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Abstract 
COVID-19 has become endemic, with dynamics that reflect the waning of immunity and re-exposure, by contrast to the epidemic phase driven 
by exposure in immunologically naïve populations. Endemic does not, however, mean constant. Further evolution of SARS-CoV-2, as well as 
changes in behavior and public health policy, continue to play a major role in the endemic load of disease and mortality. In this article, we analyze 
evolutionary models to explore the impact that a newly arising variant can have on the short-term and longer-term endemic load, characterizing 
how these impacts depend on the transmission and immunological properties of the variants. We describe how evolutionary changes in the virus 
will increase the endemic load most for a persistently immune-escape variant, by an intermediate amount for a more transmissible variant, and 
least for a transiently immune-escape variant. Balancing the tendency for evolution to favor variants that increase the endemic load, we explore 
the impact of vaccination strategies and non-pharmaceutical interventions that can counter these increases in the impact of disease. We end 
with some open questions about the future of COVID-19 as an endemic disease.
Keywords: evolution, epidemiology, model, SARS-CoV-2, selection

Introduction
Early in the global pandemic, COVID-19 levels rose and fell 
steeply, displaying rapid exponential growth and leading to 
widespread lockdowns and other public health measures to 
slow transmission (Ogden et al., 2022; Talic et al., 2021). 
The vaccination campaigns of 2021, followed by the nearly 
uncontrolled Omicron waves in early 2022 (Figure 1, BA.1 
and BA.2 peaks), have now led to almost 100% immuno-
logical exposure in many countries. In Canada, for exam-
ple, 100% of blood donors had developed antibodies to the 
spike protein from previous exposure to the virus by June 
2023, with 80% also showing antibodies to nucleocapsid, 
indicating prior infection (Canadian Blood Services, 2023). 
The number of immunologically naïve individuals that fed 
COVID-19 dynamics throughout the pandemic has now 
greatly decreased, but in its place is a continual flow of newly 
susceptible individuals as humoral immunity wanes. For the 
past year, COVID-19 levels have ebbed and flowed in response 
to this waning and boosting of immunity, new variants, indi-
vidual behavior, and changing public health measures. These 
peaks and troughs are more subdued wavelets, compared to 
earlier Omicron peaks (Figure 1).

COVID-19 is now considered an endemic disease, being 
both widespread and persistent, adding to the respiratory 
infectious diseases with which we must routinely contend. 
Its now-endemic nature reflects a balance between waning 
immunity and ongoing transmission, leading to a turnover of 
cases across the globe. Endemic does not mean “constant,” as 
new variants and behavioral shifts drive change. Endemic also 

does not mean “rare,” as waning and transmission rates have 
remained high, and waves continue to be driven by new vari-
ants (e.g., Figure 1). Here we explore mathematical models to 
improve the understanding of how the ongoing evolution of 
SARS-CoV-2, as well as our behavioral responses, will shape 
endemic COVID-19 and similar diseases.

When most individuals in a population are susceptible (epi-
demic phase), any variant or behavioral measure that affects 
the transmission rate will have a direct effect on the number 
of new infections over the short term, as exposures determine 
the spread of disease. When a disease first appears, the repro-
ductive number describing the number of new infections per 
infection, R0, is given by the transmission rate divided by the 
clearance rate of the infection in the classic SIR epidemiolog-
ical model (Keeling & Rohani, 2011). Variants that increase 
transmission or behavioral changes that reduce transmission 
directly impact the number of new infections and the rate 
of exponential growth, but these new infections have little 
immediate effect on the large pool of susceptible individuals. 
Evolutionary models of this epidemic phase (e.g., Day et al., 
2020) thus typically focus on capturing the complexities of 
transmission, for example, including exposed or asymptom-
atic classes and non-homogenous mixing, but often ignore 
waning of immunity or the possibility that variants may 
evade any such immunity earlier.

By contrast, when a disease is endemic and most individu-
als have some degree of immunity, waning must be explicitly 
considered and modeled in a manner that allows variants to 
infect earlier (as in the SIRn model, with multiple recovered 
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classes, that we consider here). Within this endemic context, 
many individuals have had prior exposure to the disease, and 
only some are currently susceptible due to waning immunity. 
Variants that escape immunity can infect earlier in this wan-
ing process, gaining a selective advantage that is absent during 
the initial epidemic phase when few individuals are immune. 
Evolutionary or behavioral changes in transmission rate 
are also dampened during the endemic phase because faster 
transmission depletes the limited pool of susceptible individ-
uals. Here, we focus on evolution during the endemic phase 
by using a model intended to capture the nuances of immune 
waning and reexposure through infection or vaccination.

