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Epidemics of infectious diseases, such as the one caused by the rapid spread of the coronavirus disease
2019 (COVID-19), have tested the world’s more advanced health systems and have caused an enormous
societal and economic damage. The mechanism of contagion is well understood. As people move around,
over time, they regularly engage in social interactions. The spatiotemporal network representing these
interactions constitutes the backbone on which an epidemic spreads, causing outbreaks. At the same
time, advanced technological responses have claimed some success in controlling the epidemic based
on digital contact tracing technologies. Motivated by these observations, we design, develop and evaluate
a stochastic agent-based SEZR model of epidemic spreading in spatiotemporal networks informed by
mobility data of individuals (trajectories). The model focuses on individual variation in mobility patterns
that affects the degree of exposure to the disease. Understanding the role that individual nodes play in
the process of disease spreading through network effects is fundamental as it allows to (i) assess the risk
of infection of individuals, (ii) assess the size of a disease outbreak due to specific individuals, and (iii) assess
targeted intervention strategies that aim to control the epidemic spreading. We perform a comprehensive
analysis of the model employing COVID-19 as a use case. The results indicate that simple individual-
based intervention strategies that exhibit significant network effects can effectively control the spread of
an epidemic. We have also demonstrated that targeted interventions can outperform generic intervention
strategies. Overall, our work provides an evidence-based data-driven model to support decision making and
inform public policy regarding intervention strategies for containing or mitigating the epidemic spread.
© 2021 Elsevier Inc. All rights reserved.

Keywords:

Epidemic modeling
Trajectory network
Individual variability
Risk of infection
SEIR model
COVID-19

1. Introduction cies imposed by governing authorities and jurisdictions that aim

to contain or slow down the spread of the virus to levels that

From the Plague of Athens (430 to 426 BC) [1,2] to the Span-
ish Flu (1918) [3,4], pandemics have had a significant impact on
human society [5]. In the last 20 years alone, the world has seen
many infectious disease outbreaks. Notorious examples include the
pandemics caused by the Severe Acute Respiratory Syndrome coro-
navirus (SARS-CoV) [6], the influenza A virus subtype HIN1 (swine
flu) [7], the Middle East Respiratory Syndrome coronavirus (MERS-
CoV) [8], the Ebola virus (EVD) [9], the Zika virus (ZIKV) [10],
and most recently the Severe Acute Respiratory Syndrome coro-
navirus 2 (SARS-CoV-2) [11]. These pandemics have tested the
world’s more advanced health systems and have caused an enor-
mous societal and economic damage. Conventional methods to
address the rapid spread of an infectious disease include physi-
cal distancing, confinement measures and human-based contact tracing
of infected individuals. These describe some of the common poli-
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can be managed by healthcare units and socio-political institutions.
While these easily understood policies can be effective in control-
ling the spread of the disease and saving lives [12,13], they have
well-known drawbacks: (i) they are imposing extreme restrictions
or limitations on individuals’ activities or freedom, leading to a
slowdown of social and economic activities of the community and
to socioeconomic side-effects for the individuals themselves; (ii)
they depend on human-based contact tracing of infected individu-
als that are cumbersome, expensive, slow and inaccurate; and (iii)
they do not provide the means of a controlled transition to an im-
mune community through well-defined intervention strategies that
can easily translate to health policy and potentially ameliorate the
socioeconomic impact.

More recently, advanced technological responses to the prob-
lem based on digital contact tracing have claimed some success
in controlling the epidemic [14]. Digital contact tracing or proxim-
ity tracing, enabled by GPS-enabled devices, mobile apps [15] and
beyond [16], represents the ability to track and reconstruct the
close contacts that an individual had with other people within a
time period. The way that proximity tracing can have an impact in
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containing or slowing down the disease spread is straightforward.
Individuals that are known to be infected, can inform (via cloud
services) recent close contacts that have been digitally traced, who
can then take precautions and avoid further contacts with other
people by isolating themselves or seeking expert advice. The pro-
cess can involve third parties, such as governing authorities and/or
health experts responsible for the containment of the disease.

The focus of the current research is on utilization of GPS-
enabled digital contact traces of individuals (i.e., mobility data or
trajectories) to inform a more comprehensive analysis and mod-
eling of disease spreading through methods of graph mining [17]
and trajectory data mining [18]. In particular, we present a data-
driven model for the spread of the disease in a community that
take into account the mobility patterns of individuals. As peo-
ple move in cities, they engage in different types of interaction
with other people, resulting in different mobility patterns. As such,
the relative risk of them being infected or infecting others can be
substantially different. We systematically study the effect of the in-
dividual variability of mobility behavior to the risk of infection of
an individual. This observation can have significant consequences
to a model’s accuracy of how the disease propagates in a commu-
nity, as well as to the intervention strategies that can be designed
to control the epidemic.

