{Events{T}}

transmission_network::Vector{TransmissionNetwork}

risk_parameters::Vector{RiskParameters{T}}

log_posterior::Vector{Float64}

cov::OnlineStats.CovMatrix

end

To construct an MCMC{T} object to perform inference, EventObservations{T}, EventExtents{T},
Population, RiskFunctions{T}, and RiskPriors{T} must all be specified. Specification of
a TNDistribution as a prior distribution for the transmission network is optional. If a prior
for the transmission network is not specified, a flat uniform prior is used. After construction
of an MCMC object, it is initialized using the start! function. During initialization the user

16 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

must specify the number of chains to initialize, and the number of initialization attempts
per chain. Each chain can be initialized on different cores. After initialization, MCMC can
proceed using the iterate! function. With this function the number iterations are speci-
fied, as well as transition kernel variance for event time data augmentation. MCMC for each
MarkovChain{T} can also be ran in parallel. An example of the process of performing MCMC
with Pathogen.jl is provided in Section 5.

5. Simulated Example

In the following we present a full example using Pathogen.jl to:

• Generate an epidemic population,

• Simulate from an SIR TN-ILM,

• Simulate observations from the epidemic, and,

• Use the observations to estimate event times, transmission network, and TN-ILM pa-
rameters via MCMC.

The source code to replicate this example exactly is included in SIR_simulation.jl.

We start by loading the various publicly available Julia packages used in the example, and
setting the seed of the random number generator:

using Distances,

Pathogen,

Random,

Plots

Random.seed!(11235);

We generate risk factor data for a population containing 100 individuals. A location (x and
y coordinates over a 15 × 30 unit area), and an arbitrary Gamma(α = 1, β = 1) distributed
risk factor:

n = 100

risks = DataFrame(x = rand(Uniform(0, 15), n),

y = rand(Uniform(0, 30), n),

riskfactor1 = rand(Gamma(), n))

We pre-calculate Euclidean distances between individuals in a distance matrix, which is
used in the specification of a Population object:

Justin Angevaare, Zeny Feng, Rob Deardon 17

dists = [euclidean([risks[i, :x];

risks[i, :y]],

[risks[j, :x];

risks[j, :y]]) for i = 1:n, j = 1:n]

pop = Population(risks, dists)

Next, several functions of risk factors are defined with the signature expected by Pathogen.jl,
and these structured into a RiskFunctions{SIR} object:

function _constant(params::Vector{Float64}, pop::Population, i::Int64)

return params[1]

end

function _one(params::Vector{Float64}, pop::Population, i::Int64)

return 1.0

end

function _linear(params::Vector{Float64}, pop::Population, i::Int64)

return params[1] * pop.risks[i, :riskfactor1]

end

function _powerlaw(params::Vector{Float64}, pop::Population,

i::Int64, k::Int64)

beta = params[1]

d = pop.distances[k, i]

return d^(-beta)

end

rf = RiskFunctions{SIR}(_constant, # sparks function

_one, # susceptibility function

_powerlaw, # infectivity kernel

_one, # transmissibility function

_linear) # removal function

These risk functions are then parametrized:

rparams = RiskParameters{SIR}([0.0001], # sparks

Float64[], # susceptibility

[4.0], # infectivity

Float64[], # transmissibility

[0.1]) # removal

Starting states for each of the 100 individuals are then set, using the DiseaseState primitive
type that is provided by Pathogen.jl. State_S, State_I, and State_R are valid states for the
SIR model. At the start of the epidemic, we’ll have individual 1 infectious and the remaining
99 individuals susceptible. The starting states and risk factors of the population, in addition
to the parameterized risk functions of the TN-ILM are organized into a Simulation struct.

18 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

With this, the simulation is finally ran. The simulation ends once 200 time units have elapsed
in the epidemic.

starting_states = append!([State_I], fill(State_S, n-1))

sim = Simulation(pop, starting_states, rf, rparams)

simulate!(sim, tmax=200.0)

The simulated epidemic can be explored visually. For our example, plots are generated in Julia
using Plots.jl (Breloff 2015) with the GR plotting backend (Heinen et al. 1985–2020), with
plot recipes provided in Pathogen.jl. An epidemic curve can be generated from an Events{T}

object, such as the one within our Simulation{T}, with

p1 = plot(sim.events)

and transmission network plots showing the disease states of individuals at specified times,
with

p2=plot(sim.transmission_network,

sim.population,

sim.events,

0.0, title="Time = 0")

. . .

p6=plot(sim.transmission_network,

sim.population,

sim.events,

50.0, title="Time = 50")

