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Abstract

Stochastic compartmental models are important tools for understanding the course
of infectious diseases epidemics in populations and in prospective evaluation of in-
tervention policies. However, calculating the likelihood for discretely observed data
from even simple models — such as the ubiquitous susceptible-infectious-removed (SIR)
model — has been considered computationally intractable, since its formulation almost a
century ago. Recently researchers have proposed methods to circumvent this limitation
through data augmentation or approximation, but these approaches often suffer from
high computational cost or loss of accuracy. We develop the mathematical foundation
and an efficient algorithm to compute the likelihood for discretely observed data from
a broad class of stochastic compartmental models. We also give expressions for the
derivatives of the transition probabilities using the same technique, making possible
inference via Hamiltonian Monte Carlo (HMC). We use the 17th century plague in
Eyam, a classic example of the SIR model, to compare our recursion method to se-
quential Monte Carlo, analyze using HMC, and assess the model assumptions. We also
apply our direct likelihood evaluation to perform Bayesian inference for the 2014-2015
Ebola outbreak in Guinea. The results suggest that the epidemic infectious rates have
decreased since October 2014 in the Southeast region of Guinea, while rates remain the
same in other regions, facilitating understanding of the outbreak and the effectiveness

of Ebola control interventions.
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1 Introduction

Compartmental models have been used extensively in epidemiology to study the spread of
infectious diseases such as plague (Raggett, 1982), measles (Cauchemez and Ferguson, 2008),
influenza (Dukic et al., 2012), HIV (Blum and Tran, 2010), and Ebola (Althaus, 2014). These
models stratify the population into separate groups according to differing health states.
The famous susceptible-infectious-removed (SIR) model (McKendrick, 1926; Kermack and
McKendrick, 1927) divides the population into three subpopulations: the susceptible (S)
group including healthy persons who have no immunity to the disease, the infectious (I)
group including infected persons who can transmit the disease to susceptible persons by
contact, and the removed (R) group including recovered/dead persons who no longer affect
disease dynamics. Important adaptions of the SIR model abound. For example, allowing
for the loss of immunity in the removed group such that recovered persons can become
susceptible again results in the susceptible-infectious-removed-susceptible (STRS) model. As
a simplification, the susceptible-infectious-susceptible (SIS) model assumes that individuals
who recover from the disease have no immunity against reinfection, thus rejoin susceptible
group immediately after recovery. The more complicated susceptible-exposed-infectious-
removed (SEIR) model takes into account an incubation period by adding an exposed (E)
group including individuals who are infected but not yet infectious.

Compartmental models have been studied in both deterministic and stochastic settings.
One advantage of deterministic models is that they yield simpler statistical inference than
their stochastic counterparts. However, “many infectious disease systems are fundamen-
tally individual-based stochastic processes, and are more naturally described by stochastic
models” (Roberts et al., 2015). Deterministic models are only appropriate when the popula-
tions of the compartments are sufficiently large (Brauer, 2008). Therefore, stochastic models
remain preferable when their analysis is possible. If we are able to observe all transition
events, likelihood-based inference for stochastic compartment models is straightforward. For

example, Becker and Britton (1999) derive maximum likelihood estimates under complete



observation for the SIR model. Unfortunately, it is very unlikely that we know exactly
when an individual contracts the disease. In general, surveillance data often include total
counts of individuals in each compartment at several observation points. Calculation of
the likelihood requires evaluating the transition probabilities of the underlying stochastic
process between these time points and, thus, becomes intractable due to the requirement
of integrating over all unobserved events (Cauchemez and Ferguson, 2008). Solving for
the transition probabilities begins, as Renshaw (2011) reminds us, by innocuously writing
out the Chapman-Kolmogorov equations for the compartmental model, but the “associated
mathematical manipulations required to generate solutions can only be described as heroic.”