Contributions. Motivated by the feasibility of digital contact trac-
ing technologies [19] and the inherent limitations of traditional
epidemiological models (see Section 2), this paper presents data-
driven models of infectious disease spreading that incorporate in-
dividual variability due to individuals’ mobility patterns. Our study
aims to clarify how differences in mobility patterns can inform in-
fectious epidemic dynamics and determine the impact of various
intervention strategies. In summary, the major contributions of this
work are as follows:

e we present novel data-driven models for assessment of the
risk of infection of an individual based on mobility patterns
and the amount of time they spend in proximity with others
(“individual risk assessment”);

e we present a stochastic agent-based Susceptible-Exposed-
Infected-Removed (SEIR) network model for infectious disease
spreading in trajectory networks (“community risk assess-
ment”);

e we design and evaluate novel individual-based intervention
strategies for containing (or mitigating to an acceptance rate)
the spread of an infectious disease in trajectory networks
(“containment intervention strategies”);

e we design and evaluate novel individual-based immunization
strategies for providing a controlled and safe transition to an
immune community (“targeted immunization”);

e we present a large-scale case study using model parameter
values that resemble the recent COVID-19 outbreak and re-
alistic synthetic mobility data in a real urban environment
(large University campus and surroundings) that allows for
many human-human interactions; the model and algorithms
presented generalize to other similar infectious diseases;

e we provide source code and data to encourage reproducibility
of results.

The remainder of this paper is organized as follows: Section 2
provides background information, introduces notation and provides
definitions of the technical problems of interest in this paper. Sec-
tion 3 presents our epidemic model, algorithmic details of epi-
demic spreading in trajectory networks and descriptions of disease
containment intervention strategies. Section 4 presents an experi-
mental evaluation of the different models and methods for varying
settings. We review the related work in Section 5 and conclude in
Section 6.
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2. Background and problem definitions

In this section, we introduce notation and preliminaries of the
problem of interest, as well as formal problem definitions. The
background mostly relates to the definition of a contact network
or a trajectory network as defined in [20]. We also provide back-
ground information related to the basic reproductive number Rg
and its limitations, as well as information about the SEIR epidemic
model and its variations, as we employ it in our study.

2.1. Observation area: Earth surface versus Euclidean space

We assume monitoring of mobility data of individuals within
a finite observation area .A. For the needs of our study, this area
typically represents the administrative boundaries of a city or a
city neighborhood where daily human contacts occur. Since A is
a relatively small region, the Earth surface it represents has a low
curvature and is close to flat. We can therefore, for simplicity and
without loss of generality, assume that individuals move in a finite
2-dimensional Euclidean space R? and not on the surface of the
Earth. This assumption allows to approximate geodesic distances
on Earth with Euclidean distances in R2, a common practice in
many real-world algorithms and services.

2.2. Contacts and events

Consider a set of objects N = {uq, ua, ..., uy} moving in an ob-
servation area .4, defined as a finite 2-dimensional Euclidean space
RR? for a finite observation time interval [0, T], forming a set of tra-
jectories P. We formally define a trajectory as follows.

Definition 2.1 (Trajectory). A trajectory P, of a moving object u €
N is a sequence Py = {(x1,¥1,t1), (X2, ¥2,t2), ..., (X1, y1.t7)},
where t; € [0, T] and (x, y) € A € R? represent latitude and lon-
gitude coordinates in the 2D Cartesian system. We assume that an
object might appear and disappear multiple times during the ob-
servation time interval [0, T].

As individuals move in .4, they can encounter each other, form-
ing contacts. Following Pechlivanoglou and Papagelis [20], we de-
fine a contact as follows.

Definition 2.2 (Contact). A contact c, , between two moving indi-
viduals u, v € A/ occurs when their physical proximity (spatial dis-
tance) dy,, is smaller than or equal to a threshold t (i.e. dy,y < 7).

Several approaches exist to estimate the spatial distance of two
points in Euclidean plane. We employ its simplest form, the Eu-
clidean distance, given by:

du,v = \/(Xu —Xv)2 + Yy — J’v)z

where (x,, yy) and (xy, yy) are the spatial coordinates of individ-
uals u and v at a time t, where 0 <t < T respectively. The two
individuals u and v are considered to be in contact for as long as
their spatial distance remains consistently smaller than a proxim-
ity threshold 7. We extend the concept of a contact to include its
temporal dimension and formally define an event as follows.

Definition 2.3 (Event). An event e, , between two moving objects
u,v € N, represents a contact ¢, , that lasted for a time interval
[ts, te], where tg represents the time point of the beginning of the
contact and t. represents the time point the contact ended. An
event is represented by the quadruple e, v = (u, v, ts, te). We also
define the duration of the event as 8(ey,y) =te — ts.



T. Pechlivanoglou, J. Li, J. Sun et al.

Note that, in our setting, we do not preclude the case that
two individuals are in contact multiple times. In this case, the
contact information between two moving individuals u and v is
represented by a sequence of events E, , = {e] . e, ..., ey} or
Eyy ={, v, el t)), w,v,2,62), ..., W, v, t%, t"}. We also define
the duration of all events as A(Ey,) =Y | 8 = Sl —th). Fur-
thermore, in this paper we employ a universal proximity thresh-
old 7, so the contacts will always be reciprocal, meaning that
(u, v, ts, te) is equivalent to (v,u,ts,te). Indeed, this is sufficient
for the case of human-to-human interactions we examine in this
work.

