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Abstract

Package EpiModel provides tools for building, simulating, and analyzing mathemat-
ical models for the population dynamics of infectious disease transmission in R. Several
classes of models are included, but the unique contribution of this software package is a
general stochastic framework for modeling the spread of epidemics on networks. EpiModel
integrates recent advances in statistical methods for network analysis (temporal exponen-
tial random graph models) that allow the epidemic modeling to be grounded in empirical
data on contacts that can spread infection. This article provides an overview of both the
modeling tools built into EpiModel, designed to facilitate learning for students new to
modeling, and the application programming interface for extending package EpiModel,
designed to facilitate the exploration of novel research questions for advanced modelers.
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1. Introduction

The EpiModel package (Jenness, Goodreau, and Morris 2018) provides tools for building,
simulating, and analyzing mathematical models for epidemics using R (R Core Team 2017).
Epidemic models are a formal representation of the three basic processes that collectively
determine the population dynamics of infectious disease transmission: the contact process,
the infection process (between- and within-host), and the demographic process. The structure
of the model determines how these processes interact at the micro-level to produce the macro-
level outcomes of disease incidence and prevalence (Anderson and May 1992). The input
parameters determine the rates or probabilities of events occurring in these processes; they
can be estimated from data, treated as sensitivity ranges to examine the impact on macro-
level model outcomes, or used for calibrating model outcomes to observed data. In contrast to
traditional statistical models (e.g., the R packages surveillance, Meyer, Held, and Hohle 2017;
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epifit, Doi 2017; and EpiEstim, Cori 2013), which estimate parameters from empirical data,
mathematical epidemic models use already estimated parameters to produce simulated data
(e.g., the packages epinet, Groendyke and Welch 2016; and EpiDynamics, Santos Baquero
and Silveira Marques 2015). This provides an in silico laboratory to gain insight into the
dynamics of these complex systems, test empirical hypotheses about the determinants of a
specific outbreak trajectory, and forecast the impact of interventions like vaccines, clinical
treatment, or public health education campaigns (Garnett, Cousens, Hallett, Steketee, and
Walker 2011; Lessler and Cummings 2016).

A range of different modeling tools has been developed in the field of mathematical epidemi-
ology over the last century. All modeling approaches represent the population stratified by
state of infection (susceptible and infected, at a minimum) and a process of infection (the
transition between these states). Beyond this there is tremendous variation in the hetero-
geneity in states and processes represented, the mathematical theory and methods used, the
integration of the statistical and mathematical modeling, and the strengths and limitations
that follow.

Package EpiModel includes support to learn, build, and simulate three distinct classes of
epidemic models:

1. Deterministic compartmental models (DCMs) are based on systems of differential equa-
tions for the movement of the population through discrete states, including entry into
and exit from the population, at specified rates. DCMs are the most commonly used
model class in the field of mathematical epidemiology today, in part because simple for-
mulations can be solved analytically, or with minimal computational burden. They can
represent discrete forms of heterogeneity in the population, and have a limited ability
to represent persistent partnerships. With DCMSs, once the structure and parameters
have been specified, there is no variation in model outcomes.

2. Stochastic individual contact models (ICMs), also known as individual-based or agent-
based models, explicitly represent individual units in the population and the contacts
between them as unique, discrete events. Compared to DCMs, they allow for more het-
erogeneity in specifying the contact process and other epidemiologically relevant events,
and their stochasticity provides information on the range of plausible outcomes result-
ing from a given set of parameters. Drawbacks of these models include the potentially
large amounts of input data needed for parameterization and the computational burden
associated with running multiple stochastic simulations.

3. Network models are also stochastic and represent individual units, but unlike ICMs,
they provide a general, flexible framework for representing repeated contacts with the
same person or persons over time (e.g., sexual partnerships). These repeated contacts
give rise to persistent network configurations — pairs, triples, and larger connected com-
ponents — that in turn may establish the temporally ordered pathways for infectious
disease transmission across a population. EpiModel uses recently developed statistical
methods for network analysis to provide a generalized framework for both estimation
and simulation of dynamically evolving networks. Network models provide the most
accurate control over the contact process, but have greater computational burden than
ICMs, both because they require statistical estimation of the network model parame-
ters (for a true network model) and because the simulation algorithm must address a
complex set of overlapping constraints.



Journal of Statistical Software 3

Package EpiModel provides functions for each of these model classes, but the network models
are the unique contribution of this software package. Interest in network models has grown
rapidly, largely driven by the global heterogeneity observed in the epidemics of the human im-
munodeficiency virus (HIV) and other sexually transmitted infections (STIs). Both the trans-
mission dynamics and the prevalence of disparities in HIV are highly sensitive to variations in
the underlying partnership network structure, as shown by Morris, Kurth, Hamilton, Moody,
and Wakefield (2009) for HIV/STIs in the United States. Recent developments in statistical
methods for network analysis now provide a principled approach to estimating and simulating
this partnership network structure for epidemic modeling purposes, which require dynamic
networks where not only the edges (partnerships) change but also the number and attributes
of the nodes (persons) (Krivitsky, Handcock, and Morris 2011; Krivitsky and Handcock 2014).

Representing the details of the repeated contact structure — the timing and sequence of part-
nerships, and the acts within them — is most important when transmission requires intimate
contact, the intimate contact is relatively rare, and the probability of infection per contact
is relatively low (Goodreau 2011). In this context, the network connectivity needed for epi-
demic persistence may not be captured by summaries like the rate of partner acquisition over
time (Carnegie and Morris 2012). Instead, the temporal overlaps in partnerships (“concur-
rency”) may provide the connectivity needed to sustain transmission over time (Morris and
Kretzschmar 2000).

DCMs were not originally designed to represent these types of partnership networks. They
may be useful for investigating other components relevant for HIV/STI contact processes,
including heterogeneity in contact rates (and mixing between high-risk and low-risk groups),
which was shown in early modeling studies to enable endemic persistence of STIs that would
not be predicted by the simple homogeneous model (Hethcote and Van Ark 1987). However,
this type of “core group” heterogeneity does not appear to explain the generalized epidemics
of HIV, as the behaviors observed in these populations are profoundly different than the be-
havioral model specifications required for simulations to replicate observed disease prevalence
(Garnett and Anderson 1993; Hallett, Singh, Smith, White, Abu-Raddad, and Garnett 2008;
Abu-Raddad and Longini 2008).

Network models, in contrast, have been able to replicate generalized HIV epidemic dynamics
when driven with observed behavioral data and realistic transmission parameters (Jenness,
Goodreau, Morris, and Cassels 2016a). The partnership networks produced by these models
emerge from an empirically informed set of micro-level behaviors, including (but not lim-
ited to) how people choose their partners (e.g., based on attributes like sex and age), how
many partners persons have at any one time, and the distribution of partnership lengths
and overlaps (Goodreau et al. 2012; Jenness et al. 2016b). These behaviors can be measured
through survey data collection, statistically analyzed in a way that jointly estimates the mul-
tiple correlated underlying parameters, and the statistical model can then be used to drive
a network-based epidemic simulation (Morris 1997; Goodreau, Cassels, Kasprzyk, Montano,
Greek, and Morris 2010). The statistical theory that makes this possible was developed in
the literature on exponential-family random graph models (ERGMs; Holland and Leinhardt
1981; Frank and Strauss 1986; Hunter and Handcock 2006) and the recent extensions to tem-
poral ERGMs (TERGMs; Krivitsky and Handcock 2014). This kind of principled, integrated
network estimation/simulation framework is new in epidemic modeling, and it is the basis of
the EpiModel package.
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Both the estimation and simulation of the dynamic network in package EpiModel are imple-
mented using the Markov chain Monte Carlo (MCMC) algorithm functions from the ergm
package (Hunter, Handcock, Butts, Goodreau, and Morris 2008). The MCMC algorithm
exploits a key property of exponential family models, that the maximum likelihood estimates
of the model parameters uniquely reproduce the model statistics in expectation. This is also
what allows the fitted model to be used for the mathematical simulation of the contact network
over time — it is theoretically guaranteed to vary stochastically around the observed network
statistics (as long as the model is not degenerate). Other approaches to modeling epidemics
on networks have been developed (Leung, Kretzschmar, and Diekmann 2015; Keeling and
Rohani 2008), including applications that have used static ERGMs with a separately derived
and estimated process for edge dynamics (Khan, Dombrowski, and Saad 2014). However,
TERGMSs provide the only integrated, principled framework for the estimation of network
models from sampled data (Krivitsky and Morris 2017) and simulation of complex dynamic
networks with theoretically justified methods for handling changes in population size and
composition over time (Krivitsky et al. 2011).

Package EpiModel has been designed to be used for both, teaching purposes and advanced
scientific research. The package includes a set of built-in, or base, model types for each of the
three epidemic modeling classes, intended primarily for pedagogical purposes — these provide
a comprehensive set of tools for learning alternative frameworks for basic epidemic modeling.
Package EpiModel also provides an application programming interface (API) for each model
class that allows users to develop modular extensions to the base models. This API was
designed to facilitate scientific research.

This paper introduces the base models and the API for extensions in package EpiModel,
focusing on the stochastic network modeling class. The overall organization of the software,
including functionality and tools for the other modeling classes, is described briefly in Sec-
tion 2, but the remaining sections focus on the stochastic network modeling class.

This EpiModel tutorial is divided into five further sections:

Section 2 outlines the methods for accessing and getting oriented to the software, including
help documentation, and provides an overview of the complete EpiModel package.

Section 3 provides the theoretical and mathematical framework for modeling dynamic net-
works using the statistical framework of temporal ERGMs.

Section 4 demonstrates the base epidemic model types built into the software. Base models
provide some choice of disease states, and require specification of parameters in existing
modules — self-contained functions that perform one aspect of the epidemic simulation.
Two stochastic network models examples are presented to demonstrate the core func-
tionality and options.

Section 5 outlines the generalized EpiModel API for extending the disease states and mod-
ules to address new research questions. Extension modules can be written to either
modify the existing functions or to build entirely new processes into the epidemic sys-
tem. We show examples of both.

Section 6 puts these tools into a broader context by discussing some of the ongoing research
applications, methodological and computational challenges in this work, and opportu-
nities for future developments.
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2. Orientation

2.1. Code base

Package EpiModel is an open-source software package for the R computing platform. It
depends on and is an extension of the statnet (Handcock et al. 2015) suite of packages for R
developed for the representation, statistical modeling, analysis, and visualization of network
data (Handcock, Hunter, Butts, Goodreau, and Morris 2008). Our software website for
package EpiModel (http://epimodel.org/) provides a wealth of supporting documentation,
tutorials, and teaching materials for the project.

