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Abstract

Stochastic compartmental models are important tools for understanding the course

of infectious diseases epidemics in populations and in prospective evaluation of in-

tervention policies. However, calculating the likelihood for discretely observed data

from even simple models – such as the ubiquitous susceptible-infectious-removed (SIR)

model – has been considered computationally intractable, since its formulation almost a

century ago. Recently researchers have proposed methods to circumvent this limitation

through data augmentation or approximation, but these approaches often suffer from

high computational cost or loss of accuracy. We develop the mathematical foundation

and an efficient algorithm to compute the likelihood for discretely observed data from

a broad class of stochastic compartmental models. We also give expressions for the

derivatives of the transition probabilities using the same technique, making possible

inference via Hamiltonian Monte Carlo (HMC). We use the 17th century plague in

Eyam, a classic example of the SIR model, to compare our recursion method to se-

quential Monte Carlo, analyze using HMC, and assess the model assumptions. We also

apply our direct likelihood evaluation to perform Bayesian inference for the 2014-2015

Ebola outbreak in Guinea. The results suggest that the epidemic infectious rates have

decreased since October 2014 in the Southeast region of Guinea, while rates remain the

same in other regions, facilitating understanding of the outbreak and the effectiveness

of Ebola control interventions.

Keywords epidemic model, multivariate birth process, infectious disease, transition

probabilities, Ebola
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1 Introduction

Compartmental models have been used extensively in epidemiology to study the spread of

infectious diseases such as plague (Raggett, 1982), measles (Cauchemez and Ferguson, 2008),

influenza (Dukic et al., 2012), HIV (Blum and Tran, 2010), and Ebola (Althaus, 2014). These

models stratify the population into separate groups according to differing health states.

The famous susceptible-infectious-removed (SIR) model (McKendrick, 1926; Kermack and

McKendrick, 1927) divides the population into three subpopulations: the susceptible (S)

group including healthy persons who have no immunity to the disease, the infectious (I)

group including infected persons who can transmit the disease to susceptible persons by

contact, and the removed (R) group including recovered/dead persons who no longer affect

disease dynamics. Important adaptions of the SIR model abound. For example, allowing

for the loss of immunity in the removed group such that recovered persons can become

susceptible again results in the susceptible-infectious-removed-susceptible (SIRS) model. As

a simplification, the susceptible-infectious-susceptible (SIS) model assumes that individuals

who recover from the disease have no immunity against reinfection, thus rejoin susceptible

group immediately after recovery. The more complicated susceptible-exposed-infectious-

removed (SEIR) model takes into account an incubation period by adding an exposed (E)

group including individuals who are infected but not yet infectious.

Compartmental models have been studied in both deterministic and stochastic settings.

One advantage of deterministic models is that they yield simpler statistical inference than

their stochastic counterparts. However, “many infectious disease systems are fundamen-

tally individual-based stochastic processes, and are more naturally described by stochastic

models” (Roberts et al., 2015). Deterministic models are only appropriate when the popula-

tions of the compartments are sufficiently large (Brauer, 2008). Therefore, stochastic models

remain preferable when their analysis is possible. If we are able to observe all transition

events, likelihood-based inference for stochastic compartment models is straightforward. For

example, Becker and Britton (1999) derive maximum likelihood estimates under complete
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observation for the SIR model. Unfortunately, it is very unlikely that we know exactly

when an individual contracts the disease. In general, surveillance data often include total

counts of individuals in each compartment at several observation points. Calculation of

the likelihood requires evaluating the transition probabilities of the underlying stochastic

process between these time points and, thus, becomes intractable due to the requirement

of integrating over all unobserved events (Cauchemez and Ferguson, 2008). Solving for

the transition probabilities begins, as Renshaw (2011) reminds us, by innocuously writing

out the Chapman-Kolmogorov equations for the compartmental model, but the “associated

mathematical manipulations required to generate solutions can only be described as heroic.”

One common solution considers stochastic compartmental models as finite, but very

large, state-space Markov processes and approximates their transition probabilities using

matrix exponentiation. Unfortunately, this method is extremely time consuming and nu-

merically unstable in many instances (Schranz et al., 2008; Crawford and Suchard, 2012).

Further, when the state-space is infinite, matrix exponentiation can suffer from truncation

error (Crawford et al., 2016). Several alternative approaches have been developed to over-

come the intractability of compartmental models, including data augmentation, diffusion

approximation, sequential Monte Carlo (SMC) – namely, particle filters – and approximate

Bayesian computation (ABC). However, these methods are limited and do not completely

achieve tractability. In Section 2, we give a formal definition of stochastic compartmental

models and discuss limitations of existing methods in more detail.

In this paper, we propose a method with polynomial complexity to compute the transi-

tion probabilities and their derivatives for stochastic compartmental models, making direct

inference scalable to large epidemics. The main technique of our method is solving the

Chapman-Kolmogorov equations in the Laplace domain and evaluating the inverse Laplace

transform of these solutions numerically to get back the transition probabilities. Recently,

this technique has been successfully applied to the SIS model (Crawford and Suchard, 2012)

and the SIR model (Ho et al., 2017), where the solutions of the Chapman-Kolmogorov equa-
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tions in the Laplace domain can be represented by continued fractions. Although these

results make progress toward evaluating the likelihood function efficiently, applying the con-

tinued fraction representation for more complex models such as SEIR and SIRS remains an

open problem. In this work, we bypass the need for an exotic continued fraction representa-

tion by constructing multivariate birth processes that are equivalent to epidemic processes

of the compartmental models. Consequently, our method does not require evaluating contin-

ued fractions, and is therefore significantly faster and straightforward to apply to complex

compartmental models. Section 3 explains the construction of multivariate birth process

representations and the dynamic programming algorithm for computing the transition prob-

abilities of compartmental models. In Section 4, we apply this new method to three prevailing

infectious disease models (SIR, SEIR, and SIRS) and illustrate the computation gain for the

SIR model compared to the method in Ho et al. (2017), the SMC method implemented in

the increasingly popular R package pomp (King et al., 2016), and the matrix exponentiation

method implemented in the state-of-the-art software Expokit (Sidje, 1998). We discuss two

further statistical applications using our recursion which do not appear possible under previ-

ous approaches in Section 5. Specifically, we devise polynomial-time computable derivatives

of the transition probabilities of the SIR model, enabling an analysis of the dynamics of an

historical plague outbreak using Hamiltonian Monte Carlo (HMC). Further, the generality

of our method equips us to explore the adequacy of the SIR model assumptions for this out-

break of plague. Finally, in Section 6, we turn to the 2014-2015 Ebola outbreak in Guinea

and propose a time-inhomogeneous, hierarchical SIR extension that provides evidence for the

slowing of this outbreak. Moreover, we find that the change in the trajectory only happened

in the Southeast region of Guinea.
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2 Stochastic compartmental models

In this section, we formally define stochastic compartmental models, discuss limitations of

current inference methods when the data are observed discretely, and propose a new method

of polynomial complexity for computing their transition probabilities.