One common solution considers stochastic compartmental models as finite, but very
large, state-space Markov processes and approximates their transition probabilities using
matrix exponentiation. Unfortunately, this method is extremely time consuming and nu-
merically unstable in many instances (Schranz et al., 2008; Crawford and Suchard, 2012).
Further, when the state-space is infinite, matrix exponentiation can suffer from truncation
error (Crawford et al., 2016). Several alternative approaches have been developed to over-
come the intractability of compartmental models, including data augmentation, diffusion
approximation, sequential Monte Carlo (SMC) — namely, particle filters — and approximate
Bayesian computation (ABC). However, these methods are limited and do not completely
achieve tractability. In Section 2, we give a formal definition of stochastic compartmental
models and discuss limitations of existing methods in more detail.

In this paper, we propose a method with polynomial complexity to compute the transi-
tion probabilities and their derivatives for stochastic compartmental models, making direct
inference scalable to large epidemics. The main technique of our method is solving the
Chapman-Kolmogorov equations in the Laplace domain and evaluating the inverse Laplace
transform of these solutions numerically to get back the transition probabilities. Recently,
this technique has been successfully applied to the SIS model (Crawford and Suchard, 2012)

and the SIR model (Ho et al., 2017), where the solutions of the Chapman-Kolmogorov equa-



tions in the Laplace domain can be represented by continued fractions. Although these
results make progress toward evaluating the likelihood function efficiently, applying the con-
tinued fraction representation for more complex models such as SEIR and SIRS remains an
open problem. In this work, we bypass the need for an exotic continued fraction representa-
tion by constructing multivariate birth processes that are equivalent to epidemic processes
of the compartmental models. Consequently, our method does not require evaluating contin-
ued fractions, and is therefore significantly faster and straightforward to apply to complex
compartmental models. Section 3 explains the construction of multivariate birth process
representations and the dynamic programming algorithm for computing the transition prob-
abilities of compartmental models. In Section 4, we apply this new method to three prevailing
infectious disease models (SIR, SEIR, and SIRS) and illustrate the computation gain for the
SIR model compared to the method in Ho et al. (2017), the SMC method implemented in
the increasingly popular R package pomp (King et al., 2016), and the matrix exponentiation
method implemented in the state-of-the-art software Expokit (Sidje, 1998). We discuss two
further statistical applications using our recursion which do not appear possible under previ-
ous approaches in Section 5. Specifically, we devise polynomial-time computable derivatives
of the transition probabilities of the SIR model, enabling an analysis of the dynamics of an
historical plague outbreak using Hamiltonian Monte Carlo (HMC). Further, the generality
of our method equips us to explore the adequacy of the SIR model assumptions for this out-
break of plague. Finally, in Section 6, we turn to the 2014-2015 Ebola outbreak in Guinea
and propose a time-inhomogeneous, hierarchical SIR extension that provides evidence for the
slowing of this outbreak. Moreover, we find that the change in the trajectory only happened

in the Southeast region of Guinea.



2 Stochastic compartmental models

In this section, we formally define stochastic compartmental models, discuss limitations of
current inference methods when the data are observed discretely, and propose a new method

of polynomial complexity for computing their transition probabilities.

2.1 Notation and definition

A stochastic m-compartmental model stratifies the population into m homogeneous sub-
populations called compartments. Let {C;,Cs,...,C,} be the compartments and Y (t) =
{Y1(t),Ys(t),..., Y (t)} be their population at time ¢ > 0, then the rate matrix R is an
m xm matrix [1;;(0,Y)]1<i j<m Where 1;;(6,Y) > 0 is a function of the parameter of interest
6 and Y (t), representing an infinitesimal transition rate from C; to C;. We set y;;(6,Y) =0
for all « = 1,...,m. Let d count the number of positive elements of R. Then, there are d

possible transitions of Y during a sufficient small time interval (¢, ¢ + dt):

Pri{Y(t +dt) =y —ei+e; | Y(t) =y} = pis (6, y)dt + o(dt), p; #0

m (1)
Pr{Y(t+d)=y |Y(t)=y}=1- (Z 5 (0, y)) dt + o(dt),

ij=1

where e; and e; are the ¢ and j*

coordinate vector of R™ respectively. We call Y(¢) a
compartmental process. We can visualize a compartmental model by a directed graph where
nodes correspond to compartments and a directed edge from node 7 to node j means p;; is

positive. Figure 1 gives an example of representing a 3-compartmental model by a directed

graph.