Because the package is developed in an open-source framework, users may view the source code
on our GitHub repository (http://github.com/statnet/EpiModel). Through the repos-
itory, users may submit issues for feature requests and bug reports. Advanced users may
contribute to the code base by forking the public repository and submitting pull requests for
changes to the code using standard GitHub methods.

2.2. Setup

To start the software demonstration, we install and load the EpiModel package in R, along
with all dependencies. This paper was written with the current software release, EpiModel
1.6.5, which is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=EpiModel, the central publication hub for R packages:

R> install.packages("EpiModel", dependencies = TRUE)
R> library("EpiModel")

The main help documentation is available with the standard help methods in R. An orienting
help file for the entire package may be viewed with help("EpiModel"). The supported model
classes are briefly described along with the built-in epidemic model types across models. The
overall listing of help documentation may be retrieved as follows.

R> help(package = "EpiModel")

2.3. Software organization

Figure 1 provides an overview of the design of package EpiModel and highlights the compo-
nents that will be presented in this paper (shown with dashed box borders). As described
in Section 1, package EpiModel includes three classes of models but only network models
will be covered since we have implemented the other two classes primarily as a gateway to
learning network models. Extensive tutorials and documentation for the other classes are
provided within the package and on our software website (http://epimodel.org/). This
includes workshop notes for a week-long epidemic modeling course “Network Modeling for
Epidemics”.

Within each of the classes, package EpiModel includes three pre-structured model types,
called base models, that facilitate the simulation of epidemic models. The primary aim of
these built-in models is to reduce the programming burden for users new to epidemic mod-
eling. These users only need to select the right model type, and learn the relevant epidemic
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Figure 1: Tree diagram of EpiModel design. Dashed boxes are topics covered in this paper.

parameters governing the processes for that model, such as rates of infection transmission or
disease recovery. Users also control the population size, number of time steps for the sim-
ulation, and the number of simulations to run. It is not necessary, however, to specify the
algorithms that drive the components of the system. The three types are:

o Susceptible-Infectious (SI): A two-state model with a one-way transition from suscep-
tible to infected, and no recovery after infection. HIV or herpes simplex virus type 2
(HSV-2) are examples.

o Susceptible-Infectious-Susceptible (SIS): A two-state model in which recovery does not
induce immunity, so individuals may transition back and forth between the susceptible
and infected states. Examples include the common cold and curable STIs like gonorrhea.

o Susceptible-Infectious- Recovered/Immune (SIR): A three-state model with an additional
one-way transition from infected to recovered with immunity. A classic example is
measles.

Examples within this paper will highlight the SI and SIS types, while the package docu-
mentation includes additional examples for the SIR type. Experimenting with base models
provides a natural learning path for developing the skills needed to program model extensions
for research purposes (discussed in Section 5). These extensions involve modifying existing
process modules that perform one component of the simulation system (disease transmission,
disease progression or recovery, or demographic dynamics like births or migration). Users
may also add entirely new disease types or modules that perform features not part of the
base models: for example, adding stages of infection to represent variable transmissibility
or waning immunity, behavioral or biological heterogeneity in transmission risk, and public
health or clinical interventions. This paper will provide examples of changing the existing
modules in basic ways, and Section 6 will provide references for detailed HIV/STI models
with module templates that may be used for those diseases.
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shiny web applications

EpiModel also includes three web-based applications built using the R package shiny (Chang,
Cheng, Allaire, Xie, and McPherson 2017). These are primarily intended for teaching pur-
poses, to introduce epidemic models from each class with no coding required. The three
applications may be run after loading package EpiModel through:

R> epiweb("dcm")
R> epiweb("icm")
R> epiweb("net")

While the shiny apps provide limited access to the range of EpiModel utilities, they may still
be sufficient for undergraduate teaching purposes, a short overview of modeling in a larger
epidemiology course, or a presentation of an epidemic simulation in real time. The rest of the
tutorial presented here will focus on EpiModel’s command-line interface.

3. Network modeling framework

Network models explicitly represent discrete persons (nodes) and partnerships (edges), which
are pairs of persons who remain in contact over some interval of time. Partnerships have
a duration, which allows for repeated acts with the same person, specification of partner-
ship formation and dissolution rates, and control over the temporal sequencing of multiple
partnerships.

This is handled through specification of a stochastic network model that captures the gener-
ative micro-level processes governing edge formation and dissolution. The approach is some-
times referred to as bottom-up modeling: the focus is on representing the micro-level processes
(e.g., preferences for monogamy and partners from a specific age group) that lead to emergent
properties at the macro-level (e.g., the global network component sizes and geodesic distribu-
tions). These macro-level network properties may be the key features that drive the dynamics
of disease transmission; so they are of considerable interest.

3.1. Micro-simulation features

To introduce the concepts and terminology for simulating network models of epidemics, it
is necessary to describe three key features of the micro-simulation framework for both, base
models and extensions. This will be especially relevant for readers with a background in DCM
modeling:

1. Units are individuals. These models simulate epidemic spread over a population of
discrete, individually identifiable elements; in contrast, DCMs treat the population as
a continuous mass which is infinitely divisible, with individual elements neither being
identifiable nor accessible for modeling. The implications of this may be relatively minor
if the stochastic simulations occur on a sufficiently large population, but there are some
critical differences shown below, including the representation of continuous attributes
of persons and multiple persistent partnerships.

2. Rates and risks are stochastic. The individual transitions between states are parame-
terized as random draws from distributions summarized by key parameters. In some
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cases, the distribution takes a simple common form like Bernoulli, binomial, uniform,
or Poisson. In other cases, like the partnership formation and dissolution processes, the
distribution is more complex.

3. Time is discrete. These models are represented in discrete time, in contrast to the con-
tinuous time algorithms typically used to solve DCMs written with differential equations.
In a discrete time model, many different events can happen in one time step, and they
happen in a sequence. There are no instantaneous, independent events as in continuous
time. If the time step is too large relative to the rates of change, bias may be introduced
into the models. The choice of the time step in network models is typically a trade-off
between reducing this bias with smaller steps and increased computational efficiency
with larger steps.

3.2. Exponential random graph models

Package EpiModel depends on the suite of R packages from the Statnet Project (http:
//www.statnet.org/; Handcock et al. 2015) that provides a robust software implementation
for both static and temporal ERGMs, with a broad range of descriptive and statistical analysis
tools, model fitting diagnostics, graphical utilities for network visualization, and methods for
network simulation from fitted or theoretical models (Handcock et al. 2008). This section
provides a brief review of the statistical theory implemented in the Statnet Project and how
it is integrated into package EpiModel through the examples below. This paper does not
provide a comprehensive review of this literature or a tutorial on the packages within the
Statnet Project. For that, the full special issue in the Journal of Statistical Software devoted
to these tools (Handcock et al. 2008) is a good place to start, and additional details are
provided in the references cited below.

Package statnet implements ERGMs to estimate and simulate relational networks based on
observed patterns of density, degree, triad closure, assortivity, and other network features
(Wasserman and Pattison 1996; Hunter et al. 2008). These methods were originally developed
for modeling spatial dependence (Besag 1974), and have evolved to become the primary
method for modeling dependence in networks (Holland and Leinhardt 1981; Fienberg and
Wasserman 1981; Frank and Strauss 1986; Hunter and Handcock 2006). Models are typically
estimated using computationally intensive MCMC algorithms (Geyer and Thompson 1992).

When using ERGMs, the edges relevant for infectious disease transmission are, in network

terminology, binary and undirected. For this type of edges, ERGMs represent the probability
distribution of the network Y as an exponential function of a set of network-level model

statistics:

exp{0 ' g(y)}
K(0) 7
where y is the observed network (composed of edges, nodes, and nodal attributes), € is a vector
of model coefficients, g(y) is a vector of network statistics, and x(0) = Xy cy exp{fg(y’)} is
a normalizing constant representing the set of all possible configurations of a network with
the size and nodal composition of y.

P(Y =yl|0) =

The network statistics that can be specified on the right hand side range from a single term to
capture the density of the network (e.g., a Bernoulli random graph model) to a term for each
dyad in the network. Each term in a model represents a “configuration” — a specific node-edge
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structure — and at the network level the coefficient represents how much more or less prevalent
this structure is than expected (given the other terms in the model). Parsimonious models
typically include a mix of dyad-independent and dyad-dependent terms. The distinction is
based on whether the status of one dyad influences the status of others. Dyad dependence
should be modeled with care, as the patterns it induces can cascade through the network
in unexpected ways, and poorly specified models can often lead to an outcome known as
“model degeneracy” (Handcock, Robins, Snijders, Moody, and Besag 2003; Schweinberger
2011). With networks of any non-trivial size, () may not be calculated analytically, and
therefore simulation-based estimation procedures (MCMC) are used.

ERGMs may be re-expressed in a conditional logit form that allows for a micro-level inter-
pretation of the parameters:

logitP(Y, = 1Y) = o (G5 A= 50 ) = 070lo().

where Y¢ is the rest of the network, excluding Y;;, and 0(g(y)) are change statistics that
represent how the count of configurations changes when Y;; is toggled from 0 to 1. The
interpretation of € in this expression is clearer, as it represents the conditional log-odds of an
edge as a function of the number of configurations it will create.

Since epidemic models are dynamic, evolving systems, we use temporal ERGMs (TERGMs)
to model the underlying dynamic network. Specifically we use separable TERGMs (Krivitsky
and Handcock 2014), in which one ERGM is used to represent the partnership formation
process, and another (potentially different) model to represent the dissolution process. In the
conditional logit expression, the formation model is specified as:

logit[P(Vijr1 = 1|Yije = 0,Y%)] = 018(g+(y)),

where now the edge Y;; is indexed by time and formation at time ¢ + 1 is conditional on no
edge Y;; existing at time ¢. Network statistics and coefficients are unique to the formation
model. The analogous form for the dissolution model is:

logit[P(Yijip1 = 1Y = 1,Y)] = 610(g_(y)),

where the edge dissolution is in fact mathematically expressed and solved in terms of its
compliment, edge persistence conditional on current edge existence.

