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1 Introduction

The SARS-CoV-2 pandemic witnessed the adoption of wastewater-based surveillance
(WBS) by many jurisdictions worldwide, as early as the Spring of 2020 [1]. WBS
relies on the fact that some pathogens are shed in stools and/or urine by infected
individuals. Monitoring the pathogen concentration in wastewater (typically using
quantitative polymerase chain reaction (qPCR) techniques) can provide a proxy of
prevalence in an entire community [2, 3]. About four years after its large-scale debut,
WBS is now deployed in many jurisdiction worldwide, monitoring various pathogens
and substances of public-health concern [4]. This popularity stems in part by the
ability of WBS to sample entire communities (including asymptomatic infections) at
a relatively low cost and to quantify multiple pathogen targets (e.g., SARS-CoV-2,
Mpox, influenza, respiratory syncytial virus, measles) from a single sample [5, 6, 7, 8].

However, despite its coverage and flexibility, WBS does not provide a metric that
is directly interpretable for public health professionals. Indeed, sewer systems are
typically harsh and dynamic environments that can affect the pathogen concentration,
yielding measurements displaying a large variance and, potentially, a bias. Hence, to
support decision making, WBS needs to be translated into metrics that are directly
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relevant to public health. During an epidemic, the burden level on hospitals – a critical
component of most health systems – is an important metric. Multiple studies have
focused on understanding the link between wastewater signal and hospital admissions.
Many of them done during the COVID-19 pandemic found a correlation between the
concentration of SARS-CoV-2 RNA in wastewater and COVID-19 hospital admissions
with varying lead times [9, 10, 11, 3]. In Canadian studies, the optimal lead time when
exploring correlations between SARS-CoV-2 concentration and hospital admissions
varied between cities and between circulating variants. [12, 13, 14].

Additionally, a number of studies have used various mathematical models to esti-
mate the number of COVID-19 hospital admissions from SARS-CoV-2 wastewater
concentration, using various linear models, such as multivariate, Poisson, mixed-
effects, and generalized linear models [11, 15, 16, 17]. Other studies used more advanced
models that implement machine learning tools such as artifical neural networks and
random forest algorithms [18, 19, 20]. The lag between infection and hospital admis-
sion being at least five days on average [21], using WBS to anticipate the burden level
on hospitals can provide a key support for public health action.

Although these studies showed that WBS is often correlated to hospital admissions,
there are a number of challenges that can affect the relationship. The emergence of new
SARS-CoV-2 lineages may impact the amount of viral load shed by infected individuals
into the sewer system and may affect the virulence of SARS-CoV-2, impacting the
rate of hospitalization in infected individuals [18, 12, 22]. It is still not clear how fecal
shedding and disease virulence are related. In studies that predicted hospitalizations
from SARS-CoV-2 concentration in wastewater, variants of concerns were often used
to split data into different time periods for analysis [12, 11, 13, 23]. Other studies
took a more direct approach in incorporating variants in their models, using them as
a fixed-effect [17], as a covariate [16], or as a time-varying intercept [14].

As new SARS-CoV-2 lineages continue to emerge, models that predict COVID-19
hospital admissions from wastewater will require to account for a virulence that may
be variant-dependant. In this study, we developed a model that estimated COVID-
19 hospital admissions from SARS-CoV-2 wastewater concentration in several cities
across Canada guided by the presence of variants in each respective community. This
model quantifies the severity of circulating SARS-CoV-2 variants by estimating the
relationship between community prevalence (informed by wastewater) and acute infec-
tions (informed by COVID-19 hospital admissions). It also allows the severity of new
lineages to be benchmarked to inform public health action.

2 Methods

2.1 Data

The wastewater data is from the Public Health Agency of Canada wastewater surveil-
lance program. In collaboration with provincial and regional organizations, wastewater
samples are collected from treatment plants across Canada. Once collected, sam-
ples are shipped to the National Microbiology Laboratory in Winnipeg, Manitoba,
where qPCR is performed to measure the concentration of various pathogens such as
influenza, respiratory syncytial virus, and SARS-CoV-2. In most cities, samples are
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collected twice a week; while samples collected at treatment plants in Winnipeg are
collected five times a week. We included in this study, SARS-CoV-2 wastewater con-
centration data from treatment plants in Vancouver, Edmonton, Regina, Winnipeg,
Toronto, Halifax, and St. John’s. For comparison with weekly hospital admission
counts, we calculated the weekly mean SARS-CoV-2 concentrations at each treatment
plant.

In cities with one treatment plant, we inferred that the weekly mean concen-
tration represented SARS-CoV-2 levels for the entire city. To estimate a city-level
SARS-CoV-2 concentration in wastewater, (cities usually have multiple wastewater
treatment plants), we calculated a population-weighted mean concentration based on
the catchment population of each treatment plant.

Anonymized and aggregated hospital admission data were retrieved from the Dis-
charge Abstract Database (DAD), a database from the Canadian Institute for Health
Information (CIHI) containing administrative hospital data received directly from
inpatient facilities across Canada except Quebec [24]. Using this dataset, weekly counts
of admitted patients with an ICD-10 code equal to U071 or U072 (indicating a diagno-
sis of COVID-19 infection) were retrieved up to March 31, 2024. Along with hospital
admission data, the DAD captures the Forward Sortation Area codes (first three char-
acters of postcodes in Canada) of admitted patients. CIHI provided us with weekly
hospitalization counts aggregated at the wastewater treatment plant level, and we
subsequently aggregated the data at the city level for this study.

To account for variations in city and treatment plant size, hospital admission data
was normalized by taking weekly hospitalization counts and dividing by the sum of the
corresponding total wastewater catchment population and then multiplied by 100,000
to obtain the number of admissions per 100,000 persons. Wastewater concentration
data was not normalized to flow or any other biomarker. This was due to the fact that
flow data was not available for all treatment plants included in the study.