2.2 Limitations of current approaches

The first approach for likelihood-based inference under discretely-observed stochastic com-

partmental models exploits data augmentation. This technique augments the observed data



Figure 1: A directed graph representation of a 3-compartmental model. The rate matrix R
of this model only has d = 3 positive elements: 112, f123, and fi13.

with the extensive unobserved information needed to evaluate the continuously-observed
likelihood. This method often treats the times of all unobserved events as parameters and
explores the joint posterior distribution by Markov chain Monte Carlo (MCMC) method
(Gibson and Renshaw, 1998; O’Neill and Roberts, 1999; O’Neill, 2002). Although data aug-
mentation works well for small epidemics, it has been criticized for being computationally
prohibitive with large augmented data (Cauchemez and Ferguson, 2008; Blum and Tran,
2010).

An alternative approach to data augmentation entertains a diffusion approximation. This
method approximates the discrete compartmental processes by continuous diffusion processes
whose likelihood function is easy to calculate. For example, Cauchemez and Ferguson (2008)
propose to mimic the SIR process by a Cox-Ingersoll-Ross process (Cox et al., 1985), and
apply this approximation to study measles epidemics in London (1948-1964). However,
a diffusion approximation is not applicable to epidemics in small communities because the
approximation requires the state-space to be large enough to justify approximating a discrete
process by a continuous one (Karev et al., 2005; Golightly and Wilkinson, 2005). Moreover,
this method is often not sufficiently accurate for use even as a simulator (Golightly and
Wilkinson, 2005).

Particle filters, as a SMC approach, offer another popular tool for estimating the likeli-

hood of stochastic models (Arulampalam et al., 2002). The R package pomp (King et al., 2016)



provides an increasingly popular SMC implementation for both frequentist and Bayesian in-
ference settings. For example, Tonides et al. (2006) develop an iterated filtering method that
uses a particle filter to approximate the maximum likelihood estimates of the parameters. In
the Bayesian setting, Andrieu et al. (2010) construct a particle marginal Metropolis-Hastings
sampler to explore the posterior distribution using estimates from a particle filter. The com-
putational cost of these methods can be prohibitive when the convergence is slow because
each iteration requires using a particle filter to estimate the likelihood (Owen et al., 2015).

Another alternative to data augmentation is ABC (Blum and Tran, 2010). This is a
likelihood-free approach replacing the observations with summary statistics and approxi-
mating the posterior of the parameters given the summary statistics by a simulation-based
method. Nonetheless, the ABC method can be biased because of non-zero tolerance and non-
sufficient summary statistics (Sunnaker et al., 2013), especially in high dimensions (Blum
and Tran, 2010). Therefore, credible interval estimates tend to be inflated (Csilléry et al.,
2010), and model selection using the ABC method cannot be trusted (Robert et al., 2011).

Finally, Faddy (1977) proposes an approximation for the stochastic SIR model by assum-
ing that each susceptible person becomes infected independently with the same rate 8 x i(t)
where i(t) is the number of infected individuals in the deterministic SIR model (Kermack
and McKendrick, 1927). The transition probabilities of this approximated process have an-
alytic formulae because of the independence assumption, but this approximation becomes

less accurate as the epidemic progresses.