2.1 Notation and definition

A stochastic m-compartmental model stratifies the population into m homogeneous sub-

populations called compartments. Let {C1, C2, . . . , Cm} be the compartments and Y(t) =

{Y1(t), Y2(t), . . . , Ym(t)} be their population at time t ≥ 0, then the rate matrix R is an

m×m matrix [µij(θ,Y)]1≤i,j≤m where µij(θ,Y) ≥ 0 is a function of the parameter of interest

θ and Y(t), representing an infinitesimal transition rate from Ci to Cj. We set µii(θ,Y) = 0

for all i = 1, . . . ,m. Let d count the number of positive elements of R. Then, there are d

possible transitions of Y during a sufficient small time interval (t, t+ dt):

Pr {Y(t+ dt) = y − ei + ej | Y(t) = y} = µij(θ,y)dt+ o(dt), µij 6= 0

Pr {Y(t+ dt) = y | Y(t) = y} = 1−

(
m∑

i,j=1

µij(θ,y)

)
dt+ o(dt),

(1)

where ei and ej are the ith and jth coordinate vector of Rm respectively. We call Y(t) a

compartmental process. We can visualize a compartmental model by a directed graph where

nodes correspond to compartments and a directed edge from node i to node j means µij is

positive. Figure 1 gives an example of representing a 3-compartmental model by a directed

graph.

2.2 Limitations of current approaches

The first approach for likelihood-based inference under discretely-observed stochastic com-

partmental models exploits data augmentation. This technique augments the observed data
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C1 C2 C3

µ12 µ23

µ13

Figure 1: A directed graph representation of a 3-compartmental model. The rate matrix R
of this model only has d = 3 positive elements: µ12, µ23, and µ13.

with the extensive unobserved information needed to evaluate the continuously-observed

likelihood. This method often treats the times of all unobserved events as parameters and

explores the joint posterior distribution by Markov chain Monte Carlo (MCMC) method

(Gibson and Renshaw, 1998; O’Neill and Roberts, 1999; O’Neill, 2002). Although data aug-

mentation works well for small epidemics, it has been criticized for being computationally

prohibitive with large augmented data (Cauchemez and Ferguson, 2008; Blum and Tran,

2010).

An alternative approach to data augmentation entertains a diffusion approximation. This

method approximates the discrete compartmental processes by continuous diffusion processes

whose likelihood function is easy to calculate. For example, Cauchemez and Ferguson (2008)

propose to mimic the SIR process by a Cox-Ingersoll-Ross process (Cox et al., 1985), and

apply this approximation to study measles epidemics in London (1948-1964). However,

a diffusion approximation is not applicable to epidemics in small communities because the

approximation requires the state-space to be large enough to justify approximating a discrete

process by a continuous one (Karev et al., 2005; Golightly and Wilkinson, 2005). Moreover,

this method is often not sufficiently accurate for use even as a simulator (Golightly and

Wilkinson, 2005).

Particle filters, as a SMC approach, offer another popular tool for estimating the likeli-

hood of stochastic models (Arulampalam et al., 2002). The R package pomp (King et al., 2016)
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provides an increasingly popular SMC implementation for both frequentist and Bayesian in-

ference settings. For example, Ionides et al. (2006) develop an iterated filtering method that

uses a particle filter to approximate the maximum likelihood estimates of the parameters. In

the Bayesian setting, Andrieu et al. (2010) construct a particle marginal Metropolis-Hastings

sampler to explore the posterior distribution using estimates from a particle filter. The com-

putational cost of these methods can be prohibitive when the convergence is slow because

each iteration requires using a particle filter to estimate the likelihood (Owen et al., 2015).

Another alternative to data augmentation is ABC (Blum and Tran, 2010). This is a

likelihood-free approach replacing the observations with summary statistics and approxi-

mating the posterior of the parameters given the summary statistics by a simulation-based

method. Nonetheless, the ABC method can be biased because of non-zero tolerance and non-

sufficient summary statistics (Sunn̊aker et al., 2013), especially in high dimensions (Blum

and Tran, 2010). Therefore, credible interval estimates tend to be inflated (Csilléry et al.,

2010), and model selection using the ABC method cannot be trusted (Robert et al., 2011).

Finally, Faddy (1977) proposes an approximation for the stochastic SIR model by assum-

ing that each susceptible person becomes infected independently with the same rate β× i(t)

where i(t) is the number of infected individuals in the deterministic SIR model (Kermack

and McKendrick, 1927). The transition probabilities of this approximated process have an-

alytic formulae because of the independence assumption, but this approximation becomes

less accurate as the epidemic progresses.

3 Evaluating transition probabilities

We present a new method for computing the transition probabilities of stochastic compart-

mental models. Our method achieves polynomial complexity, thus enabling direct likelihood-

based inference for discretely observed data. The main idea is to recast a compartmental

process whose rate matrix R has d positive elements into a d-dimensional birth process by
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keeping track of d types of transition events between compartments. This idea has been

used in chemical thermodynamics for almost 100 years, where the variable measuring the

progress of all substances in a chemical reaction is called the degree of advancement or extent

of reaction variable (de Donder et al., 1920). By doing this, we can evaluate the transition

probabilities more efficiently because the resulting multivariate birth processes are monotoni-

cally non-decreasing, while the compartment populations may increase or decrease over time.

This monotonicity affords us the opportunity to apply dynamic programming for building

the transition probability matrix.

3.1 Multivariate birth process

Definition 1. A d-dimensional birth process is a continuous-time Markov process counting

the number of “birth” events for d populations. Let X(t) = {X1(t), X2(t), . . . , Xd(t)}, t ≥ 0

be a multivariate birth process, whose state-space is Nd. Then, there are d + 1 possible

transitions of X during a sufficiently small time interval (t, t+ dt):

Pr {X(t+ dt) = x + ek | X(t) = x} = λ(k)x dt+ o(dt), k ∈ {1, 2, . . . , d}

Pr {X(t+ dt) = x | X(t) = x} = 1−

(
d∑

k=1

λ(k)x

)
dt+ o(dt),

(2)

where λ
(k)
x ≥ 0 is the birth rate of the kth population given the current population is x =

(x1, x2, . . . , xd).

For two vectors u,v ∈ Nd, denote Puv(t) = Pr{X(t) = v | X(0) = u} be the transition

probability of the multivariate birth process from u to v after t units of time. We say u ≤ v

if uk ≤ vk for every k = 1, 2, . . . , d. Notice that Puv(t) 6= 0 if and only if u ≤ v.

Let B ∈ Nd, and set λ
(k)
x = 0 if xk = −1. For i ∈ N, we denote

Di =

{
x :

d∑
k=1

xk = i

}
, and λi = max

x∈Di

{
d∑

k=1

λ(k)x

}
. (3)
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Throughout this section, we make the following assumption:

Assumption 1 (Regularity condition).

∞∑
i=1

1/λi =∞.

This condition generalizes the classic regularity condition of a univariate birth process (Feller,

1968).