These plots can then be combined in a layout, to obtain Figure 2 with

l = @layout [a;

b c d e f]

plot(p1, p2, p3, p4, p5, p6, layout=l)

From the simulated epidemic, observations can be generated, with statistical distributions
used for the generation of observation delay. The optional force=true keyword argument is
used to bound the infection observation delay such that an infection observation is guaranteed
(i.e., an individual can’t move to the removed state undetected).

obs = observe(sim, Uniform(0.5, 2.5), Uniform(0.5, 2.5), force=true)

With observational data, inference for a specified model can be conducted. For our example,
we will assume the model structure is known, and reuse the set of risk functions we declared
for the epidemic simulation. For each parameter value, a prior distribution must be spec-
ified before commencing MCMC. We must also specify priors for our event times through
EventExtents.

Justin Angevaare, Zeny Feng, Rob Deardon 19

Figure 2: An epidemic simulated from a TN-ILM following code provided in Section 5. The
top plot shows the overall number of individuals in each of the represented disease states over
the length of the epidemic. The bottom row of plots shows individual disease state information
along with the state of the transmission network at 5 time points in the epidemic.

20 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

rpriors = RiskPriors{SIR}([Exponential(0.0001)],

UnivariateDistribution[],

[Uniform(1.0, 7.0)],

UnivariateDistribution[],

[Uniform(0.0, 1.0)])

ee = EventExtents{SIR}(5.0, 5.0)

MCMC will now be initialized, following the initialization strategy detailed in Section 3.3,
with:

mcmc = MCMC(obs, ee, pop, rf, rpriors)

start!(mcmc, attempts=50000)

We then perform 50k iterations (second positional argument) for the initialized Markov chain
using the iterate! function. Here, we elect to batch event time data augmentation into 10
sets (specified with the event_batches keyword argument), with a transition kernel variance
of 1.0 for each event time (third positional argument). We also condition event time aug-
mentation on the previous transmission network (specified with the condition_on_network

keyword argument). 50k iterations in this manner require approximately 18.5 minutes on a
computer with an Intel 2.7 GHz i7-3740QM processor, using Julia 1.4.2. For applications to
real world data, or for simulations with real world application, longer runs by multiple chains
is advised in order to validate convergence.

iterate!(mcmc, 50000, 1.0, condition_on_network=true, event_batches=10)

We provide convenient plotting functions for visualizing MCMC and posterior distributions,
after MCMC is complete, yielding the plots seen in Figures 3 and 4. The trace plot in Figure
3 is generated with:

p1 = plot(1:20:50001, mcmc.markov_chains[1].risk_parameters,

yscale=:log10, title="TN-ILM parameters")

For the remainder of this example we take every 20th iteration from iteration 10000 through
50000 as being representative samples from the TN-ILM posterior distribution. With this,
the epidemic curve posterior distributions are visualized with

p2 = plot(mcmc.markov_chains[1].events[10000],

State_S, linealpha=0.01, title="S")

for i=10020:20:50000

plot!(p2, mcmc.markov_chains[1].events[i], State_S, linealpha=0.01)

end

plot!(p2, sim.events, State_S, linecolor=:black)

for each state. Partially transparent epidemic curves are repeatedly plotted to show the
posterior density. We also overlay the true event times in black. A plot layout is specified,
and the plots are combined to form Figure 3.

Justin Angevaare, Zeny Feng, Rob Deardon 21

Figure 3: Here we show several plots for visualizing MCMC for a TN-ILM. The top plot shows
the values of 3 TN-ILM parameters over 50k iterations. The bottom row of plots shows the
epidemic curve posterior distributions in blue (posterior density estimated with every 20th
iteration from iteration number 10k to 50k), with the true epidemic curves indicated with
black.

22 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

Figure 4: The true transmission network (left), in comparison to the transmission network
posterior distribution (right), where the transparency of transmission pathways represents
their posterior density.

Justin Angevaare, Zeny Feng, Rob Deardon 23

Parameter Mean Variance 95% Credible Interval

ζ 1.033× 10−4 9.861× 10−9 (2.869× 10−6, 3.686× 10−4)
β 3.967 1.794× 10−2 (3.715, 4.241)
η 8.168× 10−2 8.457× 10−5 (6.520× 10−2, 1.001× 10−1)

Table 1: The summary() function outputs a DataFrame containing estimates of posterior
mean, posterior variance, as well as credible intervals for each parameter in a TN-ILM, when
applied to MCMC objects.

l = @layout [a; [b c d]]

plot(p1, p2, p3, p4, layout=l)