3 Evaluating transition probabilities

We present a new method for computing the transition probabilities of stochastic compart-
mental models. Our method achieves polynomial complexity, thus enabling direct likelihood-
based inference for discretely observed data. The main idea is to recast a compartmental

process whose rate matrix R has d positive elements into a d-dimensional birth process by



keeping track of d types of transition events between compartments. This idea has been
used in chemical thermodynamics for almost 100 years, where the variable measuring the
progress of all substances in a chemical reaction is called the degree of advancement or extent
of reaction variable (de Donder et al., 1920). By doing this, we can evaluate the transition
probabilities more efficiently because the resulting multivariate birth processes are monotoni-
cally non-decreasing, while the compartment populations may increase or decrease over time.
This monotonicity affords us the opportunity to apply dynamic programming for building

the transition probability matrix.

3.1 Multivariate birth process

Definition 1. A d-dimensional birth process is a continuous-time Markov process counting
the number of “birth” events for d populations. Let X(t) = {X;(t), Xa(t),..., Xa(t)}, t >0
be a multivariate birth process, whose state-space is N®. Then, there are d + 1 possible

transitions of X during a sufficiently small time interval (t,t + dt):

Pr{X(t+dt) =x+e, | X(t) =x} = 2\Pdt +o(dt), ke {1,2,...,d}

d (2)
Pri{X(t+dt)=x|X(t)=x}=1-— (Z Ai’“) dt + o(dt),
k=1

where )\gf) > 0 is the birth rate of the k™ population given the current population is x =

(1’1,1‘2, Ce ,$d).

For two vectors u,v € N denote P,y (t) = Pr{X(t) = v | X(0) = u} be the transition
probability of the multivariate birth process from u to v after ¢ units of time. We say u < v
if up < wy for every k =1,2,...,d. Notice that P,y (t) # 0 if and only if u < v.

Let B € N?, and set Aﬁ? =0if 2z, = —1. For 7 € N, we denote

d d
Di:{x: 5 xk:i}, and /\i:m%x{g )\;k)}. (3)
xelD;
k=1 k=1



Throughout this section, we make the following assumption:

Assumption 1 (Regularity condition).

o0

Zl/)\i:oo

=1

This condition generalizes the classic regularity condition of a univariate birth process (Feller,

1968).
Theorem 1. Under Assumption 1 (Regularity condition),

(i) the forward transition probabilities { Pox(t) }x<B are the unique solution of the Chapman-

Kolmogorov forward equations

dP d d
OX Z)\x ekPOx e )_ <Z )\;k)> POx(t)a and (4)

k=1 k=1

(i1) the backward transition probabilities { Pyg(t) }x<B are the unique solution of the Chapman-

Kolmogorov backward equations

Z A Prten(t) (Z ASP) Pug(t). (5)

k=

Proof. 1t is sufficient to prove that the birth rates satisfying Assumption 1 uniquely determine
the multivariate birth process. By Theorem 7 in Reuter (1957), we have to show that if for

some ¢ > 0, {yx} € [0, 1] satisfies the following equations

d
(C + Z /\ ) Yx = Z A k)yX-l—ek’ (6)
k=1

10



then yx = 0. Let y; = maxyep, {yx} and x* = argmax, ., {yx}, we have

d d d
(c +>° AE?) yi=> Ayt < (Z AE?) Yir1. (7)
k=1

k=1

Therefore,

d
Cyi < (Z Ai*)) (Yir1 — ¥i) < Ni(Yir1 — Ui)- (8)

k=1
Assume that there exists iop > 0 such that y;, > 0. From (8), we conclude that for every

© > 1o, Yi > Yi—1 and

i—1
A :
yi—Z/\—j+yi0—>oo as 1 — 00, (9)
J=to
which contradicts with y; < 1. This contradiction completes the proof. O

Theorem 1 shows that we can evaluate the forward and backward transition probabilities
by solving the Chapman-Kolmogorov equations (4) and (5). However, traditional meth-
ods like matrix exponentiation and Fuler’s method are either computationally expensive or
lack numerical accuracy. Instead, we first solve the Chapman-Kolmogorov equations in the
Laplace domain and then apply an inverse Laplace transform to recover Pyy(t).

We define the Laplace transform of Py () as:

Juv(s) = L[Puv(t)](s) = /OOO e Pyy (t)dt. (10)

Note that fuy # 0 if and only if u < v.