Theorem 1. Under Assumption 1 (Regularity condition),

(i) the forward transition probabilities {P0x(t)}x≤B are the unique solution of the Chapman-

Kolmogorov forward equations

dP0x(t)

dt
=

d∑
k=1

λ
(k)
x−ekP0,x−ek(t)−

(
d∑

k=1

λ(k)x

)
P0x(t), and (4)

(ii) the backward transition probabilities {PxB(t)}x≤B are the unique solution of the Chapman-

Kolmogorov backward equations

dPxB(t)

dt
=

d∑
k=1

λ(k)x Px+ek,B(t)−

(
d∑

k=1

λ(k)x

)
PxB(t). (5)

Proof. It is sufficient to prove that the birth rates satisfying Assumption 1 uniquely determine

the multivariate birth process. By Theorem 7 in Reuter (1957), we have to show that if for

some ζ > 0, {yx} ∈ [0, 1] satisfies the following equations

(
ζ +

d∑
k=1

λ(k)x

)
yx =

d∑
k=1

λ(k)x yx+ek , (6)
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then yx = 0. Let yi = maxx∈Di
{yx} and x∗ = argmaxx∈Di

{yx}, we have

(
ζ +

d∑
k=1

λ
(k)
x∗

)
yi =

d∑
k=1

λ
(k)
x∗ yx∗+ek ≤

(
d∑

k=1

λ
(k)
x∗

)
yi+1. (7)

Therefore,

ζyi ≤

(
d∑

k=1

λ
(k)
x∗

)
(yi+1 − yi) ≤ λi(yi+1 − yi). (8)

Assume that there exists i0 > 0 such that yi0 > 0. From (8), we conclude that for every

i > i0, yi > yi−1 and

yi =
i−1∑
j=i0

ζ

λj
+ yi0 →∞ as i→∞, (9)

which contradicts with yi ≤ 1. This contradiction completes the proof.

Theorem 1 shows that we can evaluate the forward and backward transition probabilities

by solving the Chapman-Kolmogorov equations (4) and (5). However, traditional meth-

ods like matrix exponentiation and Euler’s method are either computationally expensive or

lack numerical accuracy. Instead, we first solve the Chapman-Kolmogorov equations in the

Laplace domain and then apply an inverse Laplace transform to recover Puv(t).

We define the Laplace transform of Puv(t) as:

fuv(s) = L[Puv(t)](s) =

∫ ∞
0

e−stPuv(t)dt. (10)

Note that fuv 6= 0 if and only if u ≤ v.
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Corollary 1. For the multivariate birth process, we have the following recursive formulae:

f00(s) =
1

s+
∑d

j=1 λ
(j)
0

fBB(s) =
1

s+
∑d

j=1 λ
(j)
B

f0x(s) =
d∑

k=1

λ
(k)
x−ek

s+
∑d

j=1 λ
(j)
x

f0,x−ek(s)

fxB(s) =
d∑

k=1

λ
(k)
x

s+
∑d

j=1 λ
(j)
x

fx+ek,B(s),

(11)

where 0 ≤ x ≤ B.

Proof. Applying a Laplace transform to both sides of (4) and (5), we arrive at

L
[
dP0x(t)

dt

]
(s) =

d∑
k=1

λ
(k)
x−ekL[P0,x−ek(t)](s)−

(
d∑

k=1

λ(k)x

)
L[P0x(t)](s) and

L
[
dPxB(t)

dt

]
(s) =

d∑
k=1

λ(k)x L[Px+ek,B(t)](s)−

(
d∑

k=1

λ(k)x

)
L[PxB(t)](s).

(12)

Noting that

L
[
dP0x(t)

dt

]
(s) = sL[P0x(t)](s)− P0x(0) and

L
[
dPxB(t)

dt

]
(s) = sL[PxB(t)](s)− PxB(0)

(13)

enables us to write

sf0x(s)− P0x(0) =
d∑

k=1

λ
(k)
x−ekf0,x−ek(s)−

(
d∑

k=1

λ(k)x

)
f0x(s) and

sfxB(s)− PxB(0) =
d∑

k=1

λ(k)x fx+ek,B(s)−

(
d∑

k=1

λ(k)x

)
fxB(s).

(14)
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From (14), we have

sf00(s)− P00(0) =
d∑

k=1

λ
(k)
−ekf0,−ek(s)−

(
d∑

k=1

λ
(k)
0

)
f00(s) and

sfBB(s)− PBB(0) =
d∑

k=1

λ
(k)
B fB+ek,B(s)−

(
d∑

k=1

λ
(k)
B

)
fBB(s).

(15)

Since P00(0) = PBB(0) = 1 and P0,−ek(t) = PB+ek,B(t) = 0, we deduce

f00(s) =
1

s+
∑d

j=1 λ
(j)
0

and

fBB(s) =
1

s+
∑d

j=1 λ
(j)
B

.

(16)

Moreover, P0x(0) = 0 for x 6= 0 and PxB(0) = 0 for x 6= B. Hence, from (14), we obtain

f0x(s) =
d∑

k=1

λ
(k)
x−ek

s+
∑d

j=1 λ
(j)
x

f0,x−ek(s) and

fxB(s) =
d∑

k=1

λ
(k)
x

s+
∑d

j=1 λ
(j)
x

fx+ek,B(s).

(17)

Thus, the proof is completed.

From Corollary 1, we can derive analytic formulae for all {f0x(s)}x≤B and {fxB(s)}x≤B.

For u ≤ v, let a path from u to v be an increasing sequence p = {pi}ni=1 such that

p1 = u, pn = v, pi ≤ pi+1, and pi+1 − pi ∈ {e1, e2, . . . , ed}.

Denote Puv and Ii to be the set of all paths from u to v and the index of the only non-zero
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coordinate of pi+1 − pi respectively. We have

f0x(s) =
1

s+
∑d

j=1 λ
(j)
0

( ∑
p∈P0x

n∏
i=2

λ
(Ii−1)
pi−1

s+
∑d

j=1 λ
(j)
pi

)

fxB(s) =
1

s+
∑d

j=1 λ
(j)
B

( ∑
p∈PxB

n−1∏
i=1

λ
(Ii)
pi

s+
∑d

j=1 λ
(j)
pi

)
.

(18)

However, evaluating {f0x(s)}x≤B and {fxB(s)}x≤B using (18) is infeasible because the num-

ber of paths from 0 to B is extremely large. For example, when all the birth rates are

positive, the number of paths is

d∏
i=1

(∑d
j=iBj

)
!

Bi!
(∑d

j=i+1Bj

)
!
. (19)

For example, when d = 2 and B1 = B2 = B, the number of paths (19) becomes (B+ 1)(B+

2) · · · (2B) > BB.

The sum-product structure in (18) suggests that dynamic programming may lead to

efficient computation of {f0x(s)}x≤B and {fxB(s)}x≤B that we achieve through the recursive

formulae (11). The computation cost of the recursion is only O(
∏d

k=1Bk) because we need

one loop for each coordinate. Algorithm 1 presents pseudo-code for computing {f0x(s)}x≤B

via dynamic programming. The algorithm for evaluating {fxB(s)}x≤B is similar.

Then, we approximate the inverse Laplace transform of fuv(s) by the method proposed

in Abate and Whitt (1992, equation (4.6)):

Puv(t) = L−1(fuv)(t) ≈ eM/2

2t
R
[
fuv

(
M

2t

)]
+
eM/2

t

∞∑
k=1

(−1)kR
[
fuv

(
M + 2kπi

2t

)]
, (20)

where R[z] is the real part of z. Here, the positive number M is used to control the dis-
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Algorithm 1 Dynamic programming algorithm for computing {f0x(s)}x≤B.