At one extreme, infections during the endemic phase may 
be limited not by transmission but by waning, which has been 
used as an argument against non-pharmaceutical measures 
like masking by some public health officials, e.g.:

Masks “can delay transmission, they can reduce transmis-
sion, but they’re not actually effective measures at a pop-
ulation level,” because “exposure is essentially universal 
now to COVID-19.”

November 2, 2022 in Today in BC podcast

This argument assumes that transmission is so common that 
reducing risks of exposure no longer matters, as another 
exposure will occur soon thereafter. This is a strong claim, 
with major implications for both individual and public health 
decisions. It is essentially a claim that endemic levels of a dis-
ease such as COVID-19 are not under our control.

Mathematical models can help evaluate such claims and 
determine whether and to what extent our actions affect the 
endemic load of disease and mortality. Models can also pre-
dict how this load would change in the face of new variants 
and how this depends on the properties of those variants. 
Models can also help evaluate plausible parameter ranges, 
allowing us to assess how much reducing transmission would 
affect population-wide incidence. Here, we tailor standard 
epidemiological models to the current phase of COVID-19 
to better understand the risks posed by new variants and our 
ability to control endemic diseases.

Model background
We use a classic compartment model, SIRn, as illustrated in 
Figure 2, measuring the fraction of the population that is 

Figure 1. COVID-19 trends across four provinces in Canada. Major waves in early 2022 were driven by the rise and spread of Omicron, whose immune-
evasive properties allowed widespread infection at a time when public health measures were largely relaxed (peak in January 2022: BA.1, April: BA.2, 
and July: BA.4 and BA.5). A year later, Omicron variants have continued to spread rapidly (peak in December 2022: BQ.1; April 2023: XBB.1.5), but they 
no longer cause major waves in cases. PCR-confirmed cases per 100,000 individuals aged 70 + (dots) are used to illustrate case trends, as testing 
practices changed dramatically over this time period but this age group remained eligible for testing. To guide the eye, a cubic spline fit (lambda = 3) 
was applied (top curves in each panel), and the frequency changes of each variant under this curve were fitted by maximum likelihood using duotang 
(CoVaRR-Net’s CAMEO, 2023). Genomic sequence data from each province were obtained from the Canadian VirusSeq Portal (VirusSeq, 2023) and 
fit by maximum likelihood to a model of selection in two periods: first 9 months using BA.1 as a reference (left of dashed line); second 9 months 
using BA.4/5 as a reference (right of dashed line), grouping all clades within a family together except when a subclade is also mentioned (e.g., BQ.1 
separated from BA.5). See Supplementary Mathematica package for scripts and duotang (CoVaRR-Net’s CAMEO, 2023) for methodological details and 
finer resolution of lineages and time periods.
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in the susceptible class (S), the infectious class (I), or in one 
of several recovered classes (Rj). These sequential recovered 
classes allow for different stages of waning immunity (i, rang-
ing from 1 to n) and capture the dynamics of neutralizing 
antibodies that help protect against infection (Andrews et al., 
2022; Khoury et al., 2021). When measured on a log scale, 
neutralizing antibodies rise to a high level soon after infec-
tion or vaccination and then decline linearly over time since 
vaccination and/or infection (e.g., Lau et al., 2021; Lau et al., 
2022; Evans et al., 2022; Jacobsen et al., 2023). We thus con-
sider the Rj classes to fall along different stages of this decline 
(R1 being highest and Rn lowest), roughly representing classes 
of individuals with similar log antibody concentrations. As 
antibody levels fall over time, individuals move from one class 
to the next (Rj to Rj + 1) until levels are so low that infection is 
no longer prevented (Rn waning to S).