Data for estimating TERGMs

Dynamic network models may be estimated from several different forms of empirical data:
panel data from a network census over time, a single snapshot of a cross-sectional network
census with additional data on partnership duration, and an egocentrically sampled cross-
sectional network with duration data. For egocentric network sampling, a random sample
of the population is drawn, and respondents are asked about a subset of their partnerships
within a relevant time interval (Morris 2004). The partners are not recruited into the sample.
The statistical theory for estimating ERGMs from egocentrically sampled data can be found
in Krivitsky and Morris (2017). The dynamic data structures and algorithms are described
in more detail in the documentation for the tergm and networkDynamic packages (Krivitsky
and Handcock 2015; Butts, Leslie-Cook, Krivitsky, and Bender-deMoll 2016).
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Package EpiModel was designed to work with cross-sectional egocentrically sampled network
data with retrospective information on relational persistence. While this is the most limited
form of network data, it is also the form most likely to be available in many epidemiological
contexts. In an egocentric study, one can measure network summary statistics such as the
distribution of the number of ongoing partnerships (the momentary degree distribution), bro-
ken down by nodal attributes, selective mixing patterns in nodal attributes at the dyad level,
the age of active partnerships, and the duration of completed partnerships. The network
models in package EpiModel are based on TERGMs that are estimated from these network
summary statistics. Note that these summary statistics may also be observed from a network
census, along with a much wider range of additional statistics (e.g., triads and larger cycles),
and package EpiModel can also use these if they are available. Examples of how egocentric
network data are translated into network statistics then used for epidemic modeling are pro-
vided in detail in our applied modeling papers (Goodreau et al. 2010, 2012; Jenness et al.
2016a,b).

3.3. Core modeling functions

Package EpiModel simulates epidemics over dynamic networks by integrating the TERGM
framework for estimating and simulating the partnership process with other modules that
stochastically simulate the processes related to infection and demographics. Network epi-
demic models require specification of the parameters for each of these processes, and for the
relationships among them.

Process dependence

The three processes represented in EpiModel — network, epidemic, and demography — are
unique, but possibly dependent steps in the modeling process. The key issue is whether the
partnership network dynamics are independent of or dependent on the other processes over
time. Network structure always influences the epidemic process, so the question is whether
the epidemic influences the network structure. Examples of such feedback are when behavior
depends on disease status, or when infection induces mortality. All open population models
imply dynamics (e.g., birth, death or migration) that change the network with respect to the
set of nodes, so models with these demographic processes always induce network dependence.

Independent process models assume no influence of epidemics on the network structure, and
no demographic dynamics. Under this assumption, one can simulate the entire time series
of the dynamic network first, and then run the epidemic process on top of this dynamic
(but structurally fixed) network. This is computationally very efficient, and potentially use-
ful for pedagogical and other demonstration purposes, as it simplifies the interpretation of
the simulated epidemic dynamics. But it is only realistic for a limited set of real-world epi-
demic models: asymptomatic infections (since any infection that is symptomatic may induce
behavior change) or short time frames (where demography can safely be ignored).

Dependent process models instead allow the epidemic and demographic processes to influence
the network structure. Computationally, this means that the network has to be simulated one
step at a time, alternating with the simulation and updating of the epidemic and demographic
processes. This approach is clearly required for infections like HIV, where infection status
may influence partner selection (referred to in the HIV literature as “seroadaptive behavior,”
since it is a blood-borne pathogen). It is also required for all open population models that
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allow for births, deaths, and migration. One of the benefits of using TERGMs is that they
provide a simple closed-form adjustment to account for the impact of changing population
size and composition on partner selection (Krivitsky et al. 2011). Thus, the network model
does not need to be re-estimated, the coeflicients are simply updated at each time step to
reflect current epidemic and demographic conditions. Package EpiModel has been designed
to handle these adjustments automatically.

4. Base models

Simulating an epidemic on a network in package EpiModel requires three core functions:

1. netest estimates the generative model for the dynamic partnership networks. This
function calls the ergm and stergm functions from the Statnet Project R packages.
netest includes several features for fitting temporal ERGMs specifically within the
epidemic modeling framework, discussed in our examples below.

2. netdx simulates one or more replications of the dynamic network over time from the
model fit in netest. This is used to run diagnostics on whether the fitted model
reproduces the empirically observed network summary statistics. Diagnostics are a
critical step in the modeling sequence to ensure that the final output can be interpreted

properly.

3. netsim runs the stochastic epidemic processes over a network simulated from netest.
For independent models, the entire dynamic network time series is simulated first, fol-
lowed by epidemic simulation over this dynamic network realization. For dependent
models, the simulation sequentially updates the network, the disease transmission, and
the demography at each time step; this allows for full dependence among these processes,
but is computationally slower than an independent model of comparable length.

Full specification of a base model in the network class involves setting the initial demo-
graphic conditions, specifying the formation and dissolution models and target statistics for
the network, selecting the structure of the epidemic model (SI, SIS, SIR) and setting its ini-
tial conditions and parameters. Below, we provide two examples of base network models in
package EpiModel, one independent and one dependent.

4.1. Example 1: Independent SIS model

Before we get started, we set the random number generator seed to allow for exact reproduc-
tion of the results below, since there are stochastic algorithms behind the model estimation
and simulation processes. In the accompanying R file, we re-do this before starting each of
the four examples.

R> set.seed(12345)
In this example, we model a curable disease in a closed population where recovery does

not induce immunity (e.g., a bacterial STI) and infection status does not influence behavior.
Heterogeneity in the nodes will be represented by a two-level risk group designation, with some

11
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assortative mixing by level. In network terminology, this is a one-mode network, because ties
are allowed between all node types.

The values we use in this example are chosen for convenience; in a research setting, these
would instead be empirically derived from data. Section 6 discusses the ongoing challenges
in model parameterization.

Step 1: Estimating network structure

The population is set up as a network from the beginning. We start with an empty net-
work (i.e., one with no ties) containing 1000 persons in two equally sized risk groups. The
network.initialize function creates the empty network and the set.vertex.attribute
function adds the risk group attribute, which is a binary variable that will be used to control
infection risk as a function of network structure.

R> nw <- network: :network.initialize(n = 1000, directed = FALSE)
R> nw <- network::set.vertex.attribute(nw, "risk", rep(0:1, each = 500))

The two R functions listed above are contained in the network package (Butts 2008). These
will be the only functions in this tutorial directly calling another Statnet Project package, and
therefore we have used the : : reference to make this explicit (even though it is not technically
necessary because loading package EpiModel loads package network).

Network model estimation and diagnostics

The network formation and dissolution formulas specify how persons in the population form
and dissolve partnerships over time. The formation object is a right-hand side R formula
object that follows the terminology and methods of the ergm and tergm packages (Handcock,
Hunter, Butts, Goodreau, Krivitsky, and Morris 2017; Krivitsky and Handcock 2015). All
terms are defined in the "ergm-terms" help file, which can also be accessed in the help
documentation for those packages.

Here we will include terms to set the following network properties for the formation model:

1. Density: This sets the baseline probability of forming a tie, and is typically included
in all models (analogous to an intercept term in a linear model). The ERGM term for
this is edges. The statistic is the count of the number of edges (partnerships) in the
network.

2. Heterogeneity by attribute: This allows the probability of an edge to depend on the
nodal attribute “risk” we set up above. In our model, we will use it to set a higher
mean degree for a high-risk group. The ERGM term for this is nodefactor. The
statistic is the count of the number of ties for members of each attribute value. Note
that each tie will count twice, once for each node.

3. Selective mixing by attribute: This allows the probability of an edge to depend on the
attributes of both nodes. It is used to capture the level of assortative (or disassortative)
mixing between groups. The ERGM term for this is nodematch. The statistic is the
count of the number of ties between nodes of the same risk group. Here a tie will count
only once.
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Target

Term statistic Notes

edges 250 Implies an overall mean degree of 0.5 = 250 x ﬁ.

nodefactor 375 The number of edges for the high risk group. Implies a mean
degree of % = 0.75 for this group, and % = 0.25 for the
low risk group.

nodematch 225 The number of ties between nodes of the same risk group
(222 = 90%).

concurrent 100 The number of persons with 2 or more ongoing partners at

any time slice (490 = 10%).

Table 1: Fabricated values of the target statistics.

4. Degree distribution: There are many ways to specify further heterogeneity in the degree
distribution. In the absence of further specification, the conditional probability of a
partnership forming is Bernoulli with the (group-specific) parameter determined by the
coefficients on the terms above, and the resulting degree distribution is a binomial
mixture. Here we will modify this by specifying the number of nodes which have more
than one partnership at any time. The ERGM term for this is concurrent. The statistic
is the count of the number of nodes with two or more ties at any time step.

The resulting formation model is specified as the following ERGM formula:
R> formation <- ~ edges + nodefactor("risk") + nodematch('"risk") + concurrent

With egocentric inference the data are passed to the ERGM estimation function in summary
form as target statistics for each term. If we had data, we could calculate these target statistics
from them. Here, for this example, we will pass target statistics with fabricated values that
are internally consistent as shown in Figure 1.

Note that for the nodefactor term, the default reference category is the lowest value of
the factor (here 0, the low-risk group), so target stats are only provided for the comparison
factor levels (here, only level 1, the high-risk group); the targets for the default group are set
implicitly by the edges term. In addition, for this statistic, each tie counts twice, once for
each node, so the denominator is twice the number of ties.

R> target.stats <- c(250, 375, 225, 100)

These target statistics represent the expected values of the network statistics for each cross-
sectional slice of the dynamic network time series.

A critical factor to consider when using target statistics to specify an ERGM formula is that
these statistics are not independent, and they must be logically consistent. For example, the
count of partnerships within the same risk group (the nodematch target statistic), cannot
logically be higher than the total number of partnerships in the population (the edges target
statistic). As another example, setting the edges target statistic to some lower value, say 50
instead of 250, has implications for other degree-related target statistics. An edges count of
50 would imply a mean degree of 0.1. Under a Poisson distribution, the expected proportion
of persons with a degree greater than 1, given that mean degree, would be less than 1% (in R,
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ppois(1l, 0.1, lower.tail = FALSE) calculates this). Fitting an ERGM with a much lower
mean degree but keeping the same target for concurrency of 10% is nearly mathematically
impossible; when this happens the MCMC-based estimation methods will fail unless the
concurrency target is also adjusted downward.

Package EpiModel will generate error messages if the model fitting fails, but the content
of these messages is produced by the deeper underlying packages, and not always entirely
clear. Informative error messages from poorly fit models is an ongoing area of software de-
velopment for both packages, EpiModel and statnet. Here, it is challenging due to the many
possible combinations of formulas and target statistics. This is one reason that we emphasize
that these models are most useful when driven with empirical data, from a probability sam-
ple. In that case there is a strong chance of logical consistency. However, consideration in
model specification, including experimentations with the dependencies within ERGM terms
and target statistics associated with them, is a key part of the learning process for network
modeling. Our general advice is to start simple, building complexity incrementally and only
when necessary.