The SARS-CoV-2 variant lineage data is taken from sequencing done on clini-
cal samples collected from the COVID-19 National Genomics Database, a Canadian
genomics database managed by the Public Health Genomics and Computational and
Operational Genomics divisions of the Public Health Agency of Canada, with data
provided by provincial and territorial laboratories within the Canadian Public Health
Laboratory Network. The lineage data used in this study contains anonymized counts
of each variant aggregated weekly at the provincial level. Using these counts, variant
proportions were obtained, with a dominant variant determined by the variant with
the highest proportion in a week.

To account for multiple sublineages circulating within a given week, many sub-
lineages were merged into grouped variant lineage by their Pango lineage clade [25].
Using the CCT R package [26], we retrieved a list of lineages and their respective child
sublineages from the Pango Designation GitHub repository [27]. From this list, we
were able to merge sublineages found in the observed weekly variant data. For exam-
ple, sublineages such as JN.1.1, JN.1.1.5, JN.1.1.6 were merged into JN.1 as they
were reported be part of phylogenetic clade 24A. On the other hand, sublineages such
as JN.1.11.1, LP.1, LP.1.2 were grouped into JN.1.11.1 as they were reported to
be part of clade 24B.
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2.2 Statistical models

We used a hierarchical model to estimate COVID-19 hospital admissions from the
concentration of SARS-CoV-2 genes present in wastewater. In each province, the emer-
gence of B.1.1.7 as the dominant variant (“Alpha” variant) marked the starting point
in each of the data sources: wastewater concentration, hospital admissions, and vari-
ant data before the first date B.1.1.7 was declared dominant in provincial variant data
were excluded from the analysis.

The hospital admission data we had access to was not linked to genetic sequenc-
ing. Hence, we could not associate unequivocally a COVID-19 hospitalization with a
specific SARS-CoV-2 variant. We made the assumption that if a variant is observed
more often than other variants during a time frame, hospital admissions observed dur-
ing that time frame can be attributed to this “dominant” variant. Below, we define
variant dominance based on a sustained high level of circulation.

Only variants identified as dominant were selected to be included in the statistical
model. A variant was dominant if its abundance was larger than a threshold of 60%.
Its period of dominance was defined by the start and end weeks for the interval of time
where it sustained its abundance above that threshold. Moreover, dominant variants
that did not exceed this threshold for 75% of the time within a minimum 8-week
window were excluded from the model.

The hierarchical model performs a linear regression with three levels:

• the top “universal” level, which estimates hospital admissions from wastewater
concentration across all variants and geographical locations

• the variant level which estimates hospital admissions from wastewater within each
(dominant) variant period

• the geographical location level which estimates hospital admissions from wastewater
for each variant in each city

The basic linear regression formula used in each level can simply be represented
with the expression H ∼ mW+b, where H represents the logarithm of hospital admis-
sions, m represents the slope coefficient for the logarithm of wastewater concentration
W , and b represents the intercept. At the universal level, the formula to estimate H

at time t is:

H(t) ∼ mW (t) + b (1)

At the variant level, the formula to estimate the log number of hospital admissions
Hv associated with variant v at time t is:

Hv(t) ∼ mvWv(t) + bv (2)

with v = 1, . . . , V where V is the total number of variants identified in the data
set. Finally, at the location level, the formula to estimate the log number of hospital
admissions Hv,l associated with variant v at the geographical location l at time t is:

Hv,l(t) ∼ mv,lWv,l(t) + bv,l (3)
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with l = 1, . . . , Nv where Nv is the number of geographical locations where variant v
was observed.

The observed data is at the variant and location level, hence the data directly
informs estimates for mv,l and bv,l, which then inform – thanks to the hierarchical
structure – estimates for variant-level parameters mv, bv, and ultimately “universal”
parameters m, and b. A diagram illustrating the hierarchical relationship is shown in
Figure 1.

Universal level

Variant level

Variant & location

m

m1

m1,1 m1,2 ... m1,N1

m2

m2,1 m2,2 ... m2,N2

... mV

mV,1 ... mV,NV

Fig. 1 Hierarchical diagram for the slope parameter m. The top level of the diagram represents
the “universal” slope m of the linear regression linking any COVID-19 hospital admission with any
SARS-CoV-2 variant. At the middle level, the parameter mv represents the slope for variant v at any
geographical location. At the bottom level, parameter mv,ℓ represents the slope for variant v at the
geographical location ℓ. Data may not be available for all geographical locations for a given variant,
hence the number of locations having data for variant i can vary across variants and is noted Ni.
Similar diagrams can be drawn for all other hierarchical parameters (e.g., the intercept b).

The hierarchical model was implemented in R using the nimble package (version
1.2.1) [28, 29] and parameter estimation was done with the Hamiltonian Monte Carlo
Markov Chain (MCMC) algorithm using the R package nimbleHMC (version 0.2.3). To
test the validity of our implementation, synthetic data was simulated using predefined
values for m and b at each hierarchical level, and the same number of variants and
locations as found in the observation dataset. This created a dataframe containing
simulated values ofHv,l andWv,l for nine hypothetical variants and seven hypothetical
geographical locations. Results of this preliminary check are shown in Appendix A and
indicated no apparent concerns regarding the model implementation as the inference
successfully estimated the parameter values used for the simulated data.

When running the inference on the real data, the MCMC algorithm was iterated
500,000 times with 250,000 iterations used as “burn-in”, and executed on 4 chains.

In addition to the Hamiltonian MCMC algorithm, a naive linear regression was
conducted to estimate the slope for each variant at each location. This served as an
addiotional check of the MCMC inference (inferred slopes from the naive linear model
shouldn’t be disproportionaly different).