Require: s > 0, {λ(j)x }dj=1

1: f00 ← 1
2: for i1 = 0 to B1 do
3: for i2 = 0 to B2 do

4:
...

5: for id = 0 to Bd do
6: x← (i1, i2, . . . , id)

7: m← s+
∑d

j=1 λ
(j)
x

8: f0x ← f0x/m
9: for k = 1 to d do

10: if ik < Bk then
11: f0,x+ek ← f0,x+ek + λ

(k)
x × f0x

12: end if
13: end for
14: end for

15:
...

16: end for
17: end for

cretization error. Specifically, the discretization error is

∞∑
k=1

e−kMPuv((2k + 1)t),

which can be bounded by 1/(eM − 1). However, Abate and Whitt (1992) warn that we

should not choose M too large because it makes the infinite sum (20) harder to evaluate.

They suggest to aim for 10−7 to 10−8 accuracy on a machine with 14-digit precision. Fol-

low this instruction, we choose M = 20 throughout this paper. We opt to use a Levin

acceleration method (Levin, 1973) to improve the convergence rate of (20). Let L be the

number of iterations required from Levin acceleration to achieve a certain error bound for

the approximation (20), then we have the following corollary:

Corollary 2. The total complexity of our algorithm to compute {P0x(t)}x≤B and {PxB(t)}x≤B

is O(L
∏d

k=1Bk).

Note that when we aim for 10−8 accuracy, L usually ranges from 100 to 1000.
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3.2 Re-parameterization

Given an m-compartmental process Y(t) with d possible types of transition between com-

partments, computing the transition probability Pr{Y(t) = v | Y(0) = u} by solving the

compartmental Chapman-Kolmogorov equations is generally intractable because, unlike mul-

tivariate birth processes, individual compartment population Yi(t) may increase or decrease

over time. Here, we recast Y(t) into a d-dimensional birth process X(t) and aim to compute

the transition probabilities of Y(t) from the transition probabilities of X(t).

We denote i → j be a transition from compartment Ci to compartment Cj. For k =

1, 2, . . . , d, let ik → jk be the k-th type of transition. We construct X(t) by letting Xk(t) be

the number of k-type transition events happening from time 0 to t. Define an m× d matrix

A = [alk] as follows:

alk =


−1, if l = ik

1, if l = jk

0, otherwise,

(21)

then we have the following lemma:

Lemma 1. Y(t) = Y(0) + [AX(t)]T where T denotes the matrix transpose. Moreover, the

birth rates for X(t) are λ
(k)
x = µikjk(θ,Y(0) + [Ax]T ).

Define W = {w ∈ Nd : Aw = (u− v)T}. By Lemma 1, we deduce that

Pr{Y(t) = v | Y(0) = u} =
∑
w∈W

Pr{X(t) = w | X(0) = 0}. (22)

We want to employ Equation (22) for computing the transition probabilities of Y(t). How-

ever, evaluating the summation in (22) is infeasible when the set W has infinitely many

elements. To limit the cardinality of W , we proffer a small restriction on the class of com-

partmental models for which we can compute their transition probabilities in polynomial

complexity.
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Assumption 2 (Finite loops). Each individual visits each compartment at most U times

between two consecutive observations.

Assumption 2 is rarely restrictive for many compartmental models for infectious diseases.

Infected individuals usually develop at least partial immunity to re-inflection that wanes at

a rate commensurate with or slower than the observation process. Further, it is notable that

if a compartmental model can be represented by a directed acyclic graph, then an individual

never returns to a compartment after leaving. In this case, this assumption is satisfied with

U = 1.

Theorem 2. For a compartmental model satisfying Assumption 2 (Finite loops), the com-

plexity for computing its transition probabilities via Equation (22) is O(LUdNd), where N

is the total population of all compartments.

Proof. By Assumption 2, X ≤ UN where N is a d-dimensional vector (N1, N2, . . . , Nd).

Hence λ
(k)
x = 0 when x ≥ UN. By Theorem 1 and Corollary 2, we can compute the

transition probabilities (Pr{X(t) = x | X(0) = 0})x≤UN at a cost of O(LUdNd). Then,

we can compute the transition probabilities of Y through Equation (22) at the same cost.

Therefore, the total complexity is O(LUdNd).

4 Compartmental models of infectious diseases

We apply our recursion method to three prevailing compartmental models of infectious dis-

eases including the SIR, SEIR and SIRS models.

4.1 Susceptible-infectious-removed model

Proposed by McKendrick (1926), the stochastic SIR model is probably the most famous

compartmental model in epidemiology. This model divides the population into three different

compartments: susceptible (S), infectious (I), and removed (R), and allows two possible
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transitions: infection (S → I) with rate βSI and removal (I → R) with rate γI. Here,

β > 0 is the infection rate and γ > 0 is the removal rate of the disease. Figure 2 visualizes

the directed graph representing this model.

S I R
βSI γI

Figure 2: A directed graph representation of the SIR model.

Because the total population S(t) + I(t) + R(t) is constant, Ho et al. (2017) consider

{S(t), I(t)} as a death/birth-death process and propose an algorithm to compute its tran-

sition probabilities using a continued fraction representation. The computational cost of

this algorithm for evaluating the full transition probability matrix is O(LN3). Our present

method re-parameterizes the SIR model using number of infection events NSI(t) and re-

moval events NIR(t). Note that there is a one-to-one correspondence between {S(t), I(t)}

and {NSI(t), NIR(t)}:

S(t)

I(t)

 =

s0
i0

+

−1 0

1 −1


NSI(t)

NIR(t)

 , (23)

where (s0, i0) is the realized value of {S(0), I(0)}. It follows that {NSI(t), NIR(t)} is a

bivariate birth process with birth rates β(s0−NSI)
+(i0+NSI−NIR)+ and γ(i0+NSI−NIR)+

where a+ = max{a, 0}. Since the directed graph representing the SIR model is acyclic,

Assumption 2 is satisfied with U = 1. By Theorem 2, we have the following Corollary:

Corollary 3. The complexity for evaluating the full transition probability matrix of the SIR

model using our method is O(LN2).

We remark that our present method is an order of magnitude in N faster than that of Ho

et al. (2017) for computing the entire transition probability matrix. In practice, however,

we often only need to compute the transition probabilities between observations. In this
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case, the computational cost of our present method decreases further to O(L∆S∆R) where

∆S and ∆R are the changes in susceptible and removed populations between observations.

In many situations, ∆S and ∆R are significantly smaller than the total population N , for

example, when tracing the dynamics of a rare disease across an entire nation. We implement

our method in the R function SIR prob (MultiBD package) https://github.com/msuchard/

MultiBD.
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Figure 3: CPU time ratios of the continued fraction method (dbd prob) to the proposed
recursion method (SIR prob) for computing the full transition probabilities matrix of the
SIR model with γ = 2.73 and β = 0.0178. We set I(0) = 1 and S(0) = 100, 150, 200.