For the dissolution model in package EpiModel, we take advantage of a computational short-
cut to calculate the dissolution model coefficients analytically as a function of the duration
of the ties (Carnegie, Krivitsky, Hunter, and Goodreau 2014). These coefficients are then
passed into the dissolution model as fixed offset terms (an offset is a model parameter that
is fixed by design, not estimated).

In this example, we specify a dissolution model with an edges term, meaning that the proba-
bility of edge dissolution at each time is a homogeneous, constant hazard across partnerships,
and therefore does not depend on the specific configuration of persons within that partnership.
The resulting distribution of partnership durations, therefore, is geometrically distributed as
we are working in discrete time. Other dissolution models (heterogeneous by nodal attributes)
are supported by package EpiModel (see the help file for dissolution_coefs), while other
hazard specifications (e.g., duration dependent) are an area of ongoing development.

If we had empirical data, we would estimate the mean age of active ties and use that here.
For this example, we specify an example mean duration of 80 time steps; this implies, at any
time step, each partnership has a 1.25% risk of dissolving.

R> coef.diss <- dissolution_coefs(dissolution = ~ offset(edges),
+ duration = 80)
R> coef.diss

Dissolution Coefficients

Dissolution Model: ~offset(edges)
Target Statistics: 80

Crude Coefficient: 4.369448
Mortality/Exit Rate: 0

Adjusted Coefficient: 4.369448

The output from this function indicates both adjusted and crude coefficients, which are equiv-
alent in this case. When working with open populations, where persons leave the network
through death or migration they will differ, as we will see in the next example.
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The netest function calls the estimation routines from package tergm (Krivitsky and Hand-
cock 2015) to estimate the coefficients for the formation and dissolution model. Inputs are
the base network, the formation formula, the formation target statistics, and the dissolution
coefficient.

R> estl <- netest(nw, formation, target.stats, coef.diss)

By default, package tergm exploits a computational efficiency when possible by using an
approximation that relies on the assumption that prevalence = incidence x duration. When
this assumption holds, dividing the coefficients estimated from a cross-sectional ERGM fit
to the target statistics (which represent configuration prevalence) by their corresponding
dissolution offsets will approximate the dynamic formation coefficients (the configuration
incidence; Carnegie et al. 2014). The approximation is most accurate when time steps are
short relative to partnership lengths; as a rule of thumb the approximation bias is minimal
when the edge duration is greater than 20 time units and the mean degree is less than 1. The
bias is also greater in highly structured dyadic-dependent models. This default approach can
only be used if the dissolution model is a subset of the formation model.

Step 2: Diagnosing network fits

After the model fit completes, it is crucial to diagnose the output, especially when one is
relying on the approximation method. There are two forms of model diagnostics for a dynamic
ERGM fit with netest: static and dynamic. When the approximation method has been used,
static diagnostics check the fit of the cross-sectional ERGM to the target statistics. Dynamic
diagnostics check the fit of the model adjusted to account for edge dissolution. Both work
by simulating networks from the fitted model and comparing summary statistics from the
simulated networks to the observed targets. When running a dynamic network simulation as
we do with package EpiModel, it is good to start with the dynamic diagnostics, and if there
are fit problems, work back to the static diagnostics to determine if the problem is due to the
cross-sectional fit itself or with the dynamic adjustment (i.e., the approximation method).

Here we will examine dynamic diagnostics only. These are run with the netdx function,
which simulates from the model fit object returned by netest. We simulate from the model
10 times over 1000 time steps. The values are chosen based on the stochasticity in the model,
which is a function of network size, model complexity, and other factors. In general, choosing
these control parameters (number and length of simulations) may be an iterative process; the
only downside to choosing larger values is computational burden. With respect to the length
of the simulations (number of time steps), this should be set to a much higher value than
the mean edge duration specified for the model. By default, the network statistics that are
diagnosed are those in the formation formula, but the nwstats.formula argument may be
used to monitor any additional statistics of interest.

R> dx <- netdx(estl, nsims = 10, nsteps = 1000)

Printing an object output from netdx will show summary tables of the simulated network
statistics against the target statistics. The mean and sd values for the formation diagnostics
are the mean and standard deviations of those statistics across all simulations and time steps.
In our example results below, the simulated edges mean is slightly higher than the target,
but within a standard deviation. The difference may be a result of either random variation
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(for which more simulations may be needed) or systematic bias primarily stemming from the
use of the estimation approximation described above (for which further diagnostics described
below would be necessary).

R> dx

EpiModel Network Diagnostics

Diagnostic Method: Dynamic
Simulations: 10
Time Steps per Sim: 1000

Formation Diagnostics

Target Sim Mean Pct Diff Sim SD

edges 250 251.788 0.007 14.505
nodefactor.risk.1 375 379.114 0.011 24.771
nodematch.risk 225 226.374 0.006 13.481
concurrent 100 101.861 0.019 10.899

Dissolution Diagnostics

Target Sim Mean Pct Diff Sim SD
Edge Duration 80.000 72.708 -0.091 71.411
Pct Edges Diss 0.012 0.013 0.005 0.007

There are two forms of dissolution diagnostics. The edge duration row shows the mean age of
partnerships across the simulations; it tends to lie below the target since the mean includes a
burn-in period where all edges start at a duration of zero (illustrated below in the plot). To
use this as a diagnostic for matching edge duration, a very long simulation interval is needed.
The next row shows the percent of current edges dissolving at each time step, and is not
subject to bias related to burn-in. The percentage of edges dissolving is the inverse of the
expected duration: if the duration is 80 time steps, then we expect that 1/80 or 1.25% dissolve
each day. The standard deviation for dissolution is close to the mean, as is expected, since
our model of memory-less relational dissolution implies a geometric distribution for relational
length, and this is a feature of that distribution.

Plotting the diagnostics object will show the time series of the target statistics against their
targets (the black dashed lines). The solid lines show the mean values of the statistics across
all simulations, and the bands show the inter-quartile range of values (the range of the bands
may be changed with the gnts argument in the plot method for ‘netdx’ objects). Similar to
the numeric summaries, the plots in Figure 2 show a good fit over the time series.

R> plot(dx)

The dissolution model fit is plotted with either a duration or dissolution type, as defined
above. The effect of the burn-in on the duration statistic is clear in the first plot, as the
duration hits the target value of 50 after about 200 time steps. Both metrics indicate a good
fit of the dissolution model to the target, as shown in Figure 3.
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Figure 2: Formation model diagnostics.

R> par(mfrow = c(1, 2))
R> plot(dx, type = "duration")
R> plot(dx, type = "dissolution")

If the model diagnostics had suggested poor fit, then additional diagnostics and fitting would
be necessary. If using the approximation method, one should first start by running the cross-
sectional diagnostics (see the dynamic argument in netdx). If the cross-sectional model fits
well but the dynamic model does not, then a full STERGM estimation (not using the approx-
imation method mentioned above) may be necessary; this can be done with the argument
edapprox = FALSE. If the cross-sectional model does not fit well, different control parameters
for the ERGM estimation may be necessary (see the help file for netdx for instructions).

Step 3: Epidemic model setup and simulation

Package EpiModel simulates epidemics over dynamic networks in the independent process case
by simulating the epidemiological processes such as infection transmission and disease recov-
ery on the dynamic network that was simulated above. These processes also have stochastic
elements so that the range of potential outcomes under the model specifications can be ob-
served. Package EpiModel uses three helper functions to input epidemic parameters, initial
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Figure 3: Dissolution model diagnostics.

conditions, and other control settings for the epidemic model.

For initial conditions, we use the i.num argument to set the initial number infected at
the start (a more precise allocation of infection onto specific nodes can be made using the
status.vector argument). For simplicity, this example will use a starting prevalence of 5%,
equally distributed over risk groups.

R> init <- init.net(i.num = 50)

The base SIS model requires three parameters. The infection probability (inf.prob) is the
risk of transmission per act between a susceptible person and an infected person. The act
rate (act.rate) is the mean number of acts that occur within each active partnership during
each time step. The mean frequency of acts per person per time step is the mean number of
partnerships per person multiplied by this act rate parameter. The recovery rate (rec.rate)
is the probability that an infected person recovers at a given time step. In an SIS model, they
become susceptible again after recovery.

These three disease-related parameters are set using the helper function param.net:
R> param <- param.net(inf.prob = 0.1, act.rate = 5, rec.rate = 0.02)

The value used for the recovery rate implies that the mean duration of infection is 50 time
steps.

The control settings contain the structural features of the model, which include the epidemic
type, number of time steps per simulation, and number of simulations. The epi.by argument
allows us to pass in a categorical nodal attribute which will be used to stratify the prevalence
outcome statistics.

R> control <- control.net(type = "SIS", nsteps = 500, nsims = 10,
+ epi.by = "risk")
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Once all of the necessary model specifications have been set, simulating the model is straight-
forward. We pass the fitted network model object along with the epidemic parameters, initial
conditions, and control settings to the netsim function.

R> siml <- netsim(estl, param, init, control)

Examining model output

Printing the model output lists the inputs and outputs of the model. The output includes the
sizes of the compartments (s.num is the number susceptible and i.num is the number infected)
and flows (si.flow is the number of infections and is.flow is the number of recoveries). The
output may be extracted using as.data.frame, which we do not show here but is described
in its documentation page.

R> siml

EpiModel Simulation

Model class: netsim

Simulation Summary

Model type: SIS
No. simulations: 10
No. time steps: 500
No. NW modes: 1

Model Parameters

inf.prob = 0.1
act.rate = 5
rec.rate = 0.02

Model Output

Variables: s.num s.num.riskO s.num.riskl i.num i.num.riskO
i.num.riskl num num.riskO num.riskl is.flow si.flow
Networks: siml ... simi0

Transmissions: siml ... simlO

Time-specific epidemic statistics may be obtained using summary. Using at = 500 this sum-
mary shows the mean and standard deviation of simulations at time step 500.

R> summary(siml, at = 500)

EpiModel Summary

19
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Figure 4: Epidemic model default plot.

Model class: netsim

Simulation Details

Model type: SIS
No. simulations: 10
No. time steps: 500
No. NW modes: 1

Model Statistics

Time: 500

mean sd pct
Suscept. 673.9 26.556 0.674
Infect. 326.1 26.556 0.326
Total 1000.0 0.000 1.000
S >1 7.1 2.726 NA
I >S5S 6.9 2.283 NA

The default plot for a ‘netsim’ object, shown in Figure 4, will display the prevalence of the
compartments in the model across simulations. The means across simulations are plotted
with the thicker lines and the polygon band shows the inter-quartile range across simulations.
Individual simulation lines are also available; consult the help page of the plot method for
‘netsim’ objects for plotting parameter options (obtained using ?plot.netsim).