As we are modeling the long-term epidemiological dynam-
ics in a population previously exposed to the virus via vacci-
nations and/or infections, we emphasize that the susceptible 
class, S, consists of individuals who have had previous expo-
sure but are currently susceptible due to waning immunity. 
Throughout this article, we are thus describing the epidemi-
ological dynamics in a previously challenged population. We 
assume that births and deaths involve a small subset of the 
population and do not include their influence on the disease 
dynamics. Using this waning immunity model, we examine 
the effect of variants, vaccines, and non-pharmaceutical inter-
ventions (NPIs), on endemic disease dynamics, as captured 
by the equilibrium prevalence and transient cycles. While the 
quantitative outcome of these dynamics may be impacted by 
population heterogeneity and assortative mixing, we focus 
primarily on the qualitative patterns caused by variants and 
public health interventions, focusing on heterogeneity in 
immune status.

When we model vaccination, vaccines move individuals 
from the susceptible (S) to the first recovered class (R1) at a 
constant rate v (Figure 2). We consider a constant vaccination 
rate rather than a per-capita rate to describe vaccine programs 
that are either supply-limited or that aim to meet a target 
vaccination rate within a jurisdiction. We also assume that 
vaccinations are targeted primarily to susceptible individuals, 

given widespread recommendations that vaccines are unnec-
essary for those with recent infections. Because low testing 
rates make it challenging to determine an individual’s disease 
history, we also consider the case where vaccinations are given 
regardless of an individual’s immunity status. Vaccination is 
assumed to be protective against infection in this model until 
vaccine-induced immunity wanes, which occurs at the same 
rate that infection-induced immunity wanes (although we 
do extend the model to consider the possibility that vaccina-
tion does not elicit an immune reaction in some individuals). 
We do not separately model disease or severity, or vaccine’s 
effectiveness against these as distinct from protection against 
infection, although the dynamics of severe cases are expected 
to mirror caseloads for variants of similar severity.

Dynamics
Before considering variants or NPI measures, the dynam-
ics describing changes in the number of individuals in each 
compartment within the SIRn model are (see Figure 2 for a 
description of the parameters):

dS
dt

= δnRn − βSI − v

dI
dt

= βSI − κI (1)

dR1

dt
= κI + v− δ1R1

dRj

dt
= δj−1Rj−1 − δjRj for 2 ≤ j ≤ n.

These dynamics approach an equilibrium, which can be 
determined by setting the derivatives to zero and solving for 
the fraction of individuals in each class. This results in two 
equilibria; one corresponds to the disease being absent (Ŝ = 1)  
and the other to the disease being endemic:

Ŝ =
κ

β

Î =
Å
1− κ

β

ã
δ

δ + κ
− v

δ + κ (2)

R̂j =
1
n

ÅÅ
1− κ

β

ã
κ

δ + κ
+

v
δ + κ

ã
for 1 ≤ j ≤ n.

Importantly, because we are explicitly modeling endemic 
COVID-19, most individuals have previously been exposed 
to SARS-CoV-2, susceptibility and infectiousness may be 
lower in the current population than when the virus first 
appeared in humans because of cellular immunity, any resid-
ual humoral immunity among susceptible individuals (Tan et 
al., 2023), and/or due to any behavioral changes (including 
better ventilation, testing, and self-isolation practices). For 
example, the rapid induction of cellular immunity reduces the 
viral load of typical breakthrough infections (Puhach et al., 
2022), lowering transmission (β) compared to a fully naïve 
population. The epidemiological dynamics in this endemic 
model thus depend on an “endemic basic reproductive num-
ber,” R̃0 ≡ β/κ, which is the basic reproductive number in 
a population consisting entirely of currently susceptible, but 
previously vaccinated or infected, individuals whose immu-
nity has waned. In contrast to the initial R0 for COVID-19 

Figure 2. Epidemiological model used to predict impact of changing 
variants, behavior, and policy on endemic levels of disease. We consider 
populations that have a high level of immunity due to prior infection and/
or vaccination and that consist of S: a susceptible fraction, I: an infected 
fraction, and Rj: a recovered fraction with immunity at different stages 
of waning. Parameters are β: transmission rate, κ: recovery rate, δj : 
per-class waning rate per day, and ν : vaccination rate at the population 
level, all measured in the present-day population with prior exposure. 
Movement between adjacent recovered classes is set equal to δj = nδ,  
so that the expected time between first recovering and returning to the 
susceptible state is 1/δ days. Coinfection and evolutionary dynamics 
within hosts are ignored.
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at the time of its emergence (median R0 estimated at 3.6–6.1 
in different European countries and the United States (Ke 
et al., 2021); ~3 in British Columbia Canada (Anderson et 
al., 2020); 1.5–5 in analyses of Iran, China, Italy, and South 
Korea (Aghaali et al., 2020)), the parameters of the endemic 
model and in R̃0 (transmission, β, and recovery, κ) refer to 
rates in this previously challenged population. Our estimates 
of R̃0 range from 1 to 6 (Appendix A), depending on esti-
mates used for recovery rates, waning, and the endemic level 
of infections within a population, with a value of R̃0 ≈ 2 for 
the parameters considered typical (Supplementary Table S1).