To illustrate the computation gain of our recursion method compared to the continued

fraction representation of Ho et al. (2017), we evaluate the full forward transition probability

matrix of the SIR model with γ = 2.73 and β = 0.0178 (estimated values from the Eyam

plague data by Ho et al., 2017) using both methods. The death/birth-death method in

Ho et al. (2017) is implemented in the R function dbd prob (MultiBD package). We set

the starting infectious population i0 to be 1 and consider 3 different starting susceptible
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populations s0 = 100, 150, 200. For each scenario, we repeat the evaluation a hundred times

and compare the computing times and the results from both methods. Figure 3 summarizes

this comparison, and we see that SIR prob is more than 150 times faster than dbd prob.

On the other hand, the two methods return similar transition probability matrices whose

L1 distance is less than 10−12. Here, the L1 distance between two matrices A = (aij) and

B = (bij) is
∑

ij |aij − bij|.

4.2 Susceptible-exposed-infectious-removed model

The SEIR model extends the SIR model by adding an exposed (E) compartment. We

visualize the SEIR model by the directed acyclic graph in Figure 4.

S E I R
βSI κE γI

Figure 4: A directed graph representation of the SEIR model.

Let {NSE(t), NEI(t), NIR(t)} be the number of transition events S → E, E → I, and

I → R respectively. Then, we have an one-to-one correspondence with {S(t), E(t), I(t)} as

follows: 
S(t)

E(t)

I(t)

 =


s0

e0

i0

+


−1 0 0

1 −1 0

0 1 −1



NSE(t)

NEI(t)

NIR(t)

 , (24)

where (s0, e0, i0) is the realized value of {S(0), E(0), I(0)}. Again, {NSE, NEI , NIR} is a

trivariate birth process with birth rates β(s0−NSE)+(i0+NEI−NIR)+, κ(e0+NSE−NEI)
+,

and γ(i0 +NEI −NIR)+. By Theorem 2, we have:

Corollary 4. The complexity for evaluating the full transition probability matrix of the SEIR

model using our method is O(LN3).
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4.3 Susceptible-infectious-removed-susceptible model

For some diseases, removed persons can lose immunity, making possible transition from the

“recovered” (R) to “susceptible” (S) compartments. The SIRS model takes into account

these scenarios by allowing the transition R → S. Figure 5 visualizes the directed graph

representing the SIRS model.

S I R

βSI γI

νR

Figure 5: A directed graph representation of the SIRS model.

Denote {NSI(t), NIR(t), NRS(t)} as the number of transition events S → I, I → R, and

R→ S respectively. We have


S(t)

I(t)

R(t)

 =


s0

i0

r0

+


−1 0 1

1 −1 0

0 1 −1



NSI(t)

NIR(t)

NRS(t)

 , (25)

where (s0, i0, r0) is the realized value of {S(0), I(0), R(0)}. In this situation, {NSI , NIR, NRS}

is a trivariate birth process with birth rates β(s0 + NRS − NSI)
+(i0 + NSI − nIR)+, γ(i0 +

nSI − nIR)+, and ν(r0 + nIR − nRS)+. In practice, ν is much smaller than β × I(t) and

γ. Hence, we can assume that during (0, t) each individual can only be infected at most U

times. By Theorem 2, we arrive at

Corollary 5. The complexity for evaluating the full transition probability matrix of the SIRS

model using our method is O(LU3N3).
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4.4 Comparisons

We use prevalence counts from the plague in Eyam from June 18th to October 20th, 1666

(Raggett, 1982) to compare our recursion method with the SMC algorithm implemented

in the R function pfilter (pomp package King et al., 2016) and the matrix exponentiation

method implemented in the state-of-the-art software Expokit (Sidje, 1998). Plague is a

deadly infectious disease caused by the bacterium Yersinia pestis. It is mainly spread by

infected fleas from small animals, particularly rodents, and has killed 100s of millions of

people through human history. In Eyam, only 83 of the original 350 villagers survived at the

end of the plague. The data contain the susceptible and infectious populations {(sm, im)}nm=1

in Eyam at time {tm}nm=1. The log likelihood function is

log l(β, γ|{(sm, im)}nm=1) =
n−1∑
m=1

log Pr

 S(tm+1) = sm+1 S(tm) = sm

I(tm+1) = im+1 I(tm) = im

. (26)

We compute the log likelihood (26) under the stochastic SIR model with β = 0.0178 and

γ = 2.73 (estimated values from the Eyam plague data by Ho et al., 2017).

4.4.1 Comparing to sequential Monte Carlo

The likelihood calculation is repeated a thousand times and the number of attempted simu-

lant particles for each estimation for pfilter is set as 1000, 2000, 3000, and 4000. For these

data and parameter estimates, pfilter fails to achieve a 100% success rate for approximat-

ing the likelihood. The success rate is low with 1000 particles (only 20.1%), and increases

as the number of particles increases (see Table 1). Filtering failure occurs when all particles

become incompatible with the data counts; this can happen frequently when the counts are

observed without error. When filtering succeeds, the approximation is fairly similar to our

method, and the standard deviation of these approximations, while sizable, decreases from

1.28 to 0.97 as the number of particles increases. When filtering fails, the approximation is
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off target by a large margin. The computation time of pfilter is about 10 times slower

compared to our algorithm for every 1000 particles (Table 1). This comparison shows that

our recursion method is faster than the SMC method. Moreover, our method is stable while

approximations using SMC are very unstable due to a high failure rate. It is worth mention-

ing that SMC is known to be an inefficient algorithm for computing the likelihood when the

observations have no error.

Number of particles 1000 2000 3000 4000

Success rate 20.1% 53.2% 71.1% 78.8%
Average time ratio 10.14 20.11 30.09 40.1
Standard deviation 1.28 1.11 1.06 0.97

Table 1: Success rates of sequential Monte Carlo method (pfilter) and its average com-
puting time ratios compared to our algorithm.

4.4.2 Comparing to matrix exponentiation method

To evaluate the log likelihood (26) via matrix exponentiation, we use the function expv

in expoRkit, an R-interface to the Fortran package Expokit, to compute the transition

probabilities. Again, the likelihood calculation is repeated a thousand times. Our method

and matrix exponentiation method produce similar results: the difference is less than 1.53×

10−7. In term of speed, the average CPU computation time ratio of matrix exponentiation

method to our method is 15 and the standard deviation is 1. Therefore, our method is

more efficient in computing the likelihood function of the stochastic SIR model than matrix

exponentiation method.

5 Further statistical applications

The ability to efficiently compute the likelihood function makes it straightforward to use

maximum likelihood estimators and Metropolis-Hasting algorithms for Bayesian inference.

In this section, we provide two additional extensions that the recursion opens up to us that
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were unavailable with previous methods. The first application is inference via HMC, which

requires evaluating the derivative of the posterior distribution with respect to the unknown

model parameters. The second application is accessing model adequacy for the classic SIR

model using Bayes factors.