11



Corollary 1. For the multivariate birth process, we have the following recursive formulae:

1
SRS
1
G
" Zd: 3\ » (11)
fox(s) = X—ekf x—e, (8
’ k=1 "‘Z] 1A Ay ’
-3 5(s),
fx S —fx e;,B\S
? k=1 +Z] 1 ’

where 0 < x < B.

Proof. Applying a Laplace transform to both sides of (4) and (5), we arrive at

c {dp ‘;’;(ﬂ (5) = S MY, L[ Pox e (Z)\ ) [Pox(t)](s) and
k=1 k=1 (12)
d d
£ |0 ) = S A [P (Z A ) (0)(s).
k=1 k=1
Noting that P
£ |0 (5) = stiPu](6) ~ Foxl0) and
(13)
£ |20 (5) = selRa(0](s) - Ra(0)
enables us to write
d d
sfox(s) — Pox(0) = Z /\,((k_)ekfo,x—ek(S) — (Z )\Sck)> fox(s) and
k‘;l ::1 (14)
sfxa(s) = Pas(0) = ) A frrenn(s) - (Z Ai’“) fxn(s).

12



From (14), we have

d
sfoo(s) — Poo(0 Z )\—eka e (Z AL ) foo(s) and

k=

. (15)
sfee(s) — Pee(0 Z)\ [B+terB /\k> feB(s
=1
Since Poo(0) = Pge(0) =1 and Pp e, (t) = Ppie,B(t) = 0, we deduce
foo(s) = ; and
s+ Zfl A (16)
feB(s) = m-

Moreover, Pox(0) = 0 for x # 0 and Pyxg(0) = 0 for x # B. Hence, from (14), we obtain

d )\(k’)
fOx(s) — Z%fOX ek( ) and
k=195 5+ Z] 1
. 0 (17)
fen(s) =) —fx+ek (s).
e EDDEPNY
Thus, the proof is completed. ]

From Corollary 1, we can derive analytic formulae for all { fox(s)}x<s and {fxs(s) }x<B-

For u < v, let a path from u to v be an increasing sequence p = {p;}?; such that

pi=1u, P,=V, P; <Pit1, and piy1 —P; € {e1,€,,..., €4}

Denote Pyv and Z; to be the set of all paths from u to v and the index of the only non-zero

13



coordinate of p;11 — p; respectively. We have

fOX(5> =

—(z ) )
+231 PEPox = 2$+Z] 1)\%{

——
k()= ——r— 5 i 0 ]
5+ Zj:l /\g) PPy i=1 5 T Zj:l )\gi)
However, evaluating { fox(s) }x<p and {fxs(s)}x<p using (18) is infeasible because the num-

ber of paths from 0 to B is extremely large. For example, when all the birth rates are

positive, the number of paths is

(19)

o (TSB!
EBZ (Zj MB)!'

For example, when d = 2 and B; = By = B, the number of paths (19) becomes (B + 1)(B +
2)---(2B) > BB.

The sum-product structure in (18) suggests that dynamic programming may lead to
efficient computation of { fox($)}x<p and { fxs(s) }x<s that we achieve through the recursive
formulae (11). The computation cost of the recursion is only O([]¢_, By) because we need
one loop for each coordinate. Algorithm 1 presents pseudo-code for computing { fox(s) }x<B
via dynamic programming. The algorithm for evaluating { fxg(s)}x<p is similar.