3 Results

3.1 Study population

Wastewater concentration and hospital admission data was collected from seven cities,
representing a total community population of approximately 9.7 million, or 26% of
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the Canadian population [30]. Community populations were derived from the catch-
ment sizes of individual wastewater treatment sites, ranging from 42,981 to 1,447,246
persons.

Figure 2 shows the data used by the hierarchical model. In this figure, hospital
admissions are plotted against observed wastewater concentration across various vari-
ant periods in the seven cities included in the study. As data was not available for all
geographical locations for a given variant, some of the subplots of the figure are blank.
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Fig. 2 Log-transformed COVID-19 hospital admissions and SARS-CoV-2 concentration in wastew-
ater data used by the hierarchical model. Each subplot represents a variant at a given geographic
location. Some locations have empty variant plots as no dominant variant was identified for inclusion.
The X-axis represents weekly averaged wastewater concentration, measured in gene copies per mL
(cp/mL). Y-axis represents weekly averaged hospital admissions measured in admissions per 100,000
persons.
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The start and end dates determined for each variant at each geographic location
are shown in Table B2. The date ranges represent the maximum period where the
dominant period met the criteria specified in the methods, and there was sufficient
wastewater and hospital admissions data to conduct a regression.

3.2 Hierarchical model

The Hamiltonian MCMC algorithm was run with 500,000 iterations on four chains,
with the first 250,000 iterations used as a “burn-in”, to estimate the values of model
parametersm and b at each hierarchical level. To test if the MCMC algorithm had con-
verged sufficiently, a Gelman-Rubin diagnostic was conducted to test the convergence
of the universal and variant level parameters across the four chains. Figure E6 shows
that most parameters had a potential scale reduction factor (PSRF) below 1.001.

The mean estimates for slope and intercept at the universal level (on the log scale)
were inferred to be 0.353 and 0.471 respectively. Table 1 shows the estimates of m and
b at the universal and variant levels.

Table 1 Inferred slope (m) and intercept (b) estimates
from the Hamiltionian MCMC algorithm at the universal
and variant levels. Algorithm was executed across 4
chains using 500,000 iterations and 250,000 iterations
used as ”burn-in”. Values in brackets represent the 95%
credible interval.

Variant slope m intercept b

B.1.1.7 0.406 [0.262; 0.669] 0.502 [-0.343; 1.353]
B.1.617.2 0.327 [0.219; 0.425] -0.163 [-0.71; 0.396]
BA.1 0.351 [0.252; 0.457] 0.315 [-0.235; 0.853]
BA.2 0.38 [0.256; 0.551] 0.458 [-0.264; 1.159]
BA.5 0.31 [0.138; 0.432] 1.035 [0.299; 1.826]
BQ.1 0.344 [0.187; 0.492] 0.783 [0.096; 1.561]
XBB.1.5 0.327 [0.153; 0.465] 0.536 [-0.182; 1.335]
EG.5.1 0.355 [0.181; 0.546] 0.579 [-0.358; 1.635]
JN.1 0.371 [0.25; 0.533] -0.07 [-0.81; 0.571]
Universal 0.353 [0.257; 0.459] 0.471 [0; 0.99]

To represent the results of the log-regressions in a more straightforward epidemi-
ological way, we show the hospital admissions estimates given viral concentration in
wastewater (not log transformed, but as they would be directly observed) in Figure 3.
The hospital admissions values were calculated using the formula h = eb ×wm where
h = log(H) and w = log(W ). The values form and b were sampled from their posterior
distributions and the colored area in Figure 3 illustrates different quantiles intervals
(from light to dark, see figure caption for details).
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Fig. 3 Estimated SARS-CoV-2 hospital admissions per viral concentration of wastewater. Hospi-
tal admissions is measured per 100,000 persons. Different colours represent hospital admissions at
different quantiles of the credible interval of the sampled posterior distribution of m and b, with
darker colours representing the upper range of the credible interval. The lightest region represents
the 2.5%-10% quantile, then the following regions indicate 10%-25%, 25%-50%, 50%-75%, 75%-90%,
and 90%-97.5% for the darkest colour. Open circles represents an hypothetical new variant wave that
could be categorized as a high-severity variant, whereas crosses represent another hypothetical low-
severity new variant.

3.3 Sensitivity analyses and comparison to a simple linear

regression

To test the robustness of our inference using the Hamiltonian MCMC algorithm, a
number of sensitivity analyses were conducted to assess the impact of changing the
dominance definition. The results of this sensitivity analysis are shown in Appendix D.
Overall, the estimated slopes and intercepts at the universal and variant levels are
comparable to what was found.

A naive linear regression was conducted to estimate, independently, the slope and
intercept for each variant/location pair. Its results are shown in Appendix E and the
differences with the Bayesian hierarchical model are as expected (estimates at the
variant/location level from the hierarchical model are “pulled” to the universal level
whereas estimates from the independent linear regressions are more scattered).

4 Discussion

Despite many advantages of WBS, translating viral concentrations measured in
wastewater into practical clinical outcomes (e.g., number of infections, hospitaliza-
tions) remains a challenge because of various factors, including environmental and
in-sewer dynamics.
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Our study, using data from seven large urban centres representing 26% of the
Canadian population, inferred the relationship across locations and variants that cir-
culated between late 2020 and March 2024, drawing information from multiple variants
at different geographic locations. Looking forward in time, our study can also pro-
vide an expected range of COVID-19 hospital admissions for a given SARS-CoV-2
concentration level in wastewater and virulence of emerging variants. Indeed, esti-
mates of the hierarchical parameters provide watermarks of severity levels for any
future (re)emerging SARS-CoV-2 variants. The estimates of the “universal” regres-
sion parameters (slope m and intercept b) have a joint distribution from which we
can extract confidence intervals to flag an unusually high virulence that would war-
rant informing local public authorities. For example, as a new variant emerges, data
from wastewater and clinical surveillance can be overlayed on Figure 3 to categorize
its population-level clinical severity by comparing the number of hospital admissions
to wastewater concentrations, a proxy for the community-wide prevalence because it
includes asymptomatic and mild infections. The open circles in Figure 3 indicate a
hypothetical high-severity new variant (paired data would be obtained every week
from the clinical and wastewater surveillance), whereas the crosses on the same figure
show another hypothetical lower-severity variant. As future waves caused by new vari-
ants unfold, we can feed that data to the hierarchical model in order to determine
updated levels for the severity categories for the next wave. This is a novel approach to
inferring virulence of a SARS-CoV-2 variant as it gauges its virulence using wastewa-
ter surveillance that includes asymptomatic and mild infections, as opposed to relying
solely on clinical information (i.e., test positivity rates, hospital admissions).