The TransmissionNetworkDistribution, or TNDistribution type for short, is used to rep-
resent prior and posterior distributions of Transmission Networks. A plotting method for
TNDistribution is provided, as is exemplified in Figure 4 in comparison to the true trans-
mission network in our simulated epidemic. To generate this plot:

p1 = plot(sim.transmission_network, sim.population,

title="True Transmission\nNetwork", framestyle=:box)

tnp = TNDistribution(mcmc.markov_chains[1].transmission_network[10000:20:50000])

p2 = plot(tnp, sim.population,

title="Transmission Network\nPosterior Distribution", framestyle=:box)

plot(p1, p2, layout=(1, 2))

A summary function is also provided which outputs a DataFrame with summary statistics
for each TN-ILM parameter. A burn-in period, and a thinning rate can be provided:

summary(mcmc, burnin=10000, thin=20)

In our simulated example, this generates the results in Table 1. The parameter values that
were used to generate the epidemic simulation were ζ = 0.0001, β = 4.0, and η = 0.1. All 3
of these parameters are contained in the 95% credible intervals.

6. Application: 1861 Hagelloch measles outbreak

We apply the methods of Pathogen.jl to fit an SEIR TN-ILM to the 1861 Hagelloch measles
data set, originally published by Pfeilsticker (1863). This data set includes detailed observa-
tions on 188 children in Hagelloch, Germany. The data were analyzed by Oesterle (1992), who
expanded the individual level detail of the data set, and predicted the transmission source for
each case. The 1861 Hagelloch measles data have since been used to demonstrate numerous
new analysis methods and new software in the area of individual level epidemic modelling and
transmission network models. Neal and Roberts (2004) demonstrated reversible jump MCMC

24 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

for nested epidemic models with event time data augmentation. Also using reversible jump
MCMC for Bayesian model selection, Groendyke, Welch, and Hunter (2012) demonstrated
exponential family random graphs that model the contact network over which disease was
transmitted, while considering the covariates in the Hagelloch data set, as implemented in
epinet. In Groendyke et al. (2012), infection and removal times are treated as known, and
exposure/transmission times are inferred. Meyer et al. (2017) also used the outbreak data as
an example application for the TwinSIR individual level model in the surveillance package.

Here, we apply an SEIR TN-ILM which considers the available risk factor information and
assumes the transmission network, as well as exposure, infection, and removal times to be all
unknown, and to be imputed. The purpose of this analysis is to exhibit the functionality of
Pathogen.jl using this exceptional data set, rather than to extend our understanding of the
outbreak itself. The code to recreate this analysis is contained in the supplementary material
in 1861_Measles_Hagelloch.jl.

The Hagelloch Measles data are included in the R package surveillance. These data are
further modified for ease of use with Pathogen.jl, and we include them as an example data
set in our own package.

Our analysis of the outbreak begins by loading our required packages, and setting a seed
for replicability:

using CSV,

DelimitedFiles,

Distances,

Random,

Pathogen,

Plots,

Plots.PlotMeasures,

DataFrames

Random.seed!(4321);

Our first step with Pathogen.jl is to construct a Population. We do this by loading our
risk factor data, and pre-calculating a matrix of Euclidean distances between the homes of
all children. We also allow transmission rates to depend on whether children were in the
same household, or the same class at school. If individuals were listed at the same location,
we set their distance to Inf, such that household transmission would be excluded from the
Euclidean distance-based element of the infectivity kernel. For brevity we reserve the Julia
code for construction of this distance matrix to the supplementary material. With the risk
factors and distance matrix, a Population is then constructed with:

risks = CSV.read("data/measles_hagelloch_1861_risk_factors.csv", DataFrame)

pop = Population(risks, dist)

Justin Angevaare, Zeny Feng, Rob Deardon 25

We specify observations for model fitting using the dates of prodrome, rash, and death. The
date of prodrome is assumed to occur after the true onset of infectiousness. If an individual
recovered, a removal time observation of the date of rash plus four days was assumed. This
implies the true removal of that individual from the infectious state must have occurred before
four days after displaying a rash, which is the typical maximum extent of infectiousness (Public
Health Agency of Canada 2020). If an individual perished before this assumed removal time,
their date of death would instead be taken as their removal time. This data processing step
is again reserved for supplementary material. We can construct an EventObservationsSEIR

once we have vectors of infection and removal observations with:

obs = EventObservations{SEIR}(infected, removed)

We do not exclude any cases, as has been done in some past analyses due to an isolated case
following the primary outbreak. Groendyke, Welch, and Hunter (2011) found inclusion of this
particular case to affect parameter estimates of the random network model they present. In
the application of a TN-ILM to this data, we expect that this case would be attributed to an
external transmission source and not adversely impact model estimates, so its removal is not
required. Specification of an initial infection is also not required with the TN-ILM due to it
allowing for external transmission sources.