2.3. Trajectory networks and node importance

A network that is constructed by connecting pairs of individuals
that are close to each other based on physical proximity is called a
proximity network. However, a proximity network is static and does
not capture well the idea of individuals moving in space. When in-
dividuals are moving, the temporal dimension of interactions must
be considered, and the resulting network can be thought of as a
temporal network, also referred to as a time-varying network. Most
characterizations of temporal networks discretize time by group-
ing together temporal information into a sequence of T network
“snapshots” G (V¢, E¢), t € {1,2, ..., T}. Each snapshot contains the
vertices V; and edges E;, representing the individuals and their
contacts, respectively, within a basic time unit t (e.g., second,
minute, hour, etc.). The resulting data structure can be thought
of as either a single aggregation graph with varying vertices and
edges, or a sequence of proximity graphs. In either case, we re-
fer to G:(V¢, E¢) as a trajectory network G(V, E) for the rest of the
manuscript.

There are many possible metrics to determine the importance
(or influence) of an individual (or node) in a temporal network.
Note that the term node centrality refers to node importance that
is common in static network analysis, and isn’t applicable for tra-
jectory networks. This is because measures of node centrality in
the traditional setting of a static network are commonly based
on shortest paths (e.g., betweenness centrality [21,22]), but short-
est paths in temporal networks take a different character [23].
For example, in [24], the authors define minimum temporal paths
to capture the different characterizations of time-constraint short-
est paths including cases of earliest-arrival paths, latest-departure
paths, or fastest paths. It is possible to evaluate a notion of tem-
poral betweenness [25], but in our setting, we focus on notions of
importance that are critical in the context of epidemic modeling in
the trajectory network. Similarly to Pechlivanoglou and Papagelis
[20], we define metrics that relate to the temporal node degree and
the duration of events, and use these metrics to construct node pro-
files that describe the behavior of each individual.

Definition 2.4 (Trajectory network node degree). We define the fol-
lowing metrics related to node degree in the trajectory network:

e Cy,: a set of all contacts of u during the observation time in-
terval [0, T].

® Dgeg, (k): a distribution that represents the fraction of the time
steps t; € [0, T] that u has node degree k.

2.4. Problem definitions

In this paper, we are interested in the assessment and mitiga-
tion of the risk of infectious disease spreading in trajectory net-
works based on mobility data. In particular, we aim to address the
following problems:
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Problem 1. Given an observation area .4, an observation time in-
terval [0, T], a set of individuals N and their trajectories P, deter-
mine the risk of infection risk, of each individual in the trajectory
network G(V, E).

Problem 2. Given a trajectory network G(V, E), a seed set of ini-
tially infected individuals Zo € A and the risk risk, of any indi-
vidual u € 7y, determine the size of the epidemic spread Zr C N
at time t =T, where Zg C Z7.

Problem 3. Given a trajectory network G(V, E), and the parame-
ters of an emerging infectious disease, determine the impact of
various epidemic containment intervention strategies that can eas-
ily translate to health policy. The focus is on comparative analysis
of the impact of targeted individual-based interventions against a
null model (informed by less sophisticated horizontal measures).

2.5. Limitations of the basic reproductive number Rg

The basic reproductive number Ry (sometimes called basic re-
production ratio), is the most widely used parameter in epidemiol-
ogy. It can be thought of as the expected number of new infections
caused by a single infected individual. Commonly used epidemio-
logical models suggest that Rg =1 is a critical value. When Ry < 1,
each infected person produces less than one new case in expec-
tation, therefore the size of the outbreak is constantly trending
downwards, until eventually the disease dies off. On the other
hand, when Ry > 1, each infected person produces more than one
new cases in expectation, therefore the size of the outbreak is con-
stantly trending upwards. In principle, the larger the value of Ry,
the more challenging it is to control the epidemic.

Despite its usefulness as an approximate indication of the
spreading power of the disease, many studies have stressed the
limitations of Ry. An underlying assumption of Ry is that the dis-
ease is spreading in a perfect mixing network (i.e., a complete
graph) or a regular tree network - a special type of a network
topology that has no cycles and each internal node has a constant
number of children, defined by a branching factor d. However real-
world communities do not resemble a complete graph or regular
trees, since some people have more contacts than others and it
is common for people to have common friends (forming triangles
or cycles). It is also easy to see how the basic computation of Rp
breaks down when we consider transmission of infection to be a
stochastic process involving discrete individuals [26].

For the purposes of this work, when we refer to Ry for indi-
viduals, we define it as “the expected number of secondary cases
produced, in a completely susceptible population, produced by a
typical infected individual” [27].