If this previously challenged population were fully sus-
ceptible (Ŝ near one), the disease would spread when rare as 
long as transmission rates were higher than recovery rates, 
R̃0 = β

κ
> 1, which we assume to hold. In this case, the 

endemic equilibrium in Equation 2 exists and is stable for 
all examples considered here. The endemic equilibrium may, 
however, be unstable (Hethcote, Stech & Van Den Driessche, 
1981), leading to sustained cyclic dynamics, outside of the 
parameters used here (e.g., for n large enough).

The equilibrium can also be written in terms of R̃0 as:

Ŝ =
1

R̃0

Î =
Å
1− 1

R̃0

ã
δ

δ + κ
− v

δ + κ (3)

R̂j =
1
n

ÇÇ
1− 1

R̃0

å
κ

δ + κ
+

v
δ + κ

å
for 1 ≤ j ≤ n.

Also of relevance is the number of bouts of disease that an 
individual expects per year, which is 365 β Ŝ Î= 365 κ Î, 
assuming average behavior (see Supplementary Table S1).

Given that recovery rates are higher than waning rates 
(δ � κ), Equation 3 shows that the number of infectious indi-
viduals at the endemic equilibrium is reduced by the number 
of vaccinations within a typical recovery period (v/κ). If more 
vaccinations were to be given in a typical recovery period 
than the fraction of individuals expected to be infectious in 
the absence of vaccination, the disease could be driven extinct 
locally (though we note that in this model vaccination has a 
very high, if temporary, efficacy against infection, and that 
reintroductions are expected from importations, animal res-
ervoirs, and chronic infections). Uptake of additional vaccine 
doses during 2023 has, however, been so low in many coun-
tries as to make little difference to the incidence and dynamics 
of SARS-CoV-2 (e.g., daily [annual] rates of 0.012% [4.7%] 
in France and 0.023% [8.8%] in the United States from 
January 1 to April 30, 2023; Our World in Data, 2023). To 
simplify the discussion, we ignore ongoing vaccination for 
now, returning later to a discussion of the impact that vacci-
nation uptake can have on individual risks of infection and on 
the overall incidence of disease.

Spread of a variant during the endemic phase
A new variant may spread within the population if it is more 
transmissible (e.g., better binding to ACE2 receptors on host 
cells), more immune evasive, or both (see Cao et al., 2023 for 
empirical measures for SARS-CoV-2). We can calculate the 
rate of spread of a variant using the SIRn model by allow-
ing different transmission rates for the resident variant (β) 

and the new variant (β∗ = β +∆β) and by allowing immune 
evasive variants to infect earlier than the resident strain, 
while antibody levels are at intermediate levels. Specifically, 
we assume that an immune evasive variant can infect the last 
m recovered classes (each of which is at frequency R̂j  at the 
endemic equilibrium given by Equation 3), as well as suscep-
tible individuals.

Short-term impact of a variant
Using local stability analysis, we explore the short-term 
spread of a variant that arises during the endemic phase, 
assuming that the fractions in each class are near the equilib-
rium given by Equation 2, and then we determine the long-
term impact on infection rates following the spread of the 
variant. We expect the results assuming an equilibrium to be 
robust to the churning spread of variant-after-variant (Figure 
1) as long as recent waves have not led to major departures 
from the fractions of individuals in each class at the endemic 
equilibrium (Figure 2). We investigate the robustness of our 
results to this and other assumptions in Appendix B.

As described in Appendix A, a new variant introduced into 
a population near the endemic equilibrium has a selective 
advantage of:

s =
∆β

β
κ

︸ ︷︷ ︸
Transmission advantage

+ m R̂n β∗
︸ ︷︷ ︸

Evasion advantage
(4)

The selection coefficient, s, describes the rate at which the new 
variant spreads relative to the resident variant. Selection coef-
ficients describing evolutionary changes in SARS-CoV-2 have 
been estimated in many jurisdictions using sequence informa-
tion and are often relatively stable over time and space when 
measured consistently against the same reference strain (van 
Dorp et al., 2021; Otto et al., 2021).