Values of the regression intercept (parameter b) to infer hospital admissions rep-
resent the “baseline” hospitalization level for COVID-19 in a given location, that is,
the number of hospital admissions when no SARS-CoV-2 transmission is apparently
circulating. We found that the values of the intercept vary at both the variant and
geographic level (Table 1). This is not surprising for two reasons. Firstly, delivery of
healthcare in Canada is managed by provincial or territorial authorities, meaning that
each province or territory has its own health care infrastructure and resource use.
While the model estimates COVID-19 hospital admissions per capita to account for
differences in population between locations, the varying number of available beds per
capita and admission policies between provinces and territories would explain differing
baseline levels. Secondly, as the hierarchical model does not draw data from variants
equally between geographic locations (due to restrictions in variant dominance for the
inclusion criteria), the weight of each location varies between variants depending on
how much data is drawn (if any, at all) for each variant.

In this study we selected B.1.1.7 as our starting variant in the model. Commonly
known as the “Alpha” variant, B.1.1.7 was one of the first publicized variants of
concern that emerged in late 2020 across many countries [31]. Although other SARS-
CoV-2 lineages were present in sample data prior its emergence, variants of concern
became more clearly defined and classified after the presence of B.1.1.7 in sequencing
data.

In this study, there were variants that did not meet the inclusion criteria in sev-
eral geographic locations, while some variants met the inclusion criteria in virtually

9
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all locations. These differences could suggest varying levels of variant invasion in the
community. Variants such as B.1.617.2 (commonly known as Delta) and BA.1 (com-
monly known as the first Omicron variant) were well known variants of concern, and
were included at all locations in our model. While increasing genetic diversity may
have contributed to later variants not being included at all locations, there were still
newer variants (such as BQ.1 and JN.1) that were included in most locations. In these
two examples, they were included in all locations except St. John’s. Given that St.
John’s variant data comes from the least populous province in our model in which the
fewest samples were collected, it can still be inferred that these variants still had a
high level of invasion in the community.

While other studies have examined the virulence of variants when predicting hospi-
tal admissions from SARS-CoV-2 wastewater concentration, this study provides new
findings. Firstly, this study examines variants beyond the first and second waves of
Omicron observed in late 2021 and early 2022 by classifying the virulence of BA.1,
BA.2, and the subsequent lineages that emerged after up to JN.1 observed in early
2024. Previous studies have either captured up to the first Omicron wave [11, 16], or
BA.2 [12, 13], or have classified data after the first Omicron wave as “post-Omicron”
[23]. Secondly, the use of a hierarchical model generates a global range of SARS-CoV-
2 virulence across different variants, allowing the virulence of emerging variants to be
benchmarked. Although the World Health Organization has declared it to no longer
be an international public health emergency since May 2023 [32], COVID-19 contin-
ues to be a public health issue with new mutations and waning of immunity giving
rise to waves of COVID-19 hospitalizations. Using the hierarchical model in this study
can allow researchers to classify the virulence of a new variant and help public health
officials prepare hospital resources use accordingly.

In our study, we found that B.1.1.7 had a higher slope value (m) compared to
B.1.617.2, suggesting higher virulence. This is contrary to previous studies, which have
shown that mutations in its spike protein have led B.1.617.2 to be more transmissive
and virulent than B.1.1.7 [33, 34]. Possible explanations for this discrepancy include
the limited number of geographic locations for B.1.1.7 included in the model contribut-
ing a the wider uncertainty in the estimates for the slope m, and the introduction
of vaccination campaigns in many Canadian cities during the B.1.617.2 period [12]
that may have confounded the relationship between SARS-CoV-2 wastewater concen-
tration and hospital admissions. Conversely, waning immunity from vaccination is a
possible explanation as to why BA.1 and BA.2 had higher slope values than B.1.617.2
despite other studies showing higher virulence for B.1.617.2 [35, 36]. When examining
newer Omicron variants to earlier lineages, we found that BA.5 had a lower viru-
lence than BA.1 and BA.2. While studies in other countries found similar virulence
between these variants [37, 38], a Canadian study found a higher risk of hospitaliza-
tion in patients infected with BA.5 [39]. While BQ.1 had a slightly lower regression
slope than BA.1 and BA.2, its slope was higher than BA.5. This is somewhat in line
with existing literature that suggests that BQ.1 exhibits higher escape neutralisation
than BA.5, but also higher escape neutralisation than BA.1 and BA.2 [40, 41]. JN.1
had a slightly higher regression slope than XBB.1.5, which was higher than EG.5.1.
This is contrary to results found in previous studies [42, 43]. A possible explanation
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could be that increased transmissibility and immune escape [44] allowed more data
for JN.1 to be included than EG.5.1 and XBB.1.5, giving a more reliable estimate of
its virulence. Decreased vaccine effectiveness against JN.1 may have also confounded
JN.1’s virulence estimate [45, 46].

Although this study develops a well-defined model to estimate COVID-19 hospital
admissions from viral wastewater concentration, there are a number of limitations.