2.6. The SETR epidemic model

Compartmental models of epidemic modeling divide the popu-
lation into separate divisions (compartments) and people transition
between them based on their health status during an epidemic.
For instance, in the classic SZR model [28,29], people progress
between three compartments: susceptible (S), infectious (Z) and
removed|recovered (R). For many infectious diseases, there is a
significant latent period (incubation) during which susceptible in-
dividuals have been infected, but are not yet infectious themselves.
During this period an individual is considered to be in a compart-
ment labeled as exposed (£), and the model is known as SEZR.
The current research employs the SEZR model for modeling the
spread of a virus in the community. Depending on assumptions of
population structure and transmission progression, there are two
main classes of the SEZR model studied in the literature.
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Homogeneous population. The first class, assumes a large, ho-
mogeneously mixing population where individuals move between
compartments at certain transition rates described by ordinary dif-
ferential equations [30,31]:

dS  BIS e pIS
=== —0€
dt N dt ~— N

dz o I dR T

dat Y a7

where B is the transmission rate, o is the incubation rate, and
y is the recovery rate, respectively. This is a deterministic model,
so for a fixed set of parameter values and SEZR model initial-
ization (t = 0), it produces the same outcome at each simulation.
This model can inform about the state of the epidemic spread in
the community and provide insights about future trends as well as
inform health policy at large [32]. However, there are certain limi-
tations of this model. Its results and usefulness are limited by the
inherent assumption that all individuals share the same character-
istics.

Heterogeneous population. The second class, assumes heterogene-
ity of population and is based on an agent-based SEZR model,
where each agent is representing an individual [33,34]. This ap-
proach allows to model individual characteristics and behavior to-
wards the epidemic. In our research we focus on heterogeneity
that is attributed to different mobility and contact patterns of in-
dividuals, over time. Different mobility patterns, lead to complex
spatio-temporal social interactions between people in the commu-
nity [20,35]. These models are more challenging to analyze and
interpret as they depend on a stochastic (probabilistic) process of
epidemic spreading that increases the complexity [36]. However,
they are more realistic and can help to better understand the
emergence of a disease due to different individual behaviors. In
addition, since they operate (simulate) on individual-level behav-
ior, they provide an opportunity to design targeted intervention
strategies that can more easily translate to health policy. In sec-
tion 3 we present the details of the agent-based SEZR model.

3. Methodology

Recent studies on epidemic modeling highlight the importance
of individual variability in modeling the spread of an infectious
disease in a community and predicting its relevant outcome. For
example, Gomes et al. [37] studied the effect of the biological vari-
ation in susceptibility of individuals and their physical exposure to
infection. And, Britton et al. [38] studied how population hetero-
geneity affects herd immunity. In our research, we study the effect
of individual variability in epidemic modeling that is due to mo-
bility patterns. We first present a method for computing the risk
of infection of any individual in the community, as a result of their
spatiotemporal interactions. Then, we present a stochastic agent-
based epidemic model (and optimizations) that can better capture
the dynamic disease spreading in a community.

3.1. Modeling individual risk of infection

We integrate individual variation by modeling the risk of in-
fection of an individual in relation to its mobility patterns and
contacts over a time period. Intuitively, we would like to model
that the more contacts an individual has and the more time they
spent with each other, the higher the risk of infection. Formally,
given a trajectory network G(V, E), an individual u € N and its
contacts Cy during [0, T], we model the risk of infection risk, of
an individual by the following three methods, each offering a dif-
ferent level of analysis.

Big Data Research 27 (2022) 100275

[Cul

rlsk(l) Z] [Cul (1)
ICu

risk'?) = ZA(EH,) (2)
ICu

riskY) = Z(] — p)yAEuD)y (3)
(¢

Out of the three definitions, risk,’ is the simplest one as it is
based on the node degree in the aggregation network (i.e., the
network defined by aggregating the edges of a temporal network
over [0, T)); riskflz) takes into consideration both the number of
contacts of u and the total duration of these contacts (due to po-
tentially multiple events); risk,(f) models the risk of infection as
a probability of getting infected by any of its contacts factoring
the total duration of these contacts (due to potentially multiple
events), where B is the transmission probability of the disease.
In particular, we use a geometric function to represent the risk
attributed to each distinct contact. The outcome is a regularized
metric for risk (capped at 1), so that specific contacts with a very
long duration do not dominate the overall risk of an individual.

Relative risk of infection: While the actual value of an individual’s
risk of infection does not hold any natural interpretation, it is im-
portant for our analysis to represent the relative risk rrisk, of u to
other individuals in the network. We therefore normalize each risk
metric by the aggregated risk of all N individuals in the network
to get the relative risk of u € \V, as follows:

@ risk

(4)
Zg ’ risk("

rrisky

Note that it is rrisku e [0, 1], rrlsk(z) € [0, 1], rrlsk(3) €[0,1] and
that ZL] rriskf,') = 1. We utilize the relative risk in our experi-
mental analysis.