Long-term impact of a variant
What are the consequences of a spreading variant for the inci-
dence of disease? The incidence is initially expected to rise 
exponentially at a rate proportional to selection (specifically, 
s Î), but this rise in cases is only temporary as the new variant 
spreads through the currently susceptible population. Over 
the long term, we show that the impact on the endemic level 
of disease depends strongly on whether the variant increases 
transmission rates and/or increases immune evasiveness, 
even for variants with the same selective advantage. Among 
immune evasive variants, the impact on the long-term case-
load depends strongly on the transience or persistence of 
immune evasion (from the perspective of the virus) during 
subsequent infections. Transient evasiveness is expected if, 
during infection, new variant-specific antibodies are elicited 
that fully recognize the new variant, whereas persistent eva-
siveness is expected when there is strong immune imprint-
ing, such that infection with the variant leads primarily to 
the proliferation of pre-existing antibodies (“back-boosting”) 
rather than an expansion of the memory B cell repertoire to 
specifically target the new variant (see Zhou et al., 2023 for a 
review of evidence on immune imprinting with SARS-CoV-2). 
Metanalyses, for example, find that Omicron infections are 
less protective against reinfection with Omicron compared to 
the protective effects of pre-Omicron infections, suggesting 
some persistence of Omicron's immune-evasive properties 
(Arabi et al., 2023).
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In particular, when the population is comprised entirely of 
the new variant, the altered transmission rates and immune 
evasiveness cause the endemic level of disease to change from 
the original model to:

Î∗ =

Å
1− κ

β +∆β

ã
δ +∆δ

δ +∆δ + κ (5)

(found by solving Equation A1 for the endemic equilibrium 
when only the variant is present). The term ∆δ refers to how 
the variant changes the rate of complete waning, from first 
entering the recovered class to returning to the susceptible 
state (i.e., 1/ (δ +∆δ) is the mean number of days to return to 
susceptibility). (As short-hand, we refer to a variant’s impact 
on immune evasion as a change in the waning rate ∆δ, but 
the model actually assumes log-antibody levels wane at a con-
stant rate but the variants can just infect earlier, becoming 
susceptible sooner.)s

Equation 5 allows us to evaluate the long-term impact of 
different types of variants. For an immune evasive variant, the 
results are strongly dependent on the variant-specific immu-
nity that develops after infection, even if the lineages have 
the same selective advantage and rate of spread (s, Equation 
4), and so cause the same initial rise in cases. Consider two 
extreme possibilities:

•	 Transient immune evasiveness: If a variant better evades 
the initial suite of antibodies but causes infections that 
generate variant-specific immunity, subsequent infections 
may no longer be immune evasive. In this case, subse-
quent infections would require the full waning period 
(returning to the S compartment and not the Ri  compart-
ments), as for the resident strain. With only transient eva-
siveness, the long-term level of COVID-19 is unaffected 
by a new variant (∆δ = 0).

•	 Persistent immune evasiveness: If a variant allows infec-
tions to occur earlier, both in the first and in subsequent 
infections, then the rate of return to susceptibility is con-
sistently higher (∆δ = m

n−mδ). With waning slow relative 
to recovery (δ +∆δ � κ), a persistently immune evasive 
variant causes the incidence of disease to rise in propor-
tion to the increased rate of waning, ̂I∗ ≈ Î (1+∆δ/δ).

Figure 3 illustrates the temporal dynamics of a variant initially 
at 1% frequency, obtained by numerically integrating the dif-
ferential equations in system (Equation 1). In either case, an 
immune-evasive variant spreads in the short term because of the 
selective advantage, s, gained by infecting susceptible individu-
als earlier, causing an immediate rise in cases, but the subsequent 
dynamics and long-term impact differ greatly, depending on 
whether variant-specific immunity builds. The extent to which 
exposure to a variant elicits variant-specific humoral or cellular 
immunity almost certainly falls between these two extremes.