In our TN-ILM, individual disease state transitions are described by:

ε∗(i) =ζ

ΩS(i) =1.0

ΩT (j) =1.0

κ(i, j) =αd−βi,j + τIclass(i, j) + ρIhouse(i, j) (15)

ΩL(i) =γ

ΩR(i) =η

where di,j is the Euclidean distance between individuals i and j, Iclass(i, j) and Ihouse(i, j)
are indicator functions for whether i and j are members of the same classroom, and same
household, respectively. This model structure is specified as

function _constant(params::Vector{Float64}, pop::Population, i::Int64)

return params[1]

end

function _one(params::Vector{Float64}, pop::Population, i::Int64)

return 1.0

end

function _powerlaw_plus(params::Vector{Float64}, pop::Population, i::Int64, k::Int64)

return params[1] * pop.distances[k, i][1]^(-params[2]) +

params[3] * pop.distances[k, i][2] +

params[4] * pop.distances[k, i][3]

26 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

end

rf = RiskFunctions{SEIR}(_constant, # sparks function

_one, # susceptibility function

_powerlaw_plus, # infectivity function

_one, # transmissability function

_constant, # latency function

_constant) # removal function

Weakly informative priors that restrain parameters to positive values were selected for all
variables for the purposes of fitting this model using MCMC, with:

ζ ∼Uniform(0.0, 0.1),

α ∼Uniform(0.0, 7.0),

β ∼Uniform(0.0, 7.0),

τ ∼Uniform(0.0, 1.0),

ρ ∼Uniform(0.0, 1.0),

γ ∼Uniform(0.0, 1.0),

η ∼Uniform(0.0, 1.0).

(16)

Uniform prior distributions were specified for the delay between true infection and removal
times and infection and removal observations of Uniform(0.0, 3.0) and Uniform(0.0, 2.0), re-
spectively. The prior distribution for exposure times is specified relative to the latent infection
time as having occurred Uniform(5.0, 14.0) days earlier. A flat uniform prior was assumed for
the transmission network.

Using Pathogen.jl, we specify these prior distributions with:

rpriors = RiskPriors{SEIR}([Uniform(0.0, 0.1)],

UnivariateDistribution[],

[Uniform(0.0, 7.0)

Uniform(0.0, 7.0)

Uniform(0.0, 1.0)

Uniform(0.0, 1.0)],

UnivariateDistribution[],

[Uniform(0.0, 1.0)],

[Uniform(0.0, 1.0)])

ee = EventExtents{SEIR}((5.0, 14.0), 3.0, 2.0)

We next construct an MCMC{SEIR} object, and initialize it by selecting the best parameter set
from 100k initialization attempts. From the selected initial parameter values, we then perform
200k MCMC iterations. For this example, event time data augmentation is completed in 10
blocks, with a transition kernel variance set to 1.0 for each event time.

Justin Angevaare, Zeny Feng, Rob Deardon 27

Figure 5: Trace plot after 200k iterations of a TN-ILM with 7 parameters applied to the
1861 Hagelloch measles data. Convergence was assumed to occur by 100k iterations, with a
thinning rate of 50 used in selection of samples to estimate the joint posterior distribution of
the TN-ILM. For display purposes, only every 20th iteration is shown in this trace plot.

mcmc = MCMC(obs, ee, pop, rf, rpriors)

start!(mcmc, attempts=100000)

iterate!(mcmc, 200000, 1.0, condition_on_network=true, event_batches=10)

A progress bar is displayed during MCMC initialization and iteration. It took approximately
15 minutes, and 3 hours 53 minutes to run those processes, respectively, on a computer with
an Intel 2.7 GHz i7-3740QM processor, using Julia 1.4.2. Once completed, we can visually
assess a trace plot of the TN-ILM parameters with

plot(1:20:200001, mcmc.markov_chains[1].risk_parameters)

which shows every 20th set of parameter values, and generates the plot seen in Figure 5. The
TN-ILM parameters appear to converge quickly to the posterior distribution.

Selecting a burn-in period of 100k iterations, and a thinning rate of 50 iterations, we summa-
rize the distribution of our TN-ILM parameter with

summary(mcmc, burnin=100000, thin=50)

which yields the posterior estimates shown in Table 2. We can also visually explore the
posterior distribution of event times and overall epidemic curves, as well as the transmission
network as we did in the simulated example in Section 5. At the top of Figure 6, we contrast
the posterior distribution of the transmission network from our TN-ILM, to that suggested
by Oesterle (1992). We add a small amount of variation to individual locations for display
purposes only, to enable viewing of multiple individuals in the same household. The epidemic
curves at the bottom of Figure 6 show credible bands for aggregate infection and removal
times. The black lines on the infection and removal time plots indicate the observed infection
and removal times. The code to recreate Figure 6 is included in the supplementary material.