R> plot(simi)

To plot the incidence of infection and recovery, we specify these outcome variables using the
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Figure 5: Incidence and recoveries.

y argument. As shown in Figure 5, the two lines converge at approximately time step 300,
which is consistent with the stabilization of prevalence at that time as shown in the prevalence
plot.

R> plot(siml, y = c("si.flow", "is.flow"), legend = TRUE)

To compare the results by risk group, the stratified outputs are passed to y. Figure 6 shows
that the prevalence of disease is much higher for the high-risk group as a function of their
higher mean degree and the containment of the epidemic within that group as a result of the
high assortivity.

R> plot(siml, y = c("i.num.risk0", "i.num.risk1"), legend = TRUE)

Plotting the static network at different time steps and over different simulations can show the
patterns of partnership formation and infection spread over those partnerships. The network
plot is available by specifying type = "network". In Figure 7 we plot two time points from
among the simulations that are closest to the mean across all simulations with respect to
disease prevalence, at time steps 1 and 500. We chose the mean here to easily illustrate a
representative simulation; other options are the specific simulation number (1 to 10), "max",
and "min" (see the help documentation of the plot for ‘netsim’ objects). The col.status
argument handles the color coding for easy plotting of the infected (red) versus susceptible
(blue).

R> par(mfrow = c(1, 2), mar = c(0, 0, 1, 0))

R> plot(siml, type = "network", at = 1, sims = "mean", col.status = TRUE,
+ main = "Prevalence at t1")

R> plot(siml, type = "network", at = 500, sims = "mean", col.status = TRUE,
+ main = "Prevalence at t500")
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4.2. Example 2: Dependent SI model

In this example, we allow the network to be influenced by demographic dynamics, and the
demographics to be influenced by the epidemic process.

There are three types of process dependence built into the base models within the stochastic
network class in package EpiModel:

1. Demographic vital dynamics: Births and deaths (or more generally, entries and exits)
will always influence the network because the exit of persons removes their associated
ties, and entry creates new persons (initially without partners) with whom ties may be
formed. Vital dynamics also influence the epidemic process by replenishing susceptibles
and removing infected persons.
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2. Infection-adaptive behavior: Infection status can influence the probability of partnership
formation and dissolution, as well as behavior within partnerships. Thus, it can influence
both the network model and the epidemic process.

3. Infection-dependent vital dynamics: Infection status can also influence fertility and mor-
tality, allowing the epidemic to feed back on the demographic processes.

In each of these cases, changes over time in the node set and/or infection status require the
network to be updated before simulating each step.

Adjusting the network model for vital dynamics

In the presence of vital dynamics, two adjustments must be made to the coefficients of the
temporal ERGM: adjusting the formation model for the impact of changes in network size
and composition, and adjusting the dissolution model for the impact of death/exit on tie
removal. The former occurs automatically in the tergm package; the latter is executed using
a helper function in package EpiModel.

When the network size (number of nodes) changes, the ratio of ties to nodes changes. As
a result, either network density or the mean degree will change; both cannot be preserved
at the same time, since mean degree is approximately equal to N x density. This raises the
question of what the appropriate time-invariant parameterization should be for a network
model. Preserving density, for example, implies that someone who moves from a village of
500 to a city of 50,000 would increase the number of ties they have by a factor of 100. In
practice, most social or sexual relationships of interest to epidemic modelers do not behave
in this way; they instead preserve the mean degree when network size changes.

The default (canonical) parameterization of ERGMs generally preserves density for dyadic-
independent models in the context of changing network size, with some more complex behavior
for dyadic-dependent models (see Krivitsky and Kolaczyk 2015). But ERGMs are also easily
adjusted to preserve mean degree instead (Krivitsky et al. 2011), and package EpiModel is de-
signed with this behavior as the default. Adjustment involves modifying the edges coefficient,
f, in the formation ERGM:

Onew = 901d + log(Nold) + log(Nnew)a

where Ngjq is the old population size and Ny is the new population size. This adjustment
is handled within netsim in package EpiModel automatically, although if the user prefers to
preserve density in response to population change (or some intermediate between density and
mean degree), that may be toggled with arguments in the control.net helper function.

Partnerships are subject to two forces of dissolution: endogenous (e.g., break-ups or divorces)
and exogenous (the death of one or both partners). The STERGM model, when estimated
from empirical data that implicitly includes both processes, captures the effects from both
processes. If we then layer an additional mortality process on top of the network during
the epidemic simulation, our simulated dissolution rate will be too high; relational durations
become shorter than observed and network density becomes lower. The solution is to adjust
the dissolution parameter in the STERGM model to approximate the endogenous dissolution
process only. The dissolution_coefs function automatically applies a death correction
adjustment to account for the competing risks, storing the relevant information in a way
that the subsequent components of the simulation can use. In the simple offset (edges)
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homogeneous dissolution model, we derive that through conditional probabilities. Starting
with the observation that the probability of an edge dissolving at time t, P(E}), is:

P(E;) = P(N;) + P(Ny)P(E;|Ny),

where P(NVy) is the probability that either a node dies (which automatically dissolves an edge),
P(NVy) is the probability that both nodes survive, and P(E;|N;) is the probability that the edge
dissolves endogenously (i.e., given that both nodes survive). This formula may be rearranged
to solve for the endogenous dissolution probability:

P(E:) — P(Nt)

P(Et’Nt) - P(]\_ft)

Since the dissolution coefficient, 6, is expressed in terms of edge persistence (1 — P(Ey)), and
on the log-odds scale, we calculate the corrected 6 as:

P(E) — P(M))

0. =logit [ 1 — =
( P(Ve)

Note that there are many different approaches for handling the competing risks like these
within discrete-time simulations, but this approach works correctly under standard assump-
tions in our epidemic simulations. This adjustment is demonstrated directly in the example
below.

Network initialization

In this example, we will simulate an epidemic model on a bipartite network. Bipartite network
structures are used when all ties must be between groups, called modes. This structure may be
used to model, for example, STI transmission in a strictly heterosexual population. Package
EpiModel provides some built-in utilities that facilitate mode-specific network terms (e.g.,
sex-specific degree distributions) and epidemic parameters (e.g., transmission asymmetries).

As before, the first step is to specify a network structure, including features like size and
nodal attributes. Here, we construct an empty network of 1000 nodes, with 500 in each
mode. Although not explicitly named as such, we conceive of the first mode as females and
the second mode as males.

R> num.ml <- num.m2 <- 500
R> nw <- network::network.initialize(num.ml + num.m2, bipartite = num.ml,
+ directed = FALSE)

In this example, we will also set up a degree distribution for each sex that might be obtained
from an egocentric sample. We need to ensure that the number of partnerships implied by the
women’s degree distribution is the same as that implied by the men’s. This does not require
that the distributions are the same, just the total number of partnerships.

Our example population has an even 1:1 sex ratio. We will set the mean proportion of females
and males having 0, 1, 2, or 3 partners at any one time as follows:

R> deg.dist.ml <- ¢(0.40, 0.55, 0.04, 0.01)
R> deg.dist.m2 <- c(0.48, 0.41, 0.08, 0.03)
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Note that men report more concurrency (having greater than one partner) than women do,
but more men than women also report having no partners.

In package EpiModel, we use the check_bip_degdist function to check that the implied
number of edges matches across modes, given the degree distributions and the mode sizes set
above:

R> check_bip_degdist (num.ml, num.m2, deg.dist.ml, deg.dist.m2)

Bipartite Degree Distribution Check

ml.dist ml.cnt m2.dist m2.cnt

Deg0 0.40 200 0.48 240
Degl 0.55 275 0.41 205
Deg2 0.04 20 0.08 40
Deg3 0.01 5 0.03 15
Edges 1.00 330 1.00 330

** Edges balanced **

The table shows the fractional distribution and number of nodes with each degree, as well as
the total number of edges implied by each degree distribution. Here the total edges for females
and males match, and we are good to proceed. In other cases, one may encounter unbalanced
numbers when using egocentric data for a variety of reasons (e.g., sampling, reporting errors),
even though any bounded empirical population with two modes would in theory have to
balance if a census were taken. When faced with this, network modelers must consider how
they wish to address this (e.g., by averaging the two modes’ mean degree somehow) before
proceeding (see Morris 1991; Koehly, Goodreau, and Morris 2004 for examples).

Network model estimation and diagnostics

In this example, we will use the formation model to specify details of the sex-specific degree
distributions, not just the mean degree.

The ERGM terms bildegree(d) and b2degree(d) can be used to specify a non-parametric
model for the degree distributions for a bipartite network, for modes 1 and 2 respectively.
Here, we will fit the network statistics for the sex-specific degrees of 0 and 1, leaving the
upper tails of the degree distributions for each sex free to vary. The choice of which terms
to include in any ERGM formula such as this depends on the research question of interest,
as well as the statistical degrees of freedom available in potentially highly correlated terms.
In this case, the mode-specific network size and the total number of edges remove available
degrees of freedom, such that we effectively have a fully specified model. In general, it is best
to start with a less specified model and build up terms to add further complexity as necessary.

R> formation <- ~ edges + bldegree(0:1) + b2degree(0:1)

As in the first example, we will input the data in the form of target statistics from our initial
network for each of these terms. These can be extracted directly from the bipartite check
table above.
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R> target.stats <- c¢(330, 200, 275, 240, 205)

The adjustments to the formation model for the demographic dynamics is automatically
handled by package tergm during estimation (Krivitsky and Handcock 2015).

The dissolution model has a homogeneous, constant hazard with mean partnership duration
of 25 time units. Since there will be births and deaths in this model, we also need to specify
an overall death rate, using the d.rate parameter of dissolution_coefs, to adjust for the
competing risk of death on edge dissolution. Since the coefficient for the dissolution model
represents the probability of edge persistence, the resulting value of the adjusted coefficient
will be higher than the crude coefficient.

R> coef.diss <- dissolution_coefs(dissolution = ~ offset(edges),
+ duration = 25, d.rate = 0.006)
R> coef.diss

Dissolution Coefficients

Dissolution Model: ~offset(edges)
Target Statistics: 25

Crude Coefficient: 3.178054
Mortality/Exit Rate: 0.006
Adjusted Coefficient: 3.533444

The value 0.006 was calculated as a weighted mean of the mortality rates specified as epidemic
parameters below.

The netest function estimates the model as before.
R> est2 <- netest(nw, formation, target.stats, coef.diss)

Model diagnostics should be run before moving on to epidemic simulation, but one important
caveat is that the networks simulated in netdx here do not include the demographic processes
that could influence the structure of the network within the full epidemic model. So it will be
necessary to also run post-simulation diagnostics after the epidemic model is simulated with
netsim.