Then, we approximate the inverse Laplace transform of fyy(s) by the method proposed

in Abate and Whitt (1992, equation (4.6)):

Pus) = £7Gn) 0= 3R [ ()] + 5 S R [ (M52, o0

t 2t
k=1

where R]z] is the real part of z. Here, the positive number M is used to control the dis-

14



Algorithm 1 Dynamic programming algorithm for computing { fox($)}x<B-

Require: s > 0, {\ 4
1: foo —1
2: for iy =0 to B; do
for i, =0 to By do

3

4 :

5 for id:OtO Bd do

6: X(—(il,ig,...,id)
7 m<—s+2§l:1)\§f)
8
9

fOx — fOx/m
for k=1toddo

10: if i, < By, then

11: Joxte, < Sfoxte, T M x Jox
12: end if

13: end for

14: end for

15: :

16: end for

17: end for

cretization error. Specifically, the discretization error is

[e.9]

D e M Pay (2K + 1)1),

k=1

which can be bounded by 1/(eM — 1). However, Abate and Whitt (1992) warn that we
should not choose M too large because it makes the infinite sum (20) harder to evaluate.
They suggest to aim for 1077 to 10™® accuracy on a machine with 14-digit precision. Fol-
low this instruction, we choose M = 20 throughout this paper. We opt to use a Levin
acceleration method (Levin, 1973) to improve the convergence rate of (20). Let L be the
number of iterations required from Levin acceleration to achieve a certain error bound for

the approximation (20), then we have the following corollary:

Corollary 2. The total complezity of our algorithm to compute { Pox(t) }x<B and { Pxa(t) }x<B
is O(LT]I_, By).

Note that when we aim for 10~® accuracy, L usually ranges from 100 to 1000.

15



3.2 Re-parameterization

Given an m-compartmental process Y (¢) with d possible types of transition between com-
partments, computing the transition probability Pr{Y(¢) = v | Y(0) = u} by solving the
compartmental Chapman-Kolmogorov equations is generally intractable because, unlike mul-
tivariate birth processes, individual compartment population Y;(¢) may increase or decrease
over time. Here, we recast Y (¢) into a d-dimensional birth process X(¢) and aim to compute
the transition probabilities of Y (¢) from the transition probabilities of X().

We denote ¢ — j be a transition from compartment C; to compartment C;. For k =
1,2,...,d, let i — ji be the k-th type of transition. We construct X(¢) by letting X (¢) be
the number of k-type transition events happening from time 0 to t. Define an m x d matrix
A = [aj;] as follows:

—1, ifl =iy
i, = 1, ifl =y (21)
0, otherwise,

then we have the following lemma:

Lemma 1. Y (t) = Y(0) + [AX(¢)]" where T denotes the matriz transpose. Moreover, the
birth rates for X(t) are \Y) = tini (0, Y (0) + [Ax]T).

Define W = {w € N : Aw = (u — v)T}. By Lemma 1, we deduce that

PriY(t)=v | Y(0) =u} = Z Pr{X(t) =w | X(0) = 0}. (22)

wew
We want to employ Equation (22) for computing the transition probabilities of Y (¢). How-
ever, evaluating the summation in (22) is infeasible when the set W has infinitely many
elements. To limit the cardinality of W, we proffer a small restriction on the class of com-
partmental models for which we can compute their transition probabilities in polynomial

complexity.

16



Assumption 2 (Finite loops). Fach individual visits each compartment at most U times

between two consecutive observations.

Assumption 2 is rarely restrictive for many compartmental models for infectious diseases.
Infected individuals usually develop at least partial immunity to re-inflection that wanes at
a rate commensurate with or slower than the observation process. Further, it is notable that
if a compartmental model can be represented by a directed acyclic graph, then an individual
never returns to a compartment after leaving. In this case, this assumption is satisfied with

Uu=1.

Theorem 2. For a compartmental model satisfying Assumption 2 (Finite loops), the com-
plexity for computing its transition probabilities via Equation (22) is O(LU'N?), where N

1s the total population of all compartments.

Proof. By Assumption 2, X < UN where N is a d-dimensional vector (N, N, ..., Nyg).
Hence A\ = 0 when x > UN. By Theorem 1 and Corollary 2, we can compute the
transition probabilities (Pr{X(t) = x | X(0) = 0})x<u~ at a cost of O(LUN?). Then,
we can compute the transition probabilities of Y through Equation (22) at the same cost.