3.2. Epidemic spreading in trajectory networks

We present a stochastic agent-based SEZ'R network model for
epidemic spreading in a trajectory network, where nodes represent
individuals and edges represent contacts of nodes. According to the
epidemic model, each node can be at one of the following infection
states, at any discrete time t:

o Susceptible (S). This is the initial state of all nodes; a node can
get exposed to the infection by any of its infected neighbors
with probability 8, per time step.

e Exposed (£). A node is in this state if it has been infected by
one of its neighbors, but it is not yet infectious itself. A node
stays in this state for as long as the incubation period of the
disease lasts, which for simplicity we model as a constant that
lasts Ty time steps. After that period, the node becomes in-
fectious and switches to state Z with certainty. Depending, on
the disease we aim to model, the certainty can be relaxed by
incorporating a parameter to control the probability of a node
switching to Z (or to S).

e Infected (Z). A node is in this state if it is infectious, therefore
can transmit the disease to any of its neighbors with probabil-
ity .

e Removed (R). A node is in this state if it has been removed,
meaning either has passed away or has recovered. Nodes that
are in Z will be removed after Z, time steps with a recov-
ery probability y. The recovered nodes are neither infectious
anymore nor susceptible to the infection.
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Given a trajectory network G(V, E) and parameter values g, y, Iy
and Z, the model allows us to monitor the state of every individ-
ual over time. Given a population of A individuals, the cumulative
number of individuals within each of the disease states at time ¢
is given by S(t), £(t), Z(t), and R(t), respectively. We also define
two special sets of infected nodes: (i) the initial seed set of in-
fected nodes Zp = Z(0), and (ii) the set of the infected nodes at
the end of the process Zy = Z(T), which represents the size of the
epidemic spread.

3.2.1. Algorithmic details of the stochastic model

We describe here algorithmic details of the stochastic model.
Recall that individuals move between infection states S, £, Z and
R based on a stochastic process. At each discrete time step t, each
S(usceptible) node has a chance to switch to £(xposed), £(xposed)
nodes might switch to Z(nfected), and Z(nfected) nodes might be
‘R(emoved). Formally, let u € S and let A, be the set of neighbors
of u at time t. Each neighbor v € NV, such that v € Z, flips a biased
coin with a bias equal to the transmission probability 8 to deter-
mine whether it will infect u. If u is infected, then it switches
its infection state to £(xposed), otherwise its infection state re-
mains S(usceptible). Similarly, an £(xposed) node will switch to
I(infected) after Zy¢ steps and an Z(nfected) node will switch to
R(ecovered) after Z, steps, with a probability y. The pseudocode
of the stochastic model of epidemic spreading is given in Algo-
rithm 1. In our analysis, each time step in the discrete time sim-
ulation corresponds to a minute (60 secs), so negligible contacts
(interactions of less than a minute) are not considered.

Studies on infectious diseases have showed that prolonged ex-
posure of a susceptible node to an infected node increases the
likelihood of infection [39]. It is easy to see that in the epidemic
model presented in Algorithm 1, an infected node u has multi-
ple chances to propagate the disease. Formally, given a trajectory
network G(N, V), the probability p,,y of a susceptible node u € V
being infected by a neighboring infected node v € V after k inde-
pendent trials is given by the cumulative distribution function of
the geometric distribution:

puv=1-(1-pF (5)

where B is the transmission probability of the disease. Eq. (5)
represents the complementary probability of u not being infected
after k independent trials. It is easy to see that k depends on the
duration of the contact between an infected node v and u (i.e., one
chance per time unit) and that 0 <p,, <1.

3.3. Conversion of the stochastic model to a deterministic model

The epidemic spreading model we described in Algorithm 1,
is a stochastic process that possesses some inherent randomness.
Starting with the same initial conditions (i.e., the same sets of
Susceptible and Infected nodes) and parameter values, multiple
independent simulations of the epidemic spreading process can
produce outputs that vary a lot, in terms of the total number of
nodes infected at the end of the process. This is because the final
outcome depends on flipping a biased coin at every time step to
decide whether the disease will diffuse from one node to another
in the network.

Interestingly, there is an equivalent deterministic model that of-
fers a static view of the network and is more practical, as it allows
for faster simulations than the stochastic model. We describe here
a method that given a stochastic model of epidemic spreading in
the trajectory network, converts it to a deterministic model based
on percolation theory [40,41]. In mathematics and physics, perco-
lation theory is used to explain the flow of fluids through certain
types of porous material. Similarly, in network science, it is used
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Algorithm 1: Epidemic spreading in trajectory networks.
Input: G(V,E), S, Z, B, v, Iy, Ir, q
Output: SEZRo.1) = {[S(0), £(0), Z(0), R(0)], ..., [S(T), E(T), Z(T),
RMI}