5.1 Inference via Hamiltonian Monte Carlo

HMC is a MCMC method using Hamiltonian dynamics to produce proposals for sampling

from a continuous distribution on Rd. Hamiltonian dynamics contain “location” variables q,

that are the parameters of interest, and nuisance “momentum” variables p (see Neal et al.,

2011, for an excellent review). In a Bayesian setting, we may treat the negative log of the

posterior distribution as the potential energy function:

U(q) = − log [l(q|D)π(q)] , (27)

where l(q|D) is the likelihood given data D and π(q) is the prior distribution. On the other

hand, researchers often place a multivariate Normal distribution N (0,Σ) on p and let p be

independent of q. Typically, Σ is the identity matrix and the corresponding kinetic energy

function is

K(p) =
d∑
i=1

p2i
2
.

The Hamiltonian is defined as H(q, p) = U(q) +K(p), and the Hamiltonian dynamics follow

the following system of partial differential equations:

dqi
dt

=
∂H

∂pi
= pi

dpi
dt

= −∂H
∂qi

= −∂U
∂qi

.

(28)

The HMC algorithm consists two steps. In the first step, a proposal for p is sampled from

N (0,Σ). In the second step, (qt, pt) is obtained from the Hamiltonian dynamics (28) starting
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at the current value (qc, pc). In practice, we may use a leapfrog integration scheme to

approximate the solution of (28). The proposal (q∗, p∗) is set as (qt,−pt) and is accepted

with probability

min
[
1, eH(qc,pc)−H(q∗,p∗)

]
. (29)

The ability to efficiently compute the derivatives of the transition probabilities with

respect to q opens the possibility of using HMC for studying infectious disease epidemics.

To illustrate, we employ HMC to analyze the 17th century plague in Eyam. Denote

Pm = Pr

 S(tm+1) = sm+1 S(tm) = sm

I(tm+1) = im+1 I(tm) = im

 . (30)

Then, the log likelihood function (26) can be written as

log l(β, γ|{(sm, im)}nm=1) =
n−1∑
m=1

logPm. (31)

To satisfy positivity constraints, we opt to use (u, v) := (log β, log γ) as our parameters

instead of (β, γ). To apply HMC, we derive the derivatives of log l with respect to u and v:

∂ log l

∂u
=
∂ log l

∂β

∂β

∂u
=

n−1∑
m=1

P
(β)
m

Pm
β

∂ log l

∂v
=
∂ log l

∂γ

∂γ

∂v
=

n−1∑
m=1

P
(γ)
m

Pm
γ.

(32)

We assume a priori that u ∼ N (0, 1002) and v ∼ N (0, 1002). We explore the posterior

distribution of (u, v) using HMC with 10000 iterations and discard the first 2000 iterations.

Figure 6 visualizes the posterior density of (u, v). This result is similar to the density

estimation using a Metropolis-Hasting algorithm performed in Ho et al. (2017), but at a

significant time cost savings. The average effective sample size per unit-time of HMC is

60-fold larger, mostly owing to substantial computational order reduction in the likelihood
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evaluation under our multivariate-birth process formulation. The posterior means of β and γ

are 0.0197 and 3.22. The 95% Bayesian credible intervals are (0.0164, 0.0234) and (2.69, 3.83)

respectively.
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Figure 6: Posterior density of infection β and removal γ rates of the Eyam plague.

5.2 Adequacy of the classic SIR model

Although the classic SIR model has been used extensively in practice, it makes a strong as-

sumption that each infected person can independently transmit the disease to one susceptible

person with rate β. ONeill and Wen (2012) argue that this assumption may not be realistic

in settings where a saturation effect occurs; that is, a newly infected person contributes less

to the overall infection pressure. Therefore, the authors propose to consider a general SIR

model with infection rate βSIω. This model is a special case of a more general SIR model

where the infection rate is βSαIω and the removal rate is γIη (Severo, 1969).

Our computational method does not require any special structure for the infection and

removal rates, thus can also be applied to evaluate the likelihood function under these general

SIR models. In particular, {NSI(t), NIR(t)} in the general SIR model from Severo (1969) is
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S I R
βSαIω γIη

Figure 7: A directed graph representation of the general SIR model (Severo, 1969).

a bivariate birth process with birth rates β[(s0 −NSI)
+]α[(i0 + NSI −NIR)+]ω and removal

rates γ[(i0 +NSI−NIR)+]η. So, we can address some questions about model adequacy of the

classic SIR model. To illustrate, we use Bayes factors to assess if the classic SIR model is

appropriate for the Eyam plague dynamics (Raggett, 1982). In particular, we test between

the general SIR model against its nested sub-models. Since the tests are between nested

models, we apply the Savage-Dickey density ratio to evaluate the Bayes factors (Verdinelli

and Wasserman, 1995). To be specific, if model M0 with parameter (θ = 0, φ) is nested

within model M1 with parameter (θ, φ) and the prior p0(φ) under M0 is proportional to

the prior p1(θ = 0, φ) under M1, then the Bayes factor B01 in favor of M0 over M1 can be

estimated via the marginal posterior distribution under M1 as follows

B01 =
p(θ = 0|Y,M1)

p(θ = 0|M1)
(33)

where p(θ = 0|Y,M1) and p(θ = 0|M1) are marginal posterior and prior densities of θ

evaluated at 0 under modelM1. Here, we posit independent log-normal priors lnN (0, 1002)

for each parameter. Therefore, the condition for applying the Savage-Dickey density ratio

is satisfied. To estimate the posterior distribution under the general SIR model, we use our

MCMC tools. The marginal posterior densities are estimated using kernel density estimation

implemented in the R package ks (Duong et al., 2007) and these estimates are then used to

compute the Bayes factors via the Savage-Dickey density ratio. Table 5.2 lists these Bayes

factors, and we can see that they strongly support the classic SIR model over the general

SIR model. Although Savage-Dickey density ratio is not the best approximation method for

Bayes factors, we can safely ignore its drawback because the evidence supporting the classic

SIR model is overwhelming.
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Model M0 log10B01

α = ω = η = 1 6.9
α = ω = 1 4.4
ω = η = 1 4.7
α = η = 1 4.6
α = 1 2.2
ω = 1 2.2
η = 1 2.6

Table 2: Bayes factors B01 in favor of nested models M0 over the general SIR model M1

estimated using the Savage-Dickey density ratio.

6 Ebola outbreak in Guinea

Ebola is a contagious viral hemorrhagic fever caused by Zaire ebolavirus. The fatality rate of

Ebola is very high, up to 70.8% (WHO Ebola Response Team, 2014). The 2014-2015 Ebola

outbreak in West Africa is the largest Ebola epidemic in history. In this section, we focus

on the outbreak in Guinea from January 2014 to May 2015 (73 weeks). During this period,

the World Health Organization (WHO) has convened 5 meetings of the IHR Emergency

Committee regarding the Ebola outbreak in West Africa. The first three meetings happened

in three consecutive month August, September and October 2014. During the fourth meeting

in January 2015, World Health Organization (2015) noted that the number of Ebola cases

in Guinea had decreased since the third meeting. WHO Ebola Response Team (2015) also

confirmed that the Ebola outbreak has slowed down since October 2014.

We study this change in the trajectory of the outbreak using the number of reported Ebola

cases reported weekly in 19 prefectures across Guinea. To be specific, we are interested in

finding evidence that the outbreak in Guinea became less severe after the third WHO meeting

and in what regions this happened. These 19 prefectures are the only places in Guinea where

Ebola cases were reported both before and after the third WHO meeting.