R> dx <- netdx(est2, nsims = 10, nsteps = 1000)

The plots.joined argument of the plot method for the ‘netdx’ objects allows to place all
the plots in one panel instead of a separate panel for each statistic. The simulations are all
on target as shown in Figure 8; as before, the dashed lines show the target statistics, the solid
lines are the values of the means of the simulated statistics over the 10 simulations, and the
bands are the inter-quartile range of those same simulations.

R> plot(dx, plots.joined = TRUE)

Epidemic model setup and simulation

We set the initial number infected to 50 for both the first and second modes.
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Figure 8: Network diagnostics plot.

R> init <- init.net(i.num = 50, i.num.m2 = 50)

The parameters for both infection and demographic processes are set here, since the demo-
graphic rates may be influenced by infection state. In this example, we will use different
transmission probabilities by mode, with a three-fold higher susceptibility of infection for fe-
males compared to males. The birth rates are parameterized with the b.rate.m2 parameter
set as NA to signify that the number of births into the second mode (males) should be based
on the size of the female population. The mortality rate is specified so that females have an
overall lower death rate than men, and that there is an excess risk of mortality upon infection.

R> param <- param.net(inf.prob = 0.3, inf.prob.m2 = 0.1, b.rate = 0.006,
+ b.rate.m2 = NA, ds.rate = 0.005, ds.rate.m2 = 0.006, di.rate = 0.008,
+ di.rate.m2 = 0.009)

In the control settings, the delete.nodes argument removes inactive (i.e., deceased) nodes
from the network object at each time step for computational efficiency. The nustats.formula
argument, similar to its definition in the netdx function, allows monitoring of a set of network
statistics that may differ from the formation formula. Here, we explicitly monitor the mean
degree with the ergm term meandeg.

R> control <- control.net(type = "SI", nsims = 10, nsteps = 500,
+ nwstats.formula = ~ edges + meandeg, delete.nodes = TRUE)

Once the model specifications are complete, the simulation is again straightforward.

R> sim2 <- netsim(est2, param, init, control)

Examining model output

With dependent processes, the coefficients of the network model are updated at the end of
each time step to reflect changes in the size of the network; the network at the next time
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Figure 9: Post-simulation diagnostics.

step is then simulated with the updated coefficients. When using base models, this adaptive
simulation happens automatically whenever certain parameters are included in the function
calls, such as rates for vital dynamics.

Because of these changes, it is important to examine the network structure from the simu-
lations before moving on to interpreting the epidemic outputs. One particularly important
check is to see that the vital dynamics processes did not lead to any systematic biases in
mean degree, given that this quantity is our time-invariant target and is influenced by several
approximations and adjustments, and given how fundamental it is to transmission dynamics.
The fact that we had the algorithm calculate this as the simulation unfolded in the previous
command makes this straightforward. Here, we also add a target line for expected mean
degree manually, since it is not an explicit term in the model formulas.

R> plot(sim2, type = "formation", plots.joined = FALSE)
R> abline(h = 0.66, 1ty = 2, lwd = 2)

Figure 9 shows that the number of edges declined substantially over time, but the mean degree
was preserved at its target of 0.66. The decline in edges was a result of the overall declining
population size, which is apparent from the next plot. However, the adjustment to maintain
mean degree has worked as intended.

The default plot of the simulation object shows the means of the compartment sizes over time
for each of the modes (quantile bands are suppressed by default for bipartite simulations).

R> par(mfrow = c(1, 2), mar = ¢c(3, 3, 1, 1), mgp = c(2, 1, 0))
R> plot(sim2, popfrac = TRUE)
R> plot(sim2, popfrac = FALSE)

The left panel of Figure 10 shows the prevalence of infection states (by mode, if the model
includes them), whereas the right panel shows the absolute numbers in each compartment.
The overall population size is declining substantially due to disease-induced mortality, which
has an effect on both sexes in both disease states.
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Figure 10: Prevalence and absolute epidemic size.

5. Model extension API

The models described so far — what we have called base models — are aimed at beginning
package EpiModel users. They are useful primarily for teaching and learning the basic prin-
ciples of modeling epidemics on networks. For most applied modeling research, these base
models will not have the range and flexibility to address specific pathogen, population, and
intervention related questions. However, we have designed package EpiModel so that it can
be extended to incorporate new functionality for research purposes.

In this section, we describe package EpiModel’s flexible application programming interface
(API) for writing and simulating new network-based epidemic models for research. We pro-
vide two examples to demonstrate how to replace existing modules (e.g., substituting a new
transmission module) or supplement the existing modules with new modules that control
novel system mechanics.

Extending package EpiModel involves writing new modules that are plugged into the simula-
tion workflow executed by netsim. These modules will typically be run at each time step to
simulate one or more of the processes that occur within the larger system. Modules may de-
pend on one another: a mortality module may reference an age attribute defined and updated
by an aging module.

Research-level epidemic models tend to be quite complex, with many parameters and in-
teractions between all of the processes. Understanding and validating the code involved in
simulating systems is a central challenge in mathematical modeling. That also holds true for
developing package EpiModel extensions. But one need not start from scratch: a research
model may combine existing model code as a starting template.

5.1. Modular extension framework

When running base models of the network class in package EpiModel, the settings specified
in control.net control a series of modules that govern how persons in the population be-
come infected, recover, die, and so on. The recovery module, for example, is controlled by
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the recovery.FUN parameter in control.net. For each built-in module, there is a default
function that defines the module. The default recovery function (as described in the help
documentation for control.net) is recovery.net. When the time loop runs the series of
specified time steps, this function is called and the individuals within the population are
subject to the recovery processes defined within it.

Arguments in control.net that have a .FUN suffix are pointers that tell the main simu-
lation function, netsim, to evaluate them. Each call to netsim begins by initializing the
simulation under the conditions specified in initialize.FUN (with the default function
initialize.net). Any of these default functions may be replaced by writing and speci-
fying a new function that handles the same process. New modules that handle other types
of processes not in the base model workflow may be added into the mix by including those
module names ending in .FUN. New modules may be plugged into control.net because it
contains a flexible ... argument that handles new inputs of arbitrary definition.

To develop new modules, either to replace existing ones or to add to the set, one must
understand the basic rules for module structure. The netsim function allows for broad
flexibility in module definition, but components of the general structure must be followed.
There are four core elements to the package EpiModel API for epidemic network model
modules:

1. The main data structure storing the information passed among the modules is dat,
which is an R object of class ‘1ist’ All the inputs, such as parameters, and the outputs,
such as summary epidemiological statistics, are contained in dat. Each module reads
dat, updates internal data within dat, and then outputs dat for the next module to
work on. As a result, every module has only two input arguments: dat and at, the
current time step.

2. Attributes of individual nodes are stored in a sublist to dat called attr. This is a
named list: each element corresponds to one attribute stored as a vector, and all vectors
have the same length (the number of individuals in the population). netsim creates
five attributes by default: active, status, infTime, entrTime, and exitTime. The
active attribute keeps track of whether an individual is currently alive or has exited the
population through some process such as death or out-migration. The status attribute
indicates current infection status as a character ("s", "i", "r", for susceptible, infected,
and recovered in the base models); infTime records the time at which each individual
was infected (NA for susceptible nodes); in the case of SIS models this reflects the most
recent time of infection. The entrTime and exitTime attributes contain the time steps
at which the person enters or leaves the network. Each attribute is model-specific and
may be used in different ways to simulate different diseases (e.g., the status attribute
would never be set to "r" if simulating SIS epidemics in which there is no permanent
recovered state).

3. Summary model output statistics are contained in a sublist to dat called epi. This
list stores information on the current prevalence, the number of nodes in each infection
state, and incidence, the sizes of the flows between infection states. The default for base
models is to calculate summary prevalence statistics in the get_prev.FUN module in
the last module for each time step; summary incidence statistics are typically calculated
in the module where the event occurred.
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4. In package EpiModel time loops, the initial network is coded as time 1. The only module
that is run at this time step is the initialize.FUN module to set up components like
network structure and infection status. All other functions will start running at time 2
and continue for the number of time steps specified in control.net. The choice of time
step 1 to represent the initial network and 2 as the first step of the dynamic process
simulation, while not traditional, is adopted in order to make data storage and querying
align with R’s convention of indexing vectors beginning with 1, not 0. That is, disease
prevalence at time 400, say, is now stored in position 400 of the prevalence vector, not
in position 401. In the examples below, some new vectors are created at time step 2 and
updated after that by using a shortcut: if (at == 2) { create something } else
{ edit it }. This creates a new data structure without needing to explicitly edit the
initialization module. The latter can be unwieldy since it handles many tasks.

The examples below provide practice with this functionality. You can also explore these
features and more by reading through the code for netsim and for the other functions that
it calls, or by stepping through a call to netsim using a browser tool in R like debug.

5.2. Example 1: Age-dependent mortality extension

In this example, we show how to construct an aging process, age-specific mortality, and
a constant growth model for births. This will require one new module function and two
replacement module functions, along with the associated parameters.

New aging module

To introduce aging into a model, we need to write a new module function that we will call
aging to perform the necessary processes. Writing this illustrates some key requirements of
any module added to netsim.

At the first time step in the loop, which is step 2 for the reason noted above, persons in the
population are randomly assigned an age between 18 and 69 years (uniformly distributed)
in units that are congruent with our time steps. We might choose this age range because
we collected data only on adults within this age group. Here, our simulation time step will
be a month, so we specify age to the nearest month. At each subsequent time step, age is
incremented by one month.

R> aging <- function(dat, at) {
if (at == 2) {
n <- sum(dat$attr$active == 1)
dat$attrfage <- sample(seq(from = 18, to = 69 + 11/12, by = 1/12),
n, replace = TRUE)
} else {
dat$attr$age <- dat$attr$age + 1/12
}
if (at == 2) {
dat$epi$meanAge <- c(NA_real_, mean(dat$attr$age, na.rm = TRUE))
} else {
dat$epi$meaniAge[at] <- mean(dat$attr$age, na.rm = TRUE)

+ + + + + + + + + + + 4+

}
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+ return(dat)

+ }

Note that the new module, as required, has the two functional arguments dat and at. The
active attribute stored in dat indicates whether each person is currently active, and it is
evaluated at time step 2 to establish the size of the active population, n, so the sample
function knows how many ages to produce. The new attribute age is stored as a vector in
the attr list and updated for everyone at each time step. Any summary statistics we want
to monitor can be stored in dat$epi. Here, we create a vector called meanAge at time step
2 for the current mean age of the active nodes in the population; the mean is updated and
appended to the vector at each time step.