S(0) « S; £(0) < 0; Z(0) « T; R(0) « O0;

for t € [0, T] do
forueV do
switch u.state do
case u € S(t) do
Ny < u.neighbors();
for v e NV, do
if veZ(t)and v.Q # 1 then
v infects u with probability 8;
if u is infected then
u.state < &;
u.Q <« 1 with probability q;
I}’ =0; /* incubation period of u
begins */
St+1) < S \u;
Et+1)«St)Uu;

break;
case u € £(t) do
I; ++;
if I;i =Zy then
u.state < T;
I' =0; /* recovery period of u begins =/
Et+1 <« EM)\u;
Z(t+1) < Z(t)Vu;
break;
case u € Z(t) do
' 4+ +;
if Z!' =7, then
u.state < R;
Z(t+1) < Z@®) \u;
u recovers with probability y;
if u recovers then
| RE+1)«<ROUY;

break;
case u € R(t) do

|_ break; /* do nothing */

L SEI’R[(),T] <« SEI’R[(){T] .append([S(t), E(t), Z(t), R(O)]);

return SEZRo,1];

to describe the behavior of a network when nodes or links are re-
moved.

To utilize this idea in the epidemic spreading model, recall that
each infected node in the network has a probability 8 to infect
each of its neighboring nodes at every time step t, by flipping a
biased coin with a probability 3. At the end of the interaction, the
infected node has either infected the neighboring node, in which
case we consider the edge to be “active”, or not, in which case we
consider the edge to be “removed or blocked”. The idea of per-
colation is that instead of deferring the decision of whether an
edge will be “active” or “removed” at runtime, we can make a
decision for each edge of the trajectory network G(V,E) at the
very beginning of the whole process. In practice, for each edge in
the network, we just need to flip a biased coin with probability 8
as many times as the duration of the contact (expressed in time
units), and decide whether to keep it or remove it from the net-
work. At the end of the process a smaller network G'(V,E’) is
constructed, such that E’ C E.

In terms of the correctness of the epidemic spreading process
itself, it does not matter if the decision to keep or remove an
edge is made at runtime or early in the process. In terms of run-
time cost, percolation allows to work on a smaller network (since
many edges are already removed) and allows simulations to fin-
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(c) remove their edges

Fig. 1. Example of removing high-risk individuals.

e de 4

(a) examine neighbors

remove edges to high-risk

c repeat for entire network

Fig. 2. Example of removing high-risk contacts of individuals.

ish faster. We therefore employ percolation in the relevant set of
experiments.

3.4. Containment intervention strategies

In this section, we explore various network-based intervention
strategies that aim to contain an epidemic [42]. These interven-
tions change the structure of the trajectory network — the back-
bone on which an epidemic spreads over time — and eventually
affect the size of the set Zt of the infected nodes at the end of
the process. The strategies relate to node immunization (network
node removal) or breaking of social ties (network edge removal) and
are actuated either at a network-level (governing authority deci-
sion) or a node-level (individual decision). Our goal is to design
targeted models of intervention and evaluate them against sensible
null models. Details of these strategies and models are presented
below, along with discussion on their feasibility and their implica-
tions to health policy.

Strategy 1: node immunization. Based on this strategy, we re-
move a fraction o, of all nodes in the network. Formally, given
a set S C V of nodes to be removed, where |S| = o |V, the infec-
tious disease now spreads in the induced subgraph G’(V’, E’) of G
whose vertex set is V/ =V \ S and whose edge set E’ consists of all
of the edges in E that have both endpoints in V’. The real-world
interpretation of this strategy is that some individuals are quaran-
tined (i.e., they are in a state of isolation where no contacts occur)
or develop immunization because of a vaccine. The network effect
is that a contagious disease cannot spread through their contacts
anymore.

Null model: A fraction o, of nodes is removed uniformly at random.

Targeted model (removing high-risk individuals): Nodes are ranked
based on their relative risk of infection rrisk,, in a descending or-
der. Then, a fraction o, of the nodes with the largest risk rrisk, are
removed. Ties are resolved uniformly at random. An illustration of
this intervention can be seen on Fig. 1.

It is important to note that this is a network-level intervention
strategy, where a national authority determines a set of individuals
to immune (or request to quarantine) based on an estimate of their
relative risk rrisk,. Such an intervention, is resource-intensive, but
also might infringe the privacy of individuals. It also carries a risk
of discriminating against individuals with specific mobility patterns
(i.e., super-spreaders). As a result, the feasibility of this interven-
tion strategy is rather weak for large communities.

Strategy 2: breaking of social ties. Based on this strategy, we re-
move a fraction o, of edges adjacent to each node (contacts).

Formally, given a node u € V and its set of neighbors T'(u), we
remove |Hy,| = a.|I'(u)| edges, where H, C I'(u). The total num-
ber of edges removed from the network is |H| = Zf\’:1 |Hi|, H S E.
The infectious disease now spreads in the subgraph G'(V,E’) of
G, where E' = E \ H. The real-world interpretation of this strat-
egy is that individuals have some understanding of the mobility
patterns of their contacts and they can make decisions about who
to avoid. The network effect is that a contagious disease cannot
spread through some specific contacts anymore.

Null model: For each node u, a fraction o, of its contacts to neigh-
boring nodes I'(u) are removed, uniformly at random.