We employ a hierarchical and time-inhomogeneous, but still Markovian, SIR model to an-

alyze these data. We re-parameterize the SIR model by replacing the infection rate β with the

basic reproduction number R0 := βN/γ. Basic reproduction number is an important concept
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in epidemiology and can be interpreted as the average number of secondary infections caused

by a new infectious individual in a susceptible population. When R0 < 1 the disease will die

out, and when R0 > 1 the disease will be able to spread in the population. Researchers often

use the value of R0 to measure the severity of an epidemic. To simplify the analysis, we as-

sume that the population of each prefecture is closed. In other words, we näıvely assume that

the movement between prefectures and the movement in and out of Guinea are negligible.

This assumption is violated if large number of healthy persons or small number of infected

persons enter (or leave) a prefecture. We obtain the total populations of these prefectures

from the 2014 census https://en.wikipedia.org/wiki/Prefectures_of_Guinea.

We use a “week” as the unit for time in this analysis. Letting t0 be the week when

the third WHO meeting happened, our model proceeds as follows: the Ebola cases of each

prefecture follow a conditionally independent SIR process with parameters R0p(t) and γp for

prefecture p = 1, . . . , 19. Further, R0p(t) is a time-inhomogeneous function that satisfies

logR0p(t) = log r0p + 1{t≥t0} log δp, (34)

where r0p quantifies the basic reproduction number before t0 and δp is the scale factor by

which the basic reproduction number changes after t0 in prefecture p. Moreover, we assume

a simple hierarchical prior distribution

(log r0p, log δp, log γp)
t ∼ N (M, diag(Σ)) , (35)

where M = (µr, µδ, µγ) is the grand-mean on the log-scale across prefectures and Σ =

(σ2
r , σ

2
δ , σ

2
γ) is the variance, with relatively uninformative conjugate hyperpriors

µφ ∼ N
(
0, 102

)
, and σ2

φ ∼ InverseGamma
(
10−3, 10−3

)
, φ ∈ {r, δ, γ}. (36)

Of primary scientific interest, δp < 1 corresponds to a reduction in the basic reproduction
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number in prefecture p, suggesting that the Ebola outbreak slowed down in that prefecture.

However, an important limitation of the data arises, in that field epidemiologists were only

able to record the number of new cases between time points. The number of removals is un-

known. To overcome this limitation, we use a Metropolis-within-Gibbs scheme to sample the

posterior distribution of the rate parameters and the number of removals (see Appendix B for

more details). Because we can compute the joint transition probability matrix between time

points, we can draw directly from the full conditional distribution of the removal number,

leading to substantially more efficient numerical integration than previous data augmenta-

tion approaches that require all sufficient statistics of the completely observed likelihood.

Further, we can speed up this sampling scheme by updating the unknown parameters in

each prefecture in parallel. The result is summarized in Figure 8, where we plot estimates

of the basic reproduction number for each prefecture on the map of Guinea. Yellow circles

represent r0p and blue circles represent r0p × δp when the posterior probability that δp < 1

is greater than 97.5% Note that there is no posterior evidence supporting δp > 1 for any p

because the posterior probability that δp > 1 is less than 0.5 for all p. The radius of each

circle reports a posterior mean estimate. We present the posterior means and 95% Bayesian

credible interval of M and of Σ in Table 3.

Posterior 95% Bayesian
Parameter mean credible interval

µr 7.47 ×10−2 (-0.425, 15.1 ) ×10−2

µδ -1.25 ×10−1 ( -2.36, -0.0844) ×10−1

µγ -6.76 ×10−1 ( -10.4, -3.19 ) ×10−1

σ2
r 4.67 ×10−3 ( 0.399, 24.1 ) ×10−3

σ2
δ 2.24 ×10−2 ( 0.216, 8.18 ) ×10−2

σ2
γ 5.98 ×10−1 ( 2.84, 12.0 ) ×10−1

Table 3: Posterior mean and 95% Bayesian credible interval of hierarchical parameters M
and Σ.

We note that a posteriori σ2
γ is larger than σ2

r or σ2
δ , with probability approaching 1.

Therefore, the removal rate γ varies across the country more than the reproduction number
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r0p
r0p × δp when δp 6= 1

Figure 8: Basic reproduction numbers for 19 prefectures in Guinea before and after the third
WHO meeting.

R0. The posterior of (µδ, σ
2
δ ) provides evidence for the slowing down of the Ebola outbreak

in Guinea after the third WHO meeting. However, Figure 8 suggests that the epidemic only

slowed down in the Southeast region of Guinea while the epidemic in other regions seems

to stay the same. This finding gives a clearer picture of the change in the trajectory of the

Ebola epidemic in Guinea. It raises a very practical question: what made the outbreak in

the Southeast region of Guinea to slow down? Answering this question could help in efforts

to find a more effective method for controlling Ebola epidemic.

7 Discussion

In this paper, we develop an algorithm to compute the transition probabilities of stochastic

compartmental models for inference from surveillance data. We introduce a new representa-

tion for compartmental processes using multivariate birth processes and, through this repre-

sentation, avoid the need for continued fraction evaluation to solve the Chapman-Kolmogorov

equations. With quadratic complexity in number of transitions between observations, our

approach emerges as computationally more efficient than previous methods for the ubiqui-
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tous SIR model and applicable to a larger class of compartmental models, such as the SEIR

and SIRS models. Further performance gains through embarrassingly parallel evaluation of

the series in Equation (20) remain open.

Since the formulation of the SIR model over 90 years ago, many have viewed its transition

probabilities as beyond reach. We provide some brief intuition on why the Laplace transform

of the transition probabilities carries mere quadratic complexity O(∆S∆R). Viewed as a

multivariate birth process that conveniently only increases, the transition probabilities we

seek are related to the waiting time until the ∆S and ∆R births have occurred. Inter-birth

times are independent exponential random variables with potentially unique rates, and we

can arrive at the distribution of the total waiting time through taking a convolution of

∆S + ∆R of these exponentials. However, the rates depend on the order of births and there

are (∆S + ∆R)!/∆S!∆R! possible orderings. Putting these pieces together, the transition

probabilities are then exponential sums of multiple convolutions. We recall several properties

of Laplace transformations. First, they are linear operators, so sums in probability-space

remain sums in the transformed space. Second, convolutions metamorphose into simple

multiplication in the transformed space. These properties leave us with a sum-product

expression, suggesting a distribution of the sums within the products. To gain insight into

this dynamic programming, consider the ∆S×∆R lattice graph. Each lattice path from (0, 0)

to (∆S,∆R) represents one possible ordering of the birth events. If we want the transformed

probability of ending at (∆S,∆R), there are only two possible one-shorter paths that could

have gotten us there, specifically (0, 0) to (∆S−1,∆R) or (∆S,∆R−1). So, the resulting

transformed probability becomes the sum of the two shorter-path transformed probabilities,

each multiplied by the Laplace transform of an exponential random variable that has a

simple, closed-form expression. Consequentially, in filling out the whole lattice graph, we

need to visit each point once in increasing order and there are only ∆S∆R points.