It is unclear if differences in fecal shedding dynamics had played a role in the
differences in slopes (m) and intercepts (b) estimates between the variants. We inter-
pret the slopes of each variant as an indication of virulence at the whole population
level (i.e., accounting for asymptomatic/mild infections). Variants with higher slopes
suggest higher virulence, meaning that an infected individual is more likely to have
a severe infection (and hence be hospitalized) than with variants associated with a
lower regression slope. This interpretation assumes that the rate of fecal shedding, the
amount of viral SARS-CoV-2 RNA that an individual sheds through their stool during
their infection, remains similar across different variants. Research on fecal shedding
dynamics between variants is limited, but could provide an alternate interpretation to
varying slopes found in this model.

This study used a restrictive inclusion criteria when selecting data in the model.
This was done to best ascertain hospital admissions to circulating variants. In the
absence of genomic sequencing of admitted patients, ascertaining SARS-CoV-2 hos-
pital admissions to variants can be difficult, particularly during periods of competing
dominance. To define the time windows of each variant at each location, we examined
clinical sample counts collected at the provincial level that corresponded to each city in
the study. Sample counts varied between provinces. Larger provinces, such as Ontario
and British Columbia, reported on average 765 and 1114 weekly samples respectively.
Smaller provinces, such as Nova Scotia and Newfoundland and Labrador, reported on
average 45 and 21 samples weekly. During the development of the model, the Shan-
non Index [47] was first attempted to establish variant dominance but as genetic drift
increased over time (particularly after the emergence of BA.1), it became difficult to
define variant periods. As such, a minimum threshold of 60% was selected to best
ascertain hospital admissions to a particular variant in a community without being
too restrictive in our variant data windows. But, lacking access to hospital admissions
linked to genomic analysis, our identification of dominant variants, which relies on
dominance for a sustained period of time, may be erroneous.

Although hospital admissions were normalized by population, wastewater concen-
tration was not normalized by flow. This was in part due to the fact that not all cities
included in the study had flow data available. Preliminary analyses had shown that
flow-normalization of the cities with available flow data did not substantially impact
the outcome of this study.

The model used in this study did not take take into consideration vaccination
coverage. In many studies, vaccination has shown to be effective in reducing COVID-19
hospital admissions [48, 49, 50]. In Canada, SARS-CoV-2 vaccination coverage varied
during the course of the COVID-19 pandemic. In 2021, following the rollout of SARS-
CoV-2 vaccines, vaccination coverage was 80% [51]. By July 2024, however, only 3.9%
of Canadians met COVID-19 vaccination recommendations at that time, which was to
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receive a number of XBB.1.5 vaccine (the latest vaccine at the time) doses depending
on their age group [52]. Varying vaccination coverage between different time periods
may have confounded the impact of variants on SARS-CoV-2 hospital admissions
and possibly on fecal shedding given that vaccination may reduce the viral load of
an infectious person [53], and that vaccine effectiveness may vary between variants
[54, 46].

This study did not take into consideration precipitation and degredation in the
sewer system that may lead to potential losses of viral wastewater concentration [55,
56]. Future studies should take into account the viral fate of SARS-CoV-2 in the sewer
system.

Despite its limitations, the hierarchical model used in this study provides a statisti-
cal framework for inferring COVID-19 hospitalizations from SARS-CoV-2 wastewater
concentration. Unlike a simple independent linear regression, a hierarchical model can
draw information from multiple sources with varying amounts of data to generate a
weighted estimate of an outcome of interest. While a simple linear regression can pro-
vide estimates of variant virulence at a particular location for a specific variant, our
hierarchical model provides a weighted estimate of a variant’s virulence across all loca-
tions and past variants. That weighted estimate can then be used to provide, for an
emerging variant, an estimate of SARS-CoV-2 virulence at the whole population level
and categorize its severity level (Figure 3).

5 Conclusion

This study provides a modelling framework to assess the relationship between COVID-
19 hospital admissions and SARS-CoV-2 wastewater concentration across different
variants and large urban centres in Canada. The statistical inference can be used to
analyze the virulence of past SARS-CoV-2 variants and also to categorize the virulence
of emerging variants to support public health action.
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David Veyer, Hélène Péré, Bruno Lina, Sophie Trouillet-Assant, Laurent Hoc-
queloux, Thierry Prazuck, Etienne Simon-Loriere, and Olivier Schwartz. Distinct
evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining
increased fitness and antibody evasion. Nature Communications, 15(1):2254,
March 2024.

[45] Dan-Yu Lin, Yi Du, Yangjianchen Xu, Sai Paritala, Matthew Donahue, and
Patrick Maloney. Durability of xbb.1.5 vaccines against omicron subvariants. New
England Journal of Medicine, 390(22):2124–2127, 2024.

[46] Jennifer L. Nguyen, Marianna Mitratza, Hannah R. Volkman, Leonie De Munter,
Thao Mai Phuong Tran, Catia Marques, Mustapha Mustapha, Srinivas Valluri,
Jingyan Yang, Andrés Antón, Irma Casas, Eduardo Conde-Sousa, Laura Drikite,
Beate Grüner, Giancarlo Icardi, Gerrit Luit Ten Kate, Charlotte Martin, Ainara
Mira-Iglesias, Alejandro Orrico-Sánchez, Susana Otero-Romero, Gernot Rohde,
Luis Jodar, John M. McLaughlin, and Kaatje Bollaerts. Effectiveness of the
BNT162b2 XBB.1.5-adapted vaccine against COVID-19 hospitalization related
to the JN.1 variant in Europe: A test-negative case-control study using the
id.DRIVE platform. eClinicalMedicine, 79:102995, January 2025.

[47] Selene Ortiz-Burgos. Shannon-Weaver Diversity Index, pages 572–573. Springer
Netherlands, Dordrecht, 2016.