Therefore, the total complexity is O(LUIN?). O

4 Compartmental models of infectious diseases

We apply our recursion method to three prevailing compartmental models of infectious dis-

eases including the SIR, SEIR and SIRS models.

4.1 Susceptible-infectious-removed model

Proposed by McKendrick (1926), the stochastic SIR model is probably the most famous
compartmental model in epidemiology. This model divides the population into three different

compartments: susceptible (5), infectious (I), and removed (R), and allows two possible

17



transitions: infection (S — I) with rate 8SI and removal (I — R) with rate yI. Here,

£ > 0 is the infection rate and v > 0 is the removal rate of the disease. Figure 2 visualizes

SR

Figure 2: A directed graph representation of the SIR model.

the directed graph representing this model.

N BST
_)

S

Because the total population S(t) 4+ I(t) + R(t) is constant, Ho et al. (2017) consider
{S(t),I(t)} as a death/birth-death process and propose an algorithm to compute its tran-
sition probabilities using a continued fraction representation. The computational cost of
this algorithm for evaluating the full transition probability matrix is O(LN?). Our present
method re-parameterizes the SIR model using number of infection events Ng;(t) and re-

moval events Nyr(t). Note that there is a one-to-one correspondence between {S(t), I(t)}

and {Ng;(t), Nir(t)}:

S(t) So —1 0 Ngl(t)
= + , (23)

1(t) io 1 =1 \ Ng(t)
where (sg,i9) is the realized value of {S5(0),1(0)}. It follows that {Ns;(t), Nir(t)} is a
bivariate birth process with birth rates 5(so— Ns;) ™ (io+ Ns;— Nrr) ™ and y(ig+ Ng; — Nyg)*t
where a™ = max{a,0}. Since the directed graph representing the SIR model is acyclic,

Assumption 2 is satisfied with & = 1. By Theorem 2, we have the following Corollary:

Corollary 3. The complexity for evaluating the full transition probability matrix of the SIR

model using our method is O(LN?).

We remark that our present method is an order of magnitude in N faster than that of Ho
et al. (2017) for computing the entire transition probability matrix. In practice, however,

we often only need to compute the transition probabilities between observations. In this

18



case, the computational cost of our present method decreases further to O(LAgAR) where
Ag and Ap are the changes in susceptible and removed populations between observations.
In many situations, Ag and Apg are significantly smaller than the total population N, for
example, when tracing the dynamics of a rare disease across an entire nation. We implement

our method in the R function SIR_prob (MultiBD package) https://github.com/msuchard/

MultiBD.

250-

200-
Q9
g i
Qo 1 bt
= .
- J [
5 150 .
o
O L

H
100- :

100 150 200
Susceptible population

Figure 3: CPU time ratios of the continued fraction method (dbd_prob) to the proposed
recursion method (SIR_prob) for computing the full transition probabilities matrix of the
SIR model with v = 2.73 and § = 0.0178. We set 1(0) = 1 and S(0) = 100, 150, 200.

To illustrate the computation gain of our recursion method compared to the continued
fraction representation of Ho et al. (2017), we evaluate the full forward transition probability
matrix of the SIR model with v = 2.73 and S = 0.0178 (estimated values from the Eyam
plague data by Ho et al., 2017) using both methods. The death/birth-death method in
Ho et al. (2017) is implemented in the R function dbd_prob (MultiBD package). We set

the starting infectious population ¢, to be 1 and consider 3 different starting susceptible
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populations sq = 100, 150, 200. For each scenario, we repeat the evaluation a hundred times
and compare the computing times and the results from both methods. Figure 3 summarizes
this comparison, and we see that SIR_prob is more than 150 times faster than dbd_prob.
On the other hand, the two methods return similar transition probability matrices whose

L, distance is less than 107'2. Here, the L; distance between two matrices A = (a;;) and

B = (bij) is D_j; |aij — bijl-

4.2 Susceptible-exposed-infectious-removed model

The SEIR model extends the SIR model by adding an exposed (E) compartment. We

visualize the SEIR model by the directed acyclic graph in Figure 4.