28 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

When comparing our transmission network posterior distribution to Oesterle’s analysis,
we note that Oesterle suggests individual 45 to be the source of 30 further infections, while
the transmission network posterior distribution from our TN-ILM indicates an out degree of
only 11.11 for this individual. Oesterle may have been able to incorporate more contextual
information into their transmission network reconstruction, resulting in this higher estimate.
Our estimated out degree considers probabilities for specific transmissions, while Oesterle’s
transmission network reconstruction does not represent uncertainty, which also may account
for some of this difference. Measles is highly infectious airborne disease, with a basic repro-
ductive number that can vary widely based on the population, but is usually cited as in the
range of 12-18 (Guerra, Bolotin, Lim, Heffernan, Deeks, Li, and Crowcroft 2017). Both the
value based on our transmission network reconstruction, and Oesterle’s for the number of
secondary transmissions for individual 45 are within a plausible range for this disease. Indi-
vidual 141 is the case that has been removed in some previous analyses. Our approach yields
a marginal posterior probability of this individual having an external transmission source of
approximately 1.0.

Overall, we note that the posterior mode transmission network from our TN-ILM is in
agreement with Oesterle on 103 of the 188 transmission sources. More informative prior
distributions for event times, and for exposure time especially, would likely affect our trans-
mission network reconstruction. Consideration of other risk factors, or consideration of the
presently used risk factors in different forms, would also likely impact the transmission net-
work posterior distribution.

The epidemic curves show narrow bands for infection and removal times in the population,
with higher uncertainty indicated for the exposure time. The posterior mean estimate for
γ implies a posterior mean for the latent period of 7.95 days. The posterior mean of the
incubation period is 9.42 days. An analysis of measles data from households with two cases
by Klinkenberg and Nishiura (2011) put the mean incubation period for this disease to be
slightly higher, between 11 and 12 days (Klinkenberg and Nishiura 2011). The posterior mean
for η implies a mean infectious period of 8.26 days.

The remaining parameters speak to the relative sources of infectious pressure. The infec-
tious pressure from an infectious family member was nearly 9.73 times higher than an infec-
tious classmate. An infectious individual residing 15 metres away applied infectious pressure
approximately equal to that of an infectious classmate. With 30 metres between residences,
the infectious pressure from an infectious individual drops to approximately 25% of that of
an infectious classmate. While it was less common for an infection to have an external source,
an estimate of a constant rate of 1.26× 10−3 was produced for ζ. Our transmission network
posterior distribution indicated an average of 7.70 transmissions as coming from outside the
observed population of 188 children in the data set.

While modelling approaches have varied, we find these results are generally in agreement
with the conclusions of other authors, being that household, then classroom transmission,
were of primary importance in this outbreak.

Justin Angevaare, Zeny Feng, Rob Deardon 29

Parameter Mean Variance 95% Credible Interval

ζ 0.001261 4.107× 10−7 (0.0003319, 0.002840)
α 4.138 3.376 (0.6007, 6.872)
β 1.963 0.03318 (1.478, 2.227)
τ 0.02006 1.147× 10−5 (0.01398, 0.02711)
ρ 0.1952 0.001172 (0.1324, 0.2699)
γ 0.1259 8.735× 10−5 (0.1084, 0.1452)
η 0.1210 8.102× 10−5 (0.1039, 0.1391)

Table 2: Estimates of posterior mean, posterior variance, and 95% credible intervals for the
7 parameters of the TN-ILM that we applied to the Hagelloch measles data.

Figure 6: Top: marginal posterior distribution of the transmission network is shown in con-
trast to the transmission network presented by Oesterle (1992). Bottom: marginal posterior
distributions of the count of individuals in each disease state through time are shown, with
observation of infectiousness (onset of prodrome), and observation of removal (assumed to be
4 days following onset of rash), overlaid in black.

30 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

7. Conclusion

We have introduced Pathogen.jl, a Julia package, with flexible simulation and inference
capabilities for TN-ILMs. Pathogen.jl, currently supports SEIR, SIR, SEI and SI TN-
ILMs. Functions of risk factors for disease state transitions within each of these model classes
are effectively unrestricted, and this generality does not come at an implicit performance
cost due to JIT compilation in Julia. With TN-ILM simulations, observational data can be
generated such that realistic simulation studies can be conducted. Simulated observations
such as these, or real data can be fit to TN-ILMs with Pathogen.jl, which performs MCMC
with event time and transmission network data augmentation. For several of the types that
are introduced by Pathogen.jl, visualization methods are also provided. These visualization
methods include epidemic curves, transmission network visuals, and trace plots for MCMC.