[48] Hannah Chung, Siyi He, Sharifa Nasreen, Maria E Sundaram, Sarah A Buchan,
Sarah E Wilson, Branson Chen, Andrew Calzavara, Deshayne B Fell, Peter C
Austin, Kumanan Wilson, Kevin L Schwartz, Kevin A Brown, Jonathan B Gub-
bay, Nicole E Basta, Salaheddin M Mahmud, Christiaan H Righolt, Lawrence W
Svenson, Shannon E MacDonald, Naveed Z Janjua, Mina Tadrous, and Jeffrey C
Kwong. Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against
symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario,
Canada: Test negative design study. BMJ, page n1943, August 2021.

[49] Eleftheria Vasileiou, Colin R Simpson, Ting Shi, Steven Kerr, Utkarsh Agrawal,
Ashley Akbari, Stuart Bedston, Jillian Beggs, Declan Bradley, Antony Chuter,
Simon De Lusignan, Annemarie B Docherty, David Ford, Fd Richard Hobbs,
Mark Joy, Srinivasa Vittal Katikireddi, James Marple, Colin McCowan, Dylan
McGagh, Jim McMenamin, Emily Moore, Josephine Lk Murray, Jiafeng Pan,
Lewis Ritchie, Syed Ahmar Shah, Sarah Stock, Fatemeh Torabi, Ruby Sm Tsang,
Rachael Wood, Mark Woolhouse, Chris Robertson, and Aziz Sheikh. Interim
findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hos-
pital admissions in Scotland: A national prospective cohort study. The Lancet,
397(10285):1646–1657, May 2021.

[50] Lucy A McNamara, Ryan E Wiegand, Rachel M Burke, Andrea J Sharma,
Michael Sheppard, Jennifer Adjemian, Farida B Ahmad, Robert N Anderson,
Kamil E Barbour, Alison M Binder, Sharoda Dasgupta, Deborah L Dee, Emma S
Jones, Jennifer L Kriss, B Casey Lyons, Meredith McMorrow, Daniel C Payne,
Hannah E Reses, Loren E Rodgers, David Walker, Jennifer R Verani, and

22



1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Stephanie J Schrag. Estimating the early impact of the US COVID-19 vaccination
programme on COVID-19 cases, emergency department visits, hospital admis-
sions, and deaths among adults aged 65 years and older: An ecological analysis
of national surveillance data. The Lancet, 399(10320):152–160, January 2022.

[51] Demy Dam, Sharifa Merali, Michelle Chen, Cameron Coulby, Brigitte Ho Mi Fane,
Felix Bang, Jordan Robson, and Samara David. COVID-19 outcome trends
by vaccination status in Canada, December 2020–January 2022. Canada

Communicable Disease Report, 50(1/2):40–48, February 2024.
[52] Public Health Agency of Canada. Covid-19 vaccination: Vaccination coverage.

https://health-infobase.canada.ca/covid-19/vaccination-coverage/.
[53] Jessica A. Plante, Rafael R. G. Machado, Brooke M. Mitchell, Divya P. Shinde,

Jordyn Walker, Dionna Scharton, Allan McConnell, Nehad Saada, Jianying Liu,
Bilal Khan, Rafael K. Campos, Bryan A. Johnson, Vineet D. Menachery, Corri B.
Levine, Ping Ren, Susan L. F. McLellan, Kenneth S. Plante, and Scott C. Weaver.
Vaccination Decreases the Infectious Viral Load of Delta Variant SARS-CoV-2
in Asymptomatic Patients. Viruses, 14(9):2071, September 2022.

[54] Ali A. Rabaan, Shamsah H. Al-Ahmed, Hawra Albayat, Sara Alwarthan,
Mashael Alhajri, Mustafa A. Najim, Bashayer M. AlShehail, Wasl Al-Adsani,
Ali Alghadeer, Wesam A. Abduljabbar, Nouf Alotaibi, Jameela Alsalman, Ali H.
Gorab, Reem S. Almaghrabi, Ali A. Zaidan, Sahar Aldossary, Mohammed Alissa,
Lamees M. Alburaiky, Fatimah Mustafa Alsalim, Nanamika Thakur, Geetika
Verma, and Manish Dhawan. Variants of SARS-CoV-2: Influences on the Vac-
cines’ Effectiveness and Possible Strategies to Overcome Their Consequences.
Medicina, 59(3):507, March 2023.

[55] Kristina M. Babler, Mark E. Sharkey, Samantha Abelson, Ayaaz Amirali, Aymara
Benitez, Gabriella A. Cosculluela, George S. Grills, Naresh Kumar, Jennifer
Laine, Walter Lamar, Erik D. Lamm, Jiangnan Lyu, Christopher E. Mason,
Philip M. McCabe, Joshi Raghavender, Brian D. Reding, Matthew A. Roca,
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Appendix A Preliminary check of hierarchical

model using synthetic data

To check our implementation of the hierarchical model in the programming lan-
guage R, we simulated data with the same hierarchical structure as expected by the
model. Briefly, we chose a value for the universal slope and intercept for the log-linear
relationship between wastewater concentration and hospital admissions, then draw
variant-level intercept and slopes from distributions centred on these (chosen) univer-
sal values and finally drew again intercepts and slopes at the location/variant level
(see Methods section in the main text). Table A1 shows the values taken to generate
the simulated data. We chose the number of hypothetical variants and geographical
locations to be the same as the real data set we used, that is seven variants and
nine locations. For each location/variant pair, we imposed the total number of data
points to be sampled from integers between 6 and 24. The simulated data is shown in
Figure A1.