Targeted model A (removing high-risk contacts): Nodes v € I'(u) in the
neighborhood of u are ranked based on their relative risk of infec-
tion rrisk,, v € I'(u), in a descending order. Then, a fraction o, of
contacts to the neighboring nodes with the largest risk rrisk, are
removed from the network. Ties are resolved uniformly at random.
An illustration of this intervention can be seen on Fig. 2.

It is important to note that this is an individual-level interven-
tion strategy, where each individual makes a local decision about
who to avoid, based on some understanding of the relative risk
rrisk, associated with each of its contacts. The model assumes that
individuals are in position to understand that they should avoid
contacts that are frequently and regularly interacting with many
others (e.g., due to their occupation or mobility habits). Such an in-
tervention is easier and not resource-intensive to implement, due
to its distributed nature and does not infringe on the privacy of in-
dividuals. As a result, the feasibility of this intervention strategy is
rather high for large communities.

Targeted model B (removing non-community contacts): Nodes v € I'(u)
in the neighborhood of u are ranked based on the number of
shared friends s(u, v) = |"(u) NI'(v)|, in an ascending order. Then,
a fraction «, of edges to the neighbors with the smallest s(u, v) is
removed from the network. Ties are resolved uniformly at random.
An illustration of this intervention can be seen on Fig. 3.

This model resembles a “social bubble” policy practiced by many,
where an individual maintains contact with only family members
and a few close friends. This way, potential “network bridges” be-
tween different well-knit communities in the network are elim-
inated and the infectious disease finds it hard to cross between
them. This is an individual-level intervention strategy, where each
individual makes a local decision about who to keep in its social
bubble, based on some understanding of how many friends they
have in common. This is a relatively easier assumption to make
(than the one made by the targeted model A). Such an intervention
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(b) remove non-community edges (c) repeat for entire network

Fig. 3. Example of removing non-community contacts of individuals.
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Table 1

Summary of trajectory data.
Parameter Value
#INDIVIDUALS 2-10k
AREA (km?) 1
OBSERVATION TIME (second) 2,592,000
#POINTS OF INTEREST 1,330

ACTIVITY DISTRIBUTION Alevel ~ N (0 =5.5, 02 =2.5), Ajevel € [0, 10]

is once again easier and not resource-intensive to implement, due
to its distributed nature and does not infringe on the privacy of in-
dividuals. As a result, the feasibility of this intervention strategy is
rather high for large communities.

4. Experimental evaluation

In this section, we provide details of our experimental evalua-
tion. We first present our synthetic data generator and describe the
characteristics of the contact networks produced. Then, we present
a COVID-19 use case, by specifying the parameters and refining
the research questions we aim to explore. For each research ques-
tion, we outline the experimental scenario and process followed to
effectively address it. Finally, we discuss the results and any impli-
cations.

4.1. Data generation

In order to evaluate our stochastic agent-based SEZR epidemic
model, we had to rely on large-size data representing trajectories
of individuals or their spatiotemporal contacts. Moreover, for sim-
ulations to be reliable, the data needs to be (almost) complete; if
significant amount of information about people’s mobility or con-
tacts is missing, then any underlying analysis related to community
structure and individual behavior could be significantly affected. At
the same time, mobility data is highly sensitive; many contact trac-
ing applications rely on privacy-preserving proximity data, making
the collection of real-world data impossible. With these factors in
mind, we opted to use synthetically generated data. On the other
hand, the benefit of generating synthetic data is that all parameters
could be tuned and therefore analysis can be more comprehen-
sive.

We generated synthetic data that simulates the activity of peo-
ple living and working within a specified urban area over the
course of a month. We defined an observation area A of approx-
imately 1 km? including the York University Keele campus and
surrounding neighborhoods in Toronto, Canada. Each individual in
the simulation is randomly assigned a home location and frequents
a number of favorite places (out of a predefined set of places), fol-
lowing a normal distribution. Moreover, each person is assigned
an activity level parameter that determines how “active” they are
by controlling the number of hours they may spend outside their
home every day and the number of places they are likely to visit.
Based on existing research on daily activity [43], each individual
was assigned between 0 and 12 active daily hours, determined by
their activity level. Table 1 presents the parameters of the data
generator and Fig. 4 presents descriptive analytics of the gener-
ated individual mobility data, including the distribution of activity
levels, the distribution of places visited and the hourly activity
over the course of a month by individuals of different activity
level.

We combine all previous parameters to generate a set of des-
tinations and daily schedules for a specified number of individu-
als. Afterwards, the exact movement and trajectory traces of these
people are simulated using Eclipse Simulation of Urban MObility
(SUMO) [44], an open source, highly portable, microscopic and
continuous multi-modal traffic simulation package. SUMO is ca-
pable of modeling accurate and highly realistic movement of ve-
hicles but also pedestrians, including movement through pedes-
trian crossings and crowded sidewalks. The end result is syn-
thetic but reliable, complete datasets representing the daily move-
ment of individuals in the observation area A, over a period of a
month.