In the future, we hope to increase the feature set of Pathogen.jl to include TN-ILMs in-
corporating time-varying disease state transition rates, and to provide an API for individual
movement into and out of populations. The flexibility of Pathogen.jl could be explored further
through the use of Artificial Neural Networks for one or more rate-describing functions, simi-
lar to what has been done with Neural Differential Equations with DiffEqFlux.jl (Rackauckas,
Innes, Ma, Bettencourt, White, and Dixit 2019). Providing simulation and inference capabil-
ities for phylodynamic ILMs, which incorporate densely sampled pathogen genetic sequence
data, is also of particular interest. Such datasets have only relatively recently become feasible
to compile with advances to sequencing technology (Leventhal, Günthard, Bonhoeffer, and
Stadler 2014). Pathogen genetic data can help identify likely transmission paths, and improve
our understanding of key connectivity factors in disease transmission. Additional inference
methods may also be added to Pathogen.jl, such as Approximate Bayesian Computation. Be-
yond these, as the Julia package ecosystem continues to mature, integration with other Julia
packages will be prioritized. While not only reducing the codebase of Pathogen.jl, this pro-
cess will present opportunity to add features, increase generality, improve performance, and
improve usability of the package. Notably, there are several maturing probabilistic program-
ming language packages in Julia including Turing.jl (Ge, Xu, and Ghahramani 2018), Soss.jl
(Scherrer and Zhao 2020), and Gen.jl (Cusumano-Towner, Saad, Lew, and Mansinghka 2019).
The use of one of these packages could be leveraged in providing additional algorithms for
fitting TN-ILMs, such as Hamiltonian Monte Carlo, variation inference, or particle filtering
based approaches.

Acknowledgements

We thank two anonymous reviewers for their detailed and constructive feedback of this
manuscript. This research was funded via a Highly Qualified Personnel HQP scholarship
from the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) / University
of Guelph Partnership, as well as from Dr. Feng’s and Dr. Deardon’s Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery Grants.

References

Justin Angevaare, Zeny Feng, Rob Deardon 31

Abdulkareem SA, Augustijn EW, Filatova T, Musial K, Mustafa YT (2020). “Risk perception
and behavioral change during epidemics: Comparing models of individual and collective
learning.” PloS One. doi:10.1371/journal.pone.0226483.

Almutiry W, Deardon R, Warriyar K V V (2020). EpiILMCT: Continuous time distance-
based and network-based individual level models for epidemics. R package version 1.1.6,
URL https://CRAN.R-project.org/package=EpiILMCT.

Besançon M, Anthoff D, Arslan A, Byrne S, Lin D, Papamarkou T, Pearson J (2019). “Distri-
butions.jl: Definition and modeling of probability distributions in the JuliaStats ecosys-
tem.” arXiv preprint arXiv::1907.08611.

Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, Zoubritzky L (2018). “Julia:
Dynamism and performance reconciled by design.” Proceedings of the ACM on Programming
Languages, 2(OOPSLA), 120:1–120:23. ISSN 2475-1421. doi:10.1145/3276490.

Bezanson J, Edelman A, Karpinski S, Shah VB (2017). “Julia: A fresh approach to numerical
computing.” SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Breloff T (2015). “Plots.jl: Powerful convenience for visualization in Julia.” URL http:

//docs.juliaplots.org/.

Cusumano-Towner MF, Saad FA, Lew AK, Mansinghka VK (2019). “Gen: A general-purpose
probabilistic programming system with programmable inference.” In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, pp. 221–236. ACM, New York, NY, USA. ISBN 978-1-4503-6712-7. doi:

10.1145/3314221.3314642.

Deardon R, Brooks SP, Grenfell BT, Keeling MJ, Tildesley MJ, Savill NJ, Shaw DJ, Wool-
house ME (2010). “Inference for individual-level models of infectious diseases in large
populations.” Statistica Sinica, 20(1), 239–261.

Ge H, Xu K, Ghahramani Z (2018). “Turing: A language for flexible probabilistic inference.”
In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-
11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1682–1690. URL
http://proceedings.mlr.press/v84/ge18b.html.

Gillespie DT (1977). “Exact stochastic simulation of coupled chemical reactions.” The Journal
of Physical Chemistry, 81(25), 2340–2361. doi:10.1021/j100540a008.