By contrast, a more transmissible variant changes the 
endemic equilibrium to:

Î∗ = Î
Å
1+

1

R̃0 − 1

∆β

β +∆β

ã
(6)

Summarizing our results for a more transmissible variant:

•	 Higher transmissibility: If a variant increases transmis-
sion rate, spread in the short term depends directly on 
the change in transmission (s = (∆β/β) κ; Equation 
4), while the long-term impact on the incidence of dis-
ease exhibits diminishing returns (Î∗/Î depends on 
∆β/(β +∆β)). Thus, a more transmissible variant has a 
less than proportionate influence on the number of cases 
in the long term, unless the susceptible pool is large and 
R̃0 small (Ŝ = 1/R̃0 > 1/2).

Figure 3. Impact of the spread of an immune-evasive variant depends on whether a variant-specific immune response is elicited. Plots illustrate the 
dynamics over time of a more immune evasive variant, which is able to infect earlier in the waning period (by m = 2 out of n = 5 recovered classes), 
giving the variant an s = 8.3% selective advantage per day, which lies in the range of the faster spreading variants observed in the past year (CoVaRR-
Net’s CAMEO, 2023). While the short-term spread of the variant (dark shading taking over from light shading) and rise in cases are nearly identical 
(given s is the same), the long-term consequences differ substantially depending on whether the variant’s evasive properties are (panel A) transient 
or (panel B) persistent (dashed and solid lines represent the equilibrium before and after the variant spreads). The endemic equilibrium rises only if 
evasiveness persists in subsequent infections (panel B). We illustrate the dynamics in younger (under 70) and older (70+) individuals, who are more 
prone to severe cases. Parameters: κ = 0.2, δ = 0.008, ̂I = 2%, β = 0.42, the nominal parameter estimates given in Appendix A for all age classes.
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While a more immune evasive variant increases the pool of 
susceptible individuals available to them (in our model, by 
adding the last m recovered classes to the susceptible class), a 
more transmissible variant depletes the susceptible pool. This 
can be seen by the effect on the susceptible class at equilib-
rium, which decreases from Ŝ = κ/β for the resident virus to 
Ŝ∗ = κ/ (β +∆β) for a more transmissible virus. For this rea-
son, a more transmissible virus is, to some extent, self-limiting 
and often has less of an effect on the long-term number of 
cases than seen for a permanently immune evasive variant. 
This is illustrated in Figure 4, which shows that the equilib-
rium rises less for a given % increase in transmissibility (panel 
C) than for the same % increase in waning rate for a perma-
nently immune evasive variant (panel B), unless R̃0 is so small 
that most individuals in the population are susceptible. Of 
course, variants may combine features affecting transmissibil-
ity and immune evasiveness (Cao et al., 2023), as explored in 
Supplementary Figure S1.

This model illustrates that the spread of a variant can con-
tribute to epidemic waves, like those seen over the past year in 
Figure 1, in two ways, either through the initial replacement 
of the resident strain (the first cycle shown in Figures 3 and 
4) or through the continued ebb and flow of incidence due 
to immune waning (“echo” waves in later cycles). The fre-
quency at which new beneficial variants arise determines the 
relative contribution of each of these. Due to the substantial 
population-level immunity that persists in the population at 
the endemic equilibrium, the model predicts that these waves 
are modest, at most doubling incidence, a pattern consistent 
with the wavelets observed since the summer of 2022 (Figure 
1) and in contrast to the dramatic waves of earlier variants 
during the epidemic phase when immunity was limited. The 
lower magnitude of peaks is expected at the endemic equi-
librium because the effective reproductive number for the 
resident must be one (Re,t = 1) compared to Re,t = 1+∆β/β 
for a more transmissible variant (e.g., Re,t = 1.42 in Figure 
4). Thus, only a modest drop in the susceptible population 
is needed (1/Re,t) before the infectious class peaks and falls 
again.

Robustness of results
The robustness of these results is explored in Appendix B, 
considering different models of immunity (including leaky 
immunity) and the inclusion of features such as an exposed 
class and failure to seroconvert. The strength of selection 
(Equation 4) and the long-term impact on endemic levels 
of disease (Equation 5) are robustly observed. The speed at 
which the waves dissipate over time, however, is sensitive to 
model assumptions, stabilizing faster than observed above in 
many cases (Supplementary Figure S2), so we caution that the 
nature of subsequent oscillations (“echo” waves) caused by 
the spread of a variant is hard to predict.