Figure 4: A directed graph representation of the SEIR model.

Let {Ngg(t), Ngr(t), Nig(t)} be the number of transition events S — E, E — I, and

I — R respectively. Then, we have an one-to-one correspondence with {S(t), E(t), I(t)} as

follows:
Et)|=lel|+] 1 =1 0o || N |, (24)
1(t) 10 0 1 -1 Nig(t)

where (so, €g,9) is the realized value of {S(0), £(0),1(0)}. Again, {Nsg, Ngr, Nir} is a
trivariate birth process with birth rates 5(so — Nsg)* (io+ Ngr— Nir) ™, k(eo+ Nsp— Ngr) ™,

and 7(ig + Ngr — Nyg)*. By Theorem 2, we have:

Corollary 4. The complezity for evaluating the full transition probability matriz of the SEIR

model using our method is O(LN?).
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4.3 Susceptible-infectious-removed-susceptible model

For some diseases, removed persons can lose immunity, making possible transition from the
“recovered” (R) to “susceptible” (S) compartments. The SIRS model takes into account
these scenarios by allowing the transition R — S. Figure 5 visualizes the directed graph

representing the SIRS model.
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Figure 5: A directed graph representation of the SIRS model.

Denote {Ns;(t), Nir(t), Nrs(t)} as the number of transition events S — I, I — R, and

R — S respectively. We have

S(t) So -1 0 1 NS[(t)
IO =1+ 1 =1 o||N®], (25)
R(t) To 0 1 -1 NRS(t)

where (so, 70, 70) is the realized value of {S(0), 1(0), R(0)}. In this situation, { Ns;, N1r, Nrs}
is a trivariate birth process with birth rates B(so + Nrs — Nsr)*(io + Ns;r — nygr)™, v(io +
nsy —nygr)t, and v(ro + njg — nrs)". In practice, v is much smaller than § x I(t) and
v. Hence, we can assume that during (0,¢) each individual can only be infected at most U

times. By Theorem 2, we arrive at

Corollary 5. The complezity for evaluating the full transition probability matriz of the SIRS

model using our method is O(LU*N?).
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4.4 Comparisons

We use prevalence counts from the plague in Eyam from June 18th to October 20th, 1666
(Raggett, 1982) to compare our recursion method with the SMC algorithm implemented
in the R function pfilter (pomp package King et al., 2016) and the matrix exponentiation
method implemented in the state-of-the-art software Expokit (Sidje, 1998). Plague is a
deadly infectious disease caused by the bacterium Yersinia pestis. It is mainly spread by
infected fleas from small animals, particularly rodents, and has killed 100s of millions of
people through human history. In Eyam, only 83 of the original 350 villagers survived at the
end of the plague. The data contain the susceptible and infectious populations { (s, im) }r_1

in Eyam at time {¢,,}" _;. The log likelihood function is

n-l S(tm+1) = Sm+1 S(tm) = Sm
Log 1(8, Y[{($my im) Yuma) = D log Pr . (26)
m=1 ](tm—i-l) = im—f—l ](tm> = Zm
We compute the log likelihood (26) under the stochastic SIR model with § = 0.0178 and

v = 2.73 (estimated values from the Eyam plague data by Ho et al., 2017).

4.4.1 Comparing to sequential Monte Carlo

The likelihood calculation is repeated a thousand times and the number of attempted simu-
lant particles for each estimation for pfilter is set as 1000, 2000, 3000, and 4000. For these
data and parameter estimates, pfilter fails to achieve a 100% success rate for approximat-
ing the likelihood. The success rate is low with 1000 particles (only 20.1%), and increases
as the number of particles increases (see Table 1). Filtering failure occurs when all particles
become incompatible with the data counts; this can happen frequently when the counts are
observed without error. When filtering succeeds, the approximation is fairly similar to our
method, and th