Groendyke C, Welch D (2018). “epinet: An R package to analyze epidemics spread across
contact networks.” Journal of Statistical Software, Articles, 83(11), 1–22. doi:10.18637/

jss.v083.i11.

Groendyke C, Welch D, Hunter DR (2011). “Bayesian inference for contact networks given
epidemic data.” Scandinavian Journal of Statistics, 38(3), 600–616. doi:10.1111/j.

1467-9469.2010.00721.x.

Groendyke C, Welch D, Hunter DR (2012). “A network-based analysis of the 1861 Hagelloch
measles data.” Biometrics, 68(3), 755 – 765. ISSN 0006341X. doi:10.1111/j.1541-0420.
2012.01748.x.

http://dx.doi.org/10.1371/journal.pone.0226483
https://CRAN.R-project.org/package=EpiILMCT
http://dx.doi.org/10.1145/3276490
http://dx.doi.org/10.1137/141000671
http://docs.juliaplots.org/
http://docs.juliaplots.org/
http://dx.doi.org/10.1145/3314221.3314642
http://dx.doi.org/10.1145/3314221.3314642
http://proceedings.mlr.press/v84/ge18b.html
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.18637/jss.v083.i11
http://dx.doi.org/10.18637/jss.v083.i11
http://dx.doi.org/10.1111/j.1467-9469.2010.00721.x
http://dx.doi.org/10.1111/j.1467-9469.2010.00721.x
http://dx.doi.org/10.1111/j.1541-0420.2012.01748.x
http://dx.doi.org/10.1111/j.1541-0420.2012.01748.x

32 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, Crowcroft NS (2017). “The
basic reproduction number (R0) of measles: a systematic review.” The Lancet Infectious
Diseases, 17(12), e420–e428. doi:10.1016/S1473-3099(17)30307-9.

Hastings WK (1970). “Monte Carlo sampling methods using Markov chains and their appli-
cations.” Biometrika, 57(1), 97–109. ISSN 0006-3444. doi:10.1093/biomet/57.1.97.

Heinen J, et al. (1985–2020). “GR framework.” URL https://gr-framework.org/.

Jenness S, Goodreau S, Morris M (2018). “EpiModel: an R package for mathematical modeling
of infectious disease over networks.” Journal of Statistical Software, 84(8), 1–47. ISSN 1548-
7660. doi:10.18637/jss.v084.i08.

Klinkenberg D, Nishiura H (2011). “The correlation between infectivity and incubation period
of measles, estimated from households with two cases.” Journal of Theoretical Biology,
284(1), 52–60. ISSN 0022-5193. doi:10.1016/j.jtbi.2011.06.015.

Landeros A, Stutz T, Keys KL, Alekseyenko A, Sinsheimer JS, Lange K, Sehl ME (2018).
“BioSimulator.jl: Stochastic simulation in Julia.” Computer Methods and Programs in
Biomedicine, 167, 23–35. doi:10.1016/j.cmpb.2018.09.009.

Leventhal GE, Günthard HF, Bonhoeffer S, Stadler T (2014). “Using an epidemiological model
for phylogenetic inference reveals density dependence in HIV transmission.” Molecular
Biology and Evolution, 31(1), 6–17.

Meyer S, Held L, Höhle M (2017). “Spatio-temporal analysis of epidemic phenomena using
the R Package surveillance.” Journal of Statistical Software, 77(11), 1–55. doi:10.18637/
jss.v077.i11.

Neal PJ, Roberts GO (2004). “Statistical inference and model selection for the 1861 Hagelloch
measles epidemic.” Biostatistics, 5(2), 249–261.

Oesterle H (1992). “Statistiche reanalyse einer masernepidemie 1861 in Hagelloch.” M.D.
thesis, Eberhard-Karls Universität Tübingen.

Pfeilsticker A (1863). “Beiträge zur pathologie der masern mit besonderer berücksichtgung
der statistischen verhältnisse.” M.D. thesis, Eberhard-Karls Universität Tübingen.

Public Health Agency of Canada (2020). “Measles: symptoms and treatment.” URL https:

//www.canada.ca/en/public-health/services/diseases/measles.html.

Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V (2019). “DiffEqFlux.jl - a
Julia library for neural differential equations.” CoRR, abs/1902.02376. 1902.02376, URL
http://arxiv.org/abs/1902.02376.

Rackauckas C, Nie Q (2017a). “Adaptive methods for stochastic differential equations via nat-
ural embeddings and rejection sampling with memory.” Discrete & Continuous Dynamical
Systems - B, 22(7), 1–31. doi:10.3934/dcdsb.2017133.