4.2. Use case: parameters for the COVID-19 epidemic

We used the synthetic data generator to model a population
of 2,000, 3,000, 5,000 and 10,000 individuals moving in the same
campus area. Of course, the resulting datasets correspond to differ-
ent population densities. This allows us to examine the progression
of an epidemic in urban areas with different population densities
while controlling the rest of the parameters in the problem.
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Table 2

Summary of datasets.
Name 2K 3K 5K 10K
#INDIVIDUALS 2,000 3,000 5,000 10,000
#DATA POINTS 172,800,000 259,200,000 432,000,000 864,000,000
#CONTACTS 230,170 1,493,344 9,890,294 56,232,058
CLUSTERING COEFF. 0.1896 0.2737 0.5899 0.6914

Focusing on the COVID-19 epidemic use case, we can trans-
form the trajectory traces we obtained into trajectory networks to
model the spread of infection. To do this, we need to determine
a specific distance threshold where two individuals are considered
in contact. Prior research on SARS-CoV-2 transmission through air
droplets has shown that individuals at a close physical distance of
<1-2 m have a high probability of transmission, while there still
exists a lower probability when within 2-9 m [39,45]. As we re-
quire a single cutoff value, we selected the conservative threshold
value T = 2m. We used the tools developed by [20] to construct
the corresponding trajectory networks. The properties of the gen-
erated network datasets can be seen in Table 2.

A factor that is somewhat uncertain in related research is the
duration required for two individuals to be considered in con-
tact and, subsequently, the transmission probability per time unit
B. Studies that examine definitions of contact duration typically
consider the case of 1-2 m for 15 minutes or more [19]. With
the 12.8% transmission probability from [39], this would result
in B~ 0.85% per minute. Furthermore, there are studies of trans-
mission times in different environments such as airplanes [46] or
ventilated spaces [47]. These provide values of 1.8% per minute
(quadrupled for conservative results) when within 1 m and 1%
per minute when in a well-ventilated space without masks, re-
spectively. In our work, we use 8 = 1% per minute in most ex-
periments, but we also explore the progress of an epidemic with
different values of 8.

Regarding the infection’s progress, we follow the example of
well-established prior research on COVID-19 [32] and utilize the
SEIR model with exposure period of 3 days, infectious period of
6 days and recovery period of 10 days. The recovery probabil-
ity y helps to understand the severity of a disease in long term,
since together with transmission rate g, it determines Rgp. How-
ever, analysis of varying values of parameter y is out of the scope
of our model that focuses on heterogeneity due to mobility pat-
terns and targeted intervention strategies. In the experiments, we
therefore fix the recovery probability to y =1 (i.e., 100%).

With these parameters selected, we aim to answer the follow-
ing questions:

e Q1 Estimation of infection risk risk,. What is the distribution
of relative infection risks, for each of the proposed estimation
metrics?

o Q2 Properties of infection seed 7o. How does the estimated
risk or the number of initial infected individuals affect the
progress of the epidemic?
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o Q3 Effect of transmission probability 8. How does the proba-
bility of transmission influence the progress of the epidemic?

o Q4 Effect of quarantine q. How does the quarantine of infec-
tious individuals influence the progress of the epidemic?

e Q5 Effect of intervention strategies. When each intervention
strategy is applied, how is the progress of the epidemic af-
fected?

o Q6 Comparative analysis of intervention strategies. When the
same number of contacts are removed, how does the effect of
different intervention strategies compare?

Throughout the experimental evaluation, experiments are re-
peated for 10 iterations with different random seeds, reporting the
average values of results.

4.3. Estimation of infection risk

We utilize each of the three proposed methods to estimate the
relative risk of infection for the population sample in all datasets.
The resulting distribution of risks can be seen in Fig. 5. As can
be seen, the duration-based riski,z) gives a higher risk to a smaller
number of individuals than the degree-based riskf,l). The geomet-
ric interaction-based riskl(f’) produces an estimate that is balanced
between the two other metrics, and we use this in all remaining
experiments. The reason why we employ riskff) is that it natu-
rally captures the dynamics of the infection transmission process.
In particular, the risk model needs to capture the following char-
acteristics:

e the more contacts an individual has the higher the risk;

e the longer the duration of an interaction, the higher the risk;
and

e the risk of infection due to a singular contact should not in-
crease infinitely but it should plateau once it reaches a proba-
bility close to 1 (i.e., certain infection).

riskf) uses a geometric function to naturally represent the risk
due to these characteristics. Note that the probability of u infecting
v after n attempts is increasing for every time unit (i.e., minute),
demonstrates diminishing returns and it is eventually plateauing
out as it approaches to 1 (i.e., 100%). If we were not consider-
ing a geometric function (or similar diminishing returns function),
then the risk of certain individuals would grow continuously as
a factor of the duration of the contact and would lead to dispro-
portional large risk to certain individuals (due to certain lengthy
interactions).

4.4. Infection transmission chara