Table A1 Parameter values for simulated data

Parameter Value Description
m 1.0 universal slope
b 1.1 universal intercept
σM 0.5 standard deviation of mu, when drawin at variant level
σB 0.6 standard deviation of beta, when drawin at variant level
σm 1.0 standard deviation of M, when drawin at variant location/level
σb 1.1 standard deviation of B, when drawin at variant location/level
σ 30 standard deviation for the drawn paired data points

We ran the same inference model as for the real data in the main analysis, that is
using a Hamiltonian MCMC algorithm in the R package Nimble with 500,000 itera-
tions with 250,000 used as burn-in on four chains. The posterior distributions for the
universal and variant-level parameters are shown in Figure A2. For most of the param-
eters, the 95% credible interval includes the “true” value of the parameter used to
simulate the data (red vertical line, Figure A2), suggesting there is no major problem
with the model implementation.
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Fig. A1 Simulated data used to check the implementation of the hierarchical model in R.

Appendix B Start and end dates of variant periods

in each geographic location

Table B2 shows the start and end dates of variant periods in geographic location used
in the our model. Due to the inclusion criteria specified in the methods, the number
of locations with a defined start and end date may vary for each variant.
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Fig. A2 Posterior distribution for the inference of the universal-level (top panels) and variant-level
(lower panels) intercept and slope on simulated data. The vertical red line indicates the value of the
parameter used to simulate the data (hence the “true” value that must be inferred). The black open
circle shows the mean of the posterior distribution and the black horizontal segment its 95% credible
interval.

Appendix C Detailed results of hierarchical model

Here, we present more detailled outputs of the Hamiltonian MCMC algorithm after
it ran on the Canadian data sets. As a reminder, for each of the four chains, 500,000
iterations were run of which 250,000 were used as burn-in. The model was implemented
in the programming language R and used the packages nimble version 1.2.1 and
nimbleHMC version 0.2.3.
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The plots below show the traces of the chains, the Gelman-Rubin statistics and the
posterior density distributions for all the parameters at the universal and variant levels.
For convenience of the computer implementation, the name of the parameters were
slightly changed compared to the notation in the main text. The universal intercept
and slope are displayed in the figures of this section as beta (b in Equation 1 of the
main text) and mu (m in Equation 1 of the main text), respectively. The intercepts
and slopes at the variant level are shown as B XYZ (bv as per Equation 2 in the main
text for variant XYZ) and M XYZ (mv as per Equation 2 in the main text for variant
XYZ). Moreover, the variance (σ in the main text) is shown as sigma in this section.

C.1 Trace plots

A visual inspection of the trace plots in Figure C3 shows a satisfactory mixing of the
chains.
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Fig. C3 Posterior trace plots for every parameters. The HMCMC algorithm was run on 4 chains
with 500,000 iterations each, including 250,000 used as burn-in.

C.2 Gelman-Rubin convergence statistic

The Gelman-Rubin statistic was below 1.002 for most parameters (Figure C4), con-
firming a sufficient number of MCMC iterations were performed to reach convergence.
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Fig. C4 Gelman-Rubin statistics. The HMCMC algorithm was run on 4 chains with 500,000 itera-
tions each, including 250,000 used as burn-in. Points represent mean estimates and the segment the
maximum values.

C.3 Posterior distributions

In Figure C5, we show the posterior distributions for the universal- and variant-level
parameters inferred.
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Fig. C5 Posterior distributions.
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Appendix D Sensitivity analysis of Hamiltonian

MCMC execution

Here, we present the results of our sensitivity analysis to assess the impact of changing
the definition of variant dominance on the results of the Hamiltonian MCMC algo-
rithm. To recall, we defined variant dominance by setting the minimum circulation
abundance threshold of 60%. This threshold was required to be met for at least 75%
within a minimum 8 week data window.

In this sensitivity analysis, the following changes were made to the variant
dominance definition:

• Changing the abundance threshold ± 15%, providing alternate thresholds of 45%
and 75%.

• Changing the data window ± 2 weeks, providing alternate windows of 6 and 10
weeks.

• Changing the percentage of weeks required to meet the abundance threshold within
the window ± 20%, providing alternate percentages of 55% and 95%.

We used the inferred slope (m) and intercept (b) estimates at the universal level
to examine the impact of changing the variant dominance definition. In total, 27
distinct Hamiltonian MCMC executions were conducted, including an execution that
uses the data that matches the reference dominance definition. Given the number of
executions, only 100,000 iterations were run on 4 chains with a burn-in of 50,000. The
sensitivity analysis was implemented in the programming language R and used the
packages nimble version 1.2.1 and nimbleHMC version 0.2.3.

Table D3 illustrates that slope and intercept estimates are comparable across
different variant dominance definitions.
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Appendix E Naive linear regression and its

comparison to the Hamiltonian MCMC

output

In addition to the hierarchical model, we performed naive linear regression of the
log number of hospital admissions and log SARS-CoV-2 wastewater concentrations,
independently on each geographic location/variant pair. Despite being two different
modelling frameworks, the estimates of the regression intercepts and slopes should not
be very different (the hierarchical model is expected to pull variant-level estimates
towards the universal-level ones). The comparison of the estimates is shown in E6.
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Fig. E6 Comparison of intercepts and slopes obtained from the hierarchical model for each variant
with naive linear regression conducted for variants at each geographic location. Red vertical bars rep-
resent the HMCMC mean estimates with its respective 95% credible interval. Black circles represent
mean estimates from the linear regression for each location, with black vertical lines representing
total uncertainty. Size of circles represent the number of data points included.
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Table B2 Start and end dates of each variant period used in the
model at each location. Start and end dates were derived based
on the criteria defined in the methods.