Because differentiation is also a linear operator, our recursion method remains pertinent

for computing the derivatives of the transition probabilities with respect to the unknown pa-
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rameters of the compartmental model. This feature makes HMC-based Bayesian inference

feasible. As the number of unknown parameters in the compartmental models grows, we

suspect HMC to generally outperform Metropolis-Hastings algorithms using standard tran-

sition kernels. Equally noteworthy, our algorithm does not require any specific structure in

the birth rates λ
(·)
x of the multivariate birth processes. Therefore, we can apply our method

to other general stochastic epidemic models such as one proposed by Severo (1969). This

opens the possibility to access the model adequacy of traditional epidemic models. It is

worth noticing that our method only works for time-homogeneous rates between observa-

tions. When the rates depend on time, the Chapman-Kolmogorov equations in the Laplace

domain do not have analytic formulae making the current tool inapplicable. Therefore,

an important subject for future direction of this work is extending to time-inhomogeneous

processes.

Finally, we examine the 2014-2015 Ebola outbreak in Guinea using a marginalized, hier-

archical and time-inhomogeneous Markovian SIR model. By applying our recursion method,

we can effectively explore the posterior distribution of the basic reproductive number and re-

moval rate across the country, while simultaneously integrating out the unobserved removed

population sizes using a Metropolis-within-Gibbs scheme. This example highlights the flex-

ibility of a Bayesian framework for direct likelihood-based inference for a compartmental

model when one or more of the compartments are missing or immeasurable, as is common

in infectious disease surveillance. Our results provide evidence for the slowing down of this

epidemic in the Southeast region of Guinea. Several important extensions are immediately

obvious. For example, we assume no error in the reported Ebola case counts, but a sim-

ple modification similar to that we accomplished for missing compartments can relax this

assumption.

33



Acknowledgments

This work was partially supported by the National Institutes of Health (R01 HG006139,

R01 AI107034, KL2 TR000140, P30MH062294, and DP2 OD022614-01) and the National

Science Foundation (IIS 1251151 and DMS 1264153).

A Derivatives of the transition probabilities of SIR

model

We propose an efficient method to evaluate the derivatives of the transition probabilities

of the SIR model. Again, we use the bivariate birth presentation for this model. Denote

X = NSI and Y = NIR, and consider the forward transition probability Pxy(t) = Pr{X(t) =

x, Y (t) = y | X(0) = 0, Y (0) = 0}. The forward Chapman-Kolmogorov equations are:

dPxy(t)

dt
=β(s0 − x+ 1)+(i0 + x− 1− y)+Px−1,y(t)

+ γ(i0 + x− y + 1)+Px,y−1(t)

− [β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+]Pxy(t).

(37)

Let P
(β)
xy be the derivative of Pxy with respect to β. From (37), we have

dP
(β)
xy (t)

dt
=β(s0 − x+ 1)+(i0 + x− 1− y)+P

(β)
x−1,y(t)

+ γ(i0 + x− y + 1)+P
(β)
x,y−1(t)

− [β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+]P (β)
xy (t)

+ (s0 − x+ 1)+(i0 + x− 1− y)+Px−1,y(t)

− (s0 − x)+(i0 + x− y)+Pxy(t)

(38)
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Denote fxy and f
(β)
xy be the Laplace transform of Pxy and P

(β)
xy respectively. Taking Laplace

transform to both sides of (38), we have

sf (β)
xy (s)− P (β)

xy (0) =β(s0 − x+ 1)+(i0 + x− 1− y)+f
(β)
x−1,y(s)

+ γ(i0 + x− y + 1)+f
(β)
x,y−1(s)

− [β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+]f (β)
xy (s)

+ (s0 − x+ 1)+(i0 + x− 1− y)+fx−1,y(s)

− (s0 − x)+(i0 + x− y)+fxy(s).

(39)

Since Pxy(0) = 1{x=0,y=0} for all β, we deduce that P
(β)
xy (0) = 0. Therefore, we can compute

f
(β)
xy using the following recursion

f
(β)
00 (s) = − s0i0f00(s)

s+ βs0i0 + γi0

f (β)
xy (s) =

β(s0 − x+ 1)+(i0 + x− 1− y)+f
(β)
x−1,y(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

+
γ(i0 + x− y + 1)+f

(β)
x,y−1(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

+
(s0 − x+ 1)+(i0 + x− 1− y)+fx−1,y(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

− (s0 − x)+(i0 + x− y)+fxy(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+
.

(40)
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Then, we can compute P
(β)
xy by approximating the inverse Laplace transform using (20).

Similarly, we can derive the recursive formulae for f
(γ)
xy :

f
(γ)
00 (s) = − i0f00(s)

s+ βs0i0 + γi0

f (β)
xy (s) =

β(s0 − x+ 1)+(i0 + x− 1− y)+f
(β)
x−1,y(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

+
γ(i0 + x− y + 1)+f

(β)
x,y−1(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

+
(i0 + x− y + 1)+fx,y−1(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+

− (i0 + x− y)+fxy(s)

s+ β(s0 − x)+(i0 + x− y)+ + γ(i0 + x− y)+
,

(41)

and evaluate P
(γ)
xy using (20).

B Metropolis-within-Gibbs algorithm for inference of

Ebola dynamics in West Africa

Let t(p) = (t
(p)
1 , t

(p)
2 , . . . , t

(p)
mp) be the times when the counts of Ebola cases in prefecture p are

reported. We define N
(p)
SI and N

(p)
IR be the total numbers of new infection and removal events

at t
(p)
−1 respectively. Here, t

(p)
−j denotes the vector t(p) without the jth coordinate. Notice that

we only observe the total of Ebola cases at t(p), thus we only know N
(p)
SI . So, our unknown

parameters are {N(p)
IR, r0p, δp, γp} for all p and (M,Σ). We update our parameters using a

Metropolis-within-Gibbs algorithm as follows:

1. For every p = 1, . . . , 19 in parallel,

(i) For every j = 2, 3, . . . ,mp, we can compute P(N
(p)
IR(tj) = n |N(p)

SI ,N
(p)
IR(t

(p)
−j), r0p, δp, γp)

using the forward and backward transition probabilities of the SIR model. There-

fore, we sample from N
(p)
IR(tj) | N

(p)
SI ,N

(p)
IR(t

(p)
−j), r0p, δp, γp directly to update the

value of N
(p)
IR(tj).
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(ii) Then, we update r0p, δp, γp | N
(p)
SI ,N

(p)
IR on the log-scale using a random-walk

Metropolis-Hasting algorithm with Gaussian proposals or HMC. This step is

straight forward because we can evaluate the density l(r0p, δp, γp | N(p)
SI ,N

(p)
IR) ef-

ficiently.

2. Finally, since we choose conjugate priors for the hierarchical parameters, we Gibbs

sample M and Σ .

Note that we update N
(p)
IR(tj) sequentially instead of sampling from the joint distribution

of N
(p)
IR because sampling sequentially only requires transition probability matrices between

counts of Ebola cases, which is much smaller compared to the full transition probability

matrix of size N2 × N2, where N is the total population, required for sampling from the

joint distribution.
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