Modified death module

For this extension, we will replace the existing death module for susceptibles with a new one.
In the existing module, the probability of death is based on a fixed risk that may vary by
disease status; the parameters that control this, ds.rate and di.rate and so on, are set
through param.net. Here, we will replace the module used by the base models with a new
one that exploits our new age attribute. The probability of death will now be specified as a
nonlinear function of increasing age:

R> ages <- 18:69
R> death.rates <- 1 / (70 * 12 - ages * 12)

Since we are using monthly time steps, the death rates are specified with that same scale.
The rates could be estimated from life table data, but here we instead use a simple parametric
form for age-specific mortality in which death rates are specified to increase monotonically
with age (up to age 70). In our new death module, maximum age will be treated as a variable
parameter, used to calculate the death rate in the module function. For each active person,
death is then evaluated at each time step based on a draw from a Bernoulli distribution with
probability equal to their age-specific risk.

R> dfunc <- function(dat, at) {
idsElig <- which(dat$attr$active == 1)
nElig <- length(idsElig)
nDeaths <- 0
if (nElig > 0) {
ages <- dat$attr$age[idsElig]
max.age <- dat$param$max.age
death.rates <- pmin(1, 1 / (max.age * 12 - ages * 12))
vecDeaths <- which(rbinom(nElig, 1, death.rates) == 1)
idsDeaths <- idsElig[vecDeaths]
nDeaths <- length(idsDeaths)
if (nDeaths > 0) {
dat$attractive[idsDeaths] <- 0
dat$attr$exitTime [idsDeaths] <- at
dat$nw <- deactivate.vertices(dat$nw, onset = at, terminus = Inf,
v = idsDeaths, deactivate.edges = TRUE)

+ + + + + + + 4+ ++++ o+ o+
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+ }

+ }

+ if (at == 2) {

+ dat$epi$d.flow <- c(0, nDeaths)
+ } else {

+ dat$epid$d.flow[at] <- nDeaths
+ }

+ return(dat)

+ }

The vector of IDs eligible for the process is determined by the current value of the active
variable. The ages of those eligible are extracted from the attr list, the maximum age
parameter is queried from the parameter list, param from param.net, and the death rate
is calculated for each person based on their age and the maximum. A Bernoulli draw is
performed for each eligible person with those rates, and if death results, then the active
attribute for that person is toggled from 1 to 0.

The network object, located at dat$nw, is then updated with the changes. Each newly dead
node is deactivated from the network. This process also removes their existing edges (if any)
and prevents them from having future partnerships. A summary statistic vector is created
for the number of deaths during each time step and saved as d.flow in the epi sublist.

Modified birth module

In this example, we will modify the birth module used by the base models. The new module
replaces the base growth rate specification, a fixed percentage increase based on the active
population at each time step, with a constant growth model. In this model, the size of
the population is specified to grow linearly at each time step based on the rate parameter
growth.rate (in contrast to exponential growth that typically occurs). The expected size
of the population at a time step, ¢, is a function of the initial population size and this rate.
Because nodes can also exit at each time step, the expected number of new births at each
time step is the difference between the expected population size and the current population
size. New births are added stochastically based on a Poisson distribution draw with the rate
parameter equal to this difference.

R> bfunc <- function(dat, at) {

growth.rate <- dat$param$growth.rate

exptPopSize <- dat$epi$num[1] * (1 + growth.rate * at)
n <- network.size(dat$nw)

numNeeded <- exptPopSize - sum(dat$attr$active == 1)
if (numNeeded > 0) {
nBirths <- rpois(1, numNeeded)
} else {
nBirths <- 0
}
if (nBirths > 0) {
dat$nw <- add.vertices(dat$nw, nv = nBirths)

+ + + + 4+ + + + + + + 4+
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+ newNodes <- (n + 1):(n + nBirths)

+ dat$nw <- activate.vertices(dat$nw, onset = at, terminus = Inf,
+ v = newNodes)

+ dat$attr$active <- c(dat$attr$active, rep(1, nBirths))

+ dat$attr$status <- c(dat$attr$status, rep("s", nBirths))
+ dat$attr$infTime <- c(dat$attr$infTime, rep(NA, nBirths))
+ dat$attr$age <- c(dat$attr$age, rep(18, nBirths))

+ }

+ if (at == 2) {

+ dat$epi$b.flow <- c(0, nBirths)

+ } else {

+ dat$epi$b.flow[at] <- nBirths

+ }

+ return(dat)

+ F

The value for the linear growth rate parameter is again passed to the module function through
param.net and stored in dat$param. The expected population size uses the starting popula-
tion size stored in the summary statistics list epi, and the current population size is calculated
again with the active attribute in dat.

Any birth function must do two things to update the network: add new nodes to the net-
work object and set all of their attributes with their initial values. In our function, the
add.vertices function adds new nodes onto the network, and the activate.vertices func-
tion allows them to form edges. We also need to set the five default attributes and our new
age attribute for the new nodes, on the attr list. Thus, new births will be active, susceptible
to infection, have no infection time, have an entry time equal to at, have no exit time, and
have an age of 18. The data for the new births is added to the end of the existing vectors.

Network model estimation

For the examples in this section, we will demonstrate how to specify the simplest possible pop-
ulation and network: a Bernoulli random graph (also known as an Erdos-Renyi graph). The
nodes are homogeneous, and all ties have the same formation and dissolution probabilities,
so partner selection is random and the degree distribution is binomial. The formation model
only requires the target number of edges as input. For the dissolution coefficient adjustment,
we take the mean of the unweighted age-specific death rates as a simple approximation of the
overall mean death rate.

R> nw <- network::network.initialize (500, directed = FALSE)
R> est3 <- netest(nw, formation = ~ edges, target.stats = 150,
+ coef.diss = dissolution_coefs(~ offset(edges), 60, mean(death.rates)))

Since they were demonstrated above, we will skip the diagnostics here in the interests of
brevity, but remind the reader that they should always be done after the network model has
been estimated.

Epidemic model setup and simulation

To parameterize the epidemic model, it is necessary to collect all the new elements that
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were created into the param.net function. The transmission modules are unchanged in this
example so they can use the same infection probability and act rate parameters as the base
models. Our modified birth module requires a growth rate parameter. Since our time units
are months, we specify a 1% yearly growth rate in terms of monthly growth. The modified
death module requires an input of a maximum age, in years. The initial conditions can be
specified like a base SI model.

R> param <- param.net(inf.prob = 0.15, growth.rate = 0.01/12, max.age = 70)
R> init <- init.net(i.num = 50)

For control settings, we specify the model type, number of simulations, and time steps per
simulation, as we would for any base model. To replace the default death and birth modules,
we specify that the existing deaths.FUN and births.FUN arguments take our new dfunc and
bfunc functions respectively. Both of these functions must be sourced into memory before
running control.net; the control function will search for them and save them within the
object output.

To add the new aging module into netsim, we need to specify a new module name, followed
by .FUN suffix so that package EpiModel will register it as a module. The name can be
anything, as long as it is not the name of an existing module. Here, we call our new module
aging.FUN, and have it use the new aging function we wrote above.

R> control <- control.net(type = "SI", nsims = 5, nsteps = 500,
+ deaths.FUN = dfunc, births.FUN = bfunc, aging.FUN = aging,
+ depend = TRUE)

It is important to note the ordering of when the modules are executed within each time step.
By default, all new modules like aging.FUN are run first and all existing (built-in) modules
(modified or not) run second; new modules will be run in the order in which they appear in
control.net, but built-in modules (modified or not) will be run in the order in which they
are listed in the control.net help documentation. This ordering of all the modules may be
changed and explicitly specified using the module.order argument in control.net.

Once the modules have been revised, all components are again simply passed to the netsim
function.

R> sim3 <- netsim(est3, param, init, control)

Ezramining model output

Printing the model object shows that we now have non-standard birth and death output for
flows. Additionally, we have the meanAge data saved as other output (summary statistics
saved in epi named ending with .num will automatically be classified as compartments and
.flow as flows).

R> sim3

EpiModel Simulation

35
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Model class: netsim

Simulation Summary
Model type: SI
No. simulations: 5
No. time steps: 500
No. NW modes: 1

Model Parameters

inf.prob = 0.15
growth.rate = 0.0008333333
max.age = 70

act.rate = 1

Model Output

Variables: s.num i.num num meanAge d.flow b.flow si.flow
Networks: siml ... simb

Transmissions: siml ... simb

Basic model plots in Figure 11 show the simulation results for the prevalence and absolute
state sizes over time. All of the graphical plotting options available for base models can also
be used for extended models.

R> par(mfrow = c(1, 2))

R> plot(sim3, popfrac = TRUE, main = "State Prevalences")

R> plot(sim3, popfrac FALSE, main = "State Sizes'", sim.lines = TRUE,
+ gnts = FALSE, mean.smooth = FALSE)

This example demonstrated how to write modules using the package EpiModel API to add
system features not present in the base models. The API has been designed to make it
relatively simple to modify existing modules or construct entirely new model elements, plug
them into the software infrastructure, simulate from the new model, and analyze the results.

5.3. Example 2: SEIR epidemic model

In this final example, we will demonstrate how to modify the base disease types by adding
a new state in the infection process: exposed but not yet infectious to others. This is tradi-
tionally referred to as an SEIR model, where the E' compartment represents this initial stage
of infection. Ebola is an example of a disease with this feature. In principle, this type of
modification can also be used for adding any other relevant disease states to an SI/SIS/SIR
model — like asymptomatic infection (e.g., for Chlamydia) or additional stages of infection
(e.g., HIV and Syphilis).

This example demonstrates a basic SEIR design with no births or deaths for the sake of
simplicity. Similar to the previous example, we will have one replacement infection module
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Figure 11: Extension epidemic model results.

and one entirely new module. Adding in an extra disease stage involves updating the infection
module and adding a more generalized disease progression module that is based on the existing
built-in recovery module.

Modified infection module

The built-in infection module is designed to handle a wide variety of specifications, most of
which we will not use here, and to transition persons from a susceptible state directly to
an infectious state. We will modify this, simplifying to remove unnecessary components and
updating to represent the transition from susceptible to the new exposed but non-infectious
state.

In this example, we will not print the full module code block, but it can be viewed in the R
script file accompanying this article. The core structure of the module is exactly the same as
the modules defined in the prior example, with operations occurring on the dat object before
it is returned.