City Province Variant Start End
Edmonton AB B.1.617.2 2021-07-11 2021-12-05
Edmonton AB BA.1 2021-12-12 2022-02-27
Edmonton AB BA.2 2022-03-20 2022-05-01
Edmonton AB BA.5 2022-07-03 2022-10-23
Edmonton AB BQ.1 2022-11-27 2023-02-05
Edmonton AB JN.1 2024-01-07 2024-03-31
Halifax NS B.1.1.7 2021-04-18 2021-05-23
Halifax NS B.1.617.2 2021-06-27 2021-11-28
Halifax NS BA.1 2021-12-05 2022-03-13
Halifax NS BA.2 2022-04-03 2022-05-29
Halifax NS BA.5 2022-07-17 2022-11-27
Halifax NS BQ.1 2023-01-01 2023-02-12
Halifax NS JN.1 2024-01-21 2024-03-31
Regina SK B.1.1.7 2021-04-18 2021-05-30
Regina SK B.1.617.2 2021-07-04 2021-12-12
Regina SK BA.1 2021-12-19 2022-03-06
Regina SK BA.2 2022-03-27 2022-05-08
Regina SK BA.5 2022-07-03 2022-10-23
Regina SK BQ.1 2022-11-20 2023-01-29
Regina SK XBB.1.5 2023-02-26 2023-06-04
Regina SK JN.1 2024-01-07 2024-03-31
St. John’s NL B.1.617.2 2021-05-16 2021-11-21
St. John’s NL BA.1 2021-12-12 2022-03-27
Toronto ON B.1.617.2 2021-06-20 2021-12-05
Toronto ON BA.1 2021-12-19 2022-03-06
Toronto ON BA.2 2022-03-20 2022-05-15
Toronto ON BA.5 2022-07-03 2022-11-06
Toronto ON BQ.1 2022-12-11 2023-01-15
Toronto ON XBB.1.5 2023-03-05 2023-04-30
Toronto ON JN.1 2024-01-07 2024-03-31
Vancouver BC B.1.617.2 2021-07-18 2021-12-05
Vancouver BC BA.1 2021-12-19 2022-02-20
Vancouver BC BA.5 2022-07-10 2022-10-30
Vancouver BC BQ.1 2022-12-11 2023-01-22
Vancouver BC XBB.1.5 2023-03-12 2023-04-30
Vancouver BC JN.1 2024-01-07 2024-03-31
Winnipeg MB B.1.617.2 2021-06-20 2021-12-05
Winnipeg MB BA.1 2021-12-12 2022-03-13
Winnipeg MB BA.2 2022-03-27 2022-05-22
Winnipeg MB BA.5 2022-07-03 2022-10-23
Winnipeg MB BQ.1 2022-11-20 2023-01-29
Winnipeg MB XBB.1.5 2023-02-26 2023-05-28
Winnipeg MB EG.5.1 2023-10-01 2023-12-10
Winnipeg MB JN.1 2024-01-14 2024-03-31
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Table D3 Results of the sensitivity analysis of Hamiltonian MCMC execution. Inferred slope (m)
and intercept (b) estimates from the Hamiltionian MCMC algorithm at the universal and variant
levels were estimated using different variant dominance definitions. Reference refers to the primary
dominance definition used in the main model with threshold of 60%, window of 8 weeks, and 75% of
window weeks above threshold. Algorithm was executed across 4 chains using 100,000 iterations and
50,000 iterations used as ”burn-in”. Values in brackets represent the 95% credible interval.

Threshold (%) Window (weeks) % above slope m intercept b

Reference Reference Reference 0.354 [0.257; 0.459] 0.466 [-0.004; 0.988]
Reference Reference +20 0.343 [0.232; 0.461] 0.53 [0.002; 1.154]
Reference Reference -20 0.339 [0.249; 0.434] 0.515 [0.063; 1.017]
Reference +2 Reference 0.351 [0.251; 0.464] 0.483 [-0.035; 1.062]
Reference +2 +20 0.333 [0.212; 0.464] 0.606 [-0.002; 1.302]
Reference +2 -20 0.353 [0.264; 0.451] 0.461 [0.001; 0.955]
Reference -2 Reference 0.353 [0.257; 0.458] 0.469 [0.002; 0.988]
Reference -2 +20 0.356 [0.258; 0.466] 0.464 [-0.002; 0.981]
Reference -2 -20 0.341 [0.249; 0.441] 0.488 [0.026; 0.995]
+15 Reference Reference 0.313 [0.202; 0.443] 0.636 [0.081; 1.253]
+15 Reference +20 0.297 [0.165; 0.447] 0.599 [-0.019; 1.285]
+15 Reference -20 0.307 [0.196; 0.435] 0.688 [0.135; 1.306]
+15 +2 Reference 0.312 [0.19; 0.454] 0.533 [-0.056; 1.184]
+15 +2 +20 0.28 [0.115; 0.472] 0.656 [-0.061; 1.472]
+15 +2 -20 0.306 [0.195; 0.432] 0.655 [0.104; 1.274]
+15 -2 Reference 0.315 [0.206; 0.443] 0.672 [0.121; 1.291]
+15 -2 +20 0.291 [0.171; 0.426] 0.604 [0.042; 1.237]
+15 -2 -20 0.309 [0.199; 0.434] 0.689 [0.14; 1.301]
-15 Reference Reference 0.367 [0.254; 0.477] 0.448 [-0.044; 0.998]
-15 Reference +20 0.374 [0.237; 0.504] 0.446 [-0.077; 1.039]
-15 Reference -20 0.389 [0.295; 0.487] 0.361 [-0.088; 0.851]
-15 +2 Reference 0.375 [0.27; 0.479] 0.398 [-0.068; 0.915]
-15 +2 +20 0.375 [0.257; 0.491] 0.43 [-0.058; 0.985]
-15 +2 -20 0.387 [0.247; 0.484] 0.322 [-0.104; 0.8]
-15 -2 Reference 0.37 [0.253; 0.482] 0.452 [-0.032; 0.999]
-15 -2 +20 0.374 [0.235; 0.505] 0.451 [-0.07; 1.044]
-15 -2 -20 0.39 [0.295; 0.488] 0.361 [-0.091; 0.858]
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