Rackauckas C, Nie Q (2017b). “DifferentialEquations.jl - a performant and feature-rich ecosys-
tem for solving differential equations in Julia.” Journal of Open Research Software, 5(1).
doi:10.5334/jors.151.

http://dx.doi.org/10.1016/S1473-3099(17)30307-9
http://dx.doi.org/10.1093/biomet/57.1.97
https://gr-framework.org/
http://dx.doi.org/10.18637/jss.v084.i08
http://dx.doi.org/10.1016/j.jtbi.2011.06.015
http://dx.doi.org/10.1016/j.cmpb.2018.09.009
http://dx.doi.org/10.18637/jss.v077.i11
http://dx.doi.org/10.18637/jss.v077.i11
https://www.canada.ca/en/public-health/services/diseases/measles.html
https://www.canada.ca/en/public-health/services/diseases/measles.html
1902.02376
http://arxiv.org/abs/1902.02376
http://dx.doi.org/10.3934/dcdsb.2017133
http://dx.doi.org/10.5334/jors.151

Justin Angevaare, Zeny Feng, Rob Deardon 33

R Core Team (2017). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robert C, Casella G (2013). Monte Carlo statistical methods. Springer-Verlag. ISBN 978-1-
4757-4145-2.

Roberts GO, Rosenthal JS (2007). “Coupling and ergodicity of adaptive Markov chain
Monte Carlo algorithms.” Journal of Applied Probability, pp. 458–475. doi:10.1239/

jap/1183667414.

Ross RJ, Baker RE, Parker A, Ford M, Mort R, Yates C (2017). “Using approximate Bayesian
computation to quantify cell–cell adhesion parameters in a cell migratory process.” NPJ
systems biology and applications, 3(1), 1–10. doi:10.1038/s41540-017-0010-7.

Scherrer C, Zhao T (2020). “Soss.jl: v0.11.0.” doi:10.5281/zenodo.3724489.

Shoukat A, Wells CR, Langley JM, Singer BH, Galvani AP, Moghadas SM (2020). “Projecting
demand for critical care beds during COVID-19 outbreaks in Canada.” Canadian Medical
Association Journal. doi:10.1503/cmaj.200457.

Vahdati A (2019). “Agents.jl: Agent-based modeling framework in Julia.” Journal of Open
Source Software, 4(42). doi:10.21105/joss.01611.

Warriyar K V V, Deardon R (2018). EpiILM: Spatial and network based individual level mod-
els for epidemics. R package version 1.4.2, URL https://CRAN.R-project.org/package=

EpiILM.

Webb GF (2017). “Individual based models and differential equations models of nosocomial
epidemics in hospital intensive care units.” Discrete & Continuous Dynamical Systems-B,
22(3), 1145–1166. doi:10.3934/dcdsb.2017056.

Affiliation:

Justin Angevaare
Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario, Canada
E-mail: jangevaa@uoguelph.ca
URL: https://jangevaare.github.io

Zeny Feng
Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario, Canada
E-mail: zfeng@uoguelph.ca
URL: https://zfeng.uoguelph.ca

Rob Deardon
Faculty of Veterinary Medicine

https://www.R-project.org/
http://dx.doi.org/10.1239/jap/1183667414
http://dx.doi.org/10.1239/jap/1183667414
http://dx.doi.org/10.1038/s41540-017-0010-7
http://dx.doi.org/10.5281/zenodo.3724489
http://dx.doi.org/10.1503/cmaj.200457
http://dx.doi.org/10.21105/joss.01611
https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM
http://dx.doi.org/10.3934/dcdsb.2017056
mailto:jangevaa@uoguelph.ca
https://jangevaare.github.io
mailto:zfeng@uoguelph.ca
https://zfeng.uoguelph.ca

34 Pathogen.jl: Infectious Disease Transmission Network Modelling with Julia

Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta, Canada
E-mail: robert.deardon@ucalgary.ca
URL: https://people.ucalgary.ca/~robert.deardon

mailto:robert.deardon@ucalgary.ca
https://people.ucalgary.ca/~robert.deardon

	Introduction
	Individual level models
	Transmission Network ILM extension

	Methods
	Continuous time-to-event simulation
	Continuous time ILM likelihood
	Bayesian inference via Markov chain Monte Carlo

	Software implementation with Julia
	Installing Pathogen.jl
	Pathogen.jl basics
	Simulation with Pathogen.jl
	Inference with Pathogen.jl

	Simulated Example
	Application: 1861 Hagelloch measles outbreak
	Conclusion