R> infect <- function(dat, at) {
+
+ return(dat)

+

The main processes in the built-in infection module are to extract a discordant edgelist — a
matrix of ID numbers of active dyads in the network in which one member of the dyad is
susceptible and the other is infected — and execute the stochastic process of transmission.
Given epidemic parameters for the probability of infection per act (7) and the number of
acts per unit time («), the per-partnership transmission rate is calculated using the standard
equation 1 — (1 — 7)®. Transmission is a Bernoulli trial with this probability of infection.

R> del <- discord_edgelist(dat, at)
R> del$transProb <- dat$param$inf.prob
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R> del$actRate <- dat$param$act.rate

R> del$finalProb <- 1 - ((1 - del$transProb) del$actRate)
R> transmit <- rbinom(nrow(del), 1, del$finalProb)

R> del <- dell[transmit == 1, ]

The key modification needed is to specify the newly infected person’s infection status as "e"
rather than "i".

R> dat$attr$status[idsNewInf] <- "e"
R> dat$attr$infTime[idsNewInf] <- at

The final lines within the module also need to be modified to track the size of this transition
between susceptible and exposed states in a summary vector, se.flow, that will be available
for analysis.

Construct a new disease progression module

The disease progression module will handle the transition from exposed to infectious, and
also the transition from infectious to recovered in the model (so it will replace the built-in
recovery module). The full structure of this module function, progress, is contained in the
script file. Disease progression through each of these states is represented as an individual-
level stochastic process, and unlike infection, there is a simple constant hazard of transition.
The times spent in each disease state therefore follow a geometric distribution. The first part
of the new module pulls two new parameters from the input lists that define the two rates of
transition.

For each eligible person, the transition event is a Bernoulli trial with the rate parameter above.
Persons who transition to the infectious state have their individual-level status attribute
updated to the "i" value, at which point they are now capable of infecting others.

R> nInf <- 0

R> idsEligInf <- which(active == 1 & status == "e")
R> nEligInf <- length(idsEligInf)

R> if (nEligInf > 0) {

+ vecInf <- which(rbinom(nEligInf, 1, ei.rate) == 1)
+ if (length(vecInf) > 0) {

+ idsInf <- idsEligInf[vecInf]

+ nInf <- length(idsInf)

+ status[idsInf] <- "i"

+ }

+ }

Persons who transition to recovered follow a process specified by the recovery function, which
is simply copied from the existing recovery function into this new progress function.

The final job of this module is to calculate summary statistics and store them for analysis.
The sizes of the susceptible and infected states are automatically calculated in all models.
These states are contained in every epidemic model, so their summary statistics are calculated
by default. In this module, we only need to handle the new exposed and recovered states:
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R> dat$epi$ei.flowlat] <- nInf
R> dat$epi$ir.flow[at] <- nRec
R> dat$epi$e.num[at] <- sum(active == 1 & status == "e")
R> dat$epi$r.num[at] <- sum(active == 1 & status == "r")

Network model estimation

We again use a simple Bernoulli random graph model in order to focus on the new epidemi-
ological inputs and structures.

R> nw <- network::network.initialize (500, directed = FALSE)
R> est4 <- netest(uw, formation = ~ vedges, target.stats = 150,
+ coef.diss = dissolution_coefs(~ voffset(edges), 10))

We will again skip the diagnostics in the interest of brevity.

Epidemic model setup and simulation

There will be four variable parameters for the epidemic model, two of which are used in the
infection module and the other two for the disease progression module. One must take care to
ensure that the names of the variables are consistent between the inputs here and the module
definition. In this example, we will set the mean time spent in the exposed state to half as
long as in the infectious state.

R> param <- param.net (inf.prob = 0.5, act.rate = 2, ei.rate = 0.01,
+ ir.rate = 0.005)
R> init <- init.net(i.num = 10)

For the sake of simplicity, we will assume that the unit of time here is one day, so the average
person in the population has 2 acts per day, spends 100 days in the pre-infectious exposed
state (1/ei.rate), and 200 days in the infectious state before recovering (1/ir.rate).

For the control settings, the new infection function is passed to the existing infection.FUN
argument, while the new progression module function is passed to a new progress.FUN
argument. Since the disease progression function is handling the disease recovery process,
the recovery module is toggled off by setting its function value to NULL. The skip.check
setting toggles off some internal error checking intended for base models (e.g., that a type
parameter is specified and the parameter values in param.net are consistent with the modules
requirements).

R> control <- control.net(nsteps = 500, nsims = 5, infection.FUN = infect,
+ progress.FUN = progress, recovery.FUN = NULL,
+ skip.check = TRUE, depend = FALSE, verbose.int = 0)

Once the modules have been revised, all components are again simply passed to the netsim
function.

R> sim4 <- netsim(est4, param, init, control)

39



40 EpiModel: Network Models for Epidemics in R

500
|

Number
300 400
| |

200
1

100
1

0 100 200 300 400 500
Time

Figure 12: SEIR model output.

Examining model output

The basic prevalence plot shows the outcomes of the four disease state sizes over time.

R> par(mfrow = c(1, 1))
R> plot(sim4, y = c("s.num", "i.num", "e.num", "r.num"),
+ mean.col = 1:4, gqnts = 1, gnts.col = 1:4, legend = TRUE)

We can see in Figure 12 that adding an exposed, non-infectious stage in the model has the
effect of reducing the speed of the epidemic growth, but in this closed population nearly
everyone gets infected within the simulation time frame for this parameter set.

In summary, package EpiModel provides a general, flexible, extendable framework for simu-
lating epidemics over networks. The package EpiModel API for extending the base models
allows users to write new modules to control any aspect of the infection and demographic
processes, and have these automatically feed back to the dynamic network structure. New
modules are simply inserted into the model workflow that is executed by the netsim function.
They are written as R functions (which may call functions in other languages such as C++),
and the details of their execution are controlled directly as arguments to the control.net
helper function.

6. Discussion

This paper has provided an overview of the EpiModel package for R. Package EpiModel
is a tool for modeling infectious disease epidemics and other diffusion processes. Package
EpiModel includes extensive tools and tutorials to simulate epidemics for three different
classes of models (DCMs, ICMs, network models) with multiple modalities for each (shiny
apps, command-line programming). These tools may be used for teaching modeling, gaining
insight into basic epidemic theory and phenomena, and developing novel research extensions.

The primary methodological contribution of package EpiModel is the implementation of tools
for modeling epidemics over dynamic networks based on exponential-family random graph
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models (ERGMs), a class of statistical models for network analysis that have been developed
and supported within the statnet suite of packages for R (Handcock et al. 2015). In this
paradigm, networks comprise a set of persons with (potentially overlapping) partnerships,
where partnerships are defined as repeated disease-relevant contacts with the same person
over time.

Package EpiModel provides seamless integration of the statnet functions for estimating and
simulating complex network models, with a flexible set of functions for modeling the stochastic
infection, recovery, demographic, and other processes that determine the trajectory of an
epidemic. A key benefit of the statnet packages is that they have been designed to work with
sampled network data and, in particular, egocentrically sampled network data. These data
are relatively easy and inexpensive to collect, which makes these models practical for use in
public health and other applied research contexts.

The EpiModel package provides a starting point for applied research. Most applications will
need to make use of the flexible API to integrate the details of the pathogens, populations
and intervention options that influence the specific transmission dynamics of interest. The
package has been designed to support this kind of extension, informed, in part by our own
research goals. This includes projects that focus on drivers of HIV infection in men who have
sex with men (MSM; Goodreau et al. 2012), network-related causes of racial disparities in HIV
and STIs among heterosexuals in the United States (Morris et al. 2009), the role of acute-stage
infection and concurrency for HIV in Zimbabwe (Goodreau et al. 2010), the combined impact
of male circumcision and network structure on HIV in heterosexual couples in West Africa
(Jenness et al. 2016a), the prevention benefits of combination HIV prevention among MSM
globally (Sullivan et al. 2012), and the impact of new HIV prevention technologies among
MSM in the United States (Jenness et al. 2016b). Earlier projects relied on the statnet tools
and prototyped code that led to the development of package EpiModel, while the more recent
projects have been programmed directly in package EpiModel and led to the development
of package EpiModelHIV, an extension package of modules designed specifically to support
modeling HIV transmission (available at https://github.com/statnet/EpiModelHIV). The
open development platform on GitHub is intended to provide a mechanism for sharing such
extensions to package EpiModel.

In contrast to the basic model examples presented above, full-scale applied models require
substantial literature synthesis and analysis to define model parameters. A central question in
developing complex models like these is whether there are sufficient empirical data available
for parameterization (Lessler and Cummings 2016). Each new layer of heterogeneity in the
population or new transition between possible states in the model (e.g., disease status, clini-
cal treatment, prevention interventions) should be grounded in realistic empirical data when
available. Decisions to increase model complexity are often limited by available parameter
data (Garnett et al. 2011). Bayesian statistical methods for dynamic models have been devel-
oped to estimate input parameters based on fitting these models to available epidemiological
outcome data on disease prevalence and incidence (Poole and Raftery 2000). Approximate
Bayesian computation (ABC) is one approach we have used that is optimized for dynamic,
stochastic models like ours (Toni, Welch, Strelkowa, Ipsen, and Stumpf 2009). However, these
robust methods are computationally complex, have identifiability problems as the number of
parameters to be estimated is greater than the number of output statistics (as is typical), and
require assumptions about the validity of the model structure conditional on the posterior
parameter set.
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Another related challenge in network modeling, present in micro-simulation modeling gener-
ally, is the computational burden. Because stochastic models are simulated, typically over
many iterations in large population sizes to obtain stable outcome measures, they require com-
putational work greater than DCMs and other methods with analytic solutions. For package
EpiModel, the computational burden is associated with both estimation and simulation. Es-
timation is usually relatively fast even for large network sizes because of the approximation
method described above (Carnegie et al. 2014), but if this yields poorly fitting models then the
full TERGM estimation may be required, which takes longer (Krivitsky and Handcock 2014).
The re-simulation of the network structure at each time step, accounting for changes to the
node set (through vital dynamics) or composition of the nodal attributes, is the main compu-
tational bottleneck. In our applied network models, we often simulate networks with sizes of
up to 25,000 nodes over 100 years or longer, depending on the research questions; these may
take hours to compute depending on the number of simulations. We employ high-performance
computing systems with many cores to conduct simulations in parallel to decrease the overall
computing time. Ongoing work has been underway in both the EpiModel and statnet projects
to further optimize the algorithms within the network re-simulation in order to reduce this
bottleneck. Those efforts will be described in the documentation for future releases of these
packages.

We hope that the materials presented here provide a starting point for exploring the dynamics
of epidemics on networks using package EpiModel. There is a growing community of scholars
interested in and using this software tool. Further resources, including links to an active
mailing list, can be found on the software website at http://epimodel.org/.
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