Up until now, we have focused on a single variant to isolate 
its impact. In Supplementary Figure S4, we explore the spread 
of a secondary variant soon after a previous variant has spread 
to determine the robustness of the results to violations of the 
assumption that the system starts at equilibrium. Considering 
a more transmissible variant followed by a persistently inva-
sive variant (top row) or vice versa (bottom row), we find that 
the initial spread and the long-term dynamics continue to be 
well predicted by Equations 4 and 2, respectively, although 
selection varies slightly depending on the phase of oscillations 
caused by the previous variant.

We conclude that variants may have dramatically different 
long-term impacts on the level of disease depending on the 
nature of the advantage (transiently or persistently immune 
evasive and/or more transmissible), despite exhibiting the 
same selective advantage and hence spreading at the same 
rate (e.g., with selection of s = 8.3% per day in Figures 3 and 
4). Indeed, a variant that is transiently immune evasive but 
less transmissible can spread and would be expected to reduce 
the equilibrium level of disease, except that once immunity to 
this variant has built, the previous resident reemerges because 
of its higher transmissibility (Supplementary Figure S1B).

Figure 5 shows these long-term impacts on disease inci-
dence at the endemic equilibrium across the range of plausi-
ble parameters (Appendix A). A transiently immune evasive 
variant has no long-term impact (panel A), whereas the rise 
in cases is nearly proportional to the ability of a variant to 
evade immunity, if that evasiveness is persistent, regardless of 
the exact parameter values (panel B). By contrast, the long-
term impact of a more transmissible variant depends strongly 
on the current transmissibility, as measured by the endemic 
reproductive number. The larger R̃0 is, the smaller the long-
term impact of a more transmissible variant is on disease 
levels (Figure 5C), essentially because the pool of susceptible 
individuals is then smaller and rapidly depleted by a more 
transmissible variant (Ŝ = 1/R̃0). That said, for given wan-
ing (δ) and recovery (κ) rates, the endemic level of disease is 
higher when R̃0 is higher (Equation 3), so a small percent-
age increase in disease incidence can still have a numerically 
important impact on the burden of disease.

Measures to counteract rises in disease 
incidence
In the face of variants that are increasingly transmissible and/
or persistently immune evasive, the endemic level of disease is 
expected to rise over time, but these increases can be countered 
by protective measures at the individual and population levels. 
Protective measures range from vaccination to NPI measures, 
such as testing and self-isolation, avoiding crowded indoor 
spaces, improving ventilation, and the wearing of well-fitting 

Figure 4. Impact of the spread of a more transmissible variant. Plot 
illustrates the dynamics over time of a more transmissible variant, which 
increases β (and hence R̃0) by 42%, chosen to give the variant the 
same selective advantage as in Figure 3 (s = 8.3%). While exhibiting a 
similar short-term rise in cases as in Figure 3, the long-term impact is 
intermediate. Parameters are identical to Figure 3, with β∗ = 0.59.
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and high-quality masks (The Royal Society, 2023). Here we 
explore the impact of these protective measures at both the 
individual level, modulating the frequency of infections, and 
the population level, modulating the endemic incidence of dis-
ease. Many previous models have explored vaccination and 
NPIs (e.g., Scherer & McLean, 2002; Eikenberry et al., 2020; 
Mulberry et al., 2021); our purpose here is to explore how 
the effects of variants can be counteracted by our actions, 
using the same models and parameter ranges explored above 
(Appendix A).

Vaccination
Vaccination allows individuals to short-circuit the disease 
cycle by boosting antibody levels and immunity by another 
dose rather than by infection. Globally, 65% of people have 
had the primary series of COVID-19 vaccines but an aver-
age of only 0.35 booster doses have been distributed per per-
son (Our World in Data, 2023; accessed August 22, 2023). 
Jurisdictions vary widely in recommended vaccine sched-
ules and access to vaccines. For example, only individuals 
at higher risk of serious illness are eligible for COVID-19 
boosters in the United Kingdom (NHS, 2023). In Canada, the 
National Advisory Committee on Immunization recommends 
that all adults be offered vaccines 6 months after the last dose 
or infection (NACI, 2023). The Centre for Disease Control 
in the USA, however, recommends that individuals stay up 
to date with important vaccine updates (e.g., the updated 
mRNA vaccines providing protection against BA.4 and BA.5 
in the fall of 2022 and against XBB in the fall of 2023; CDC, 
2023).

There is substantial uncertainty and confusion in both 
public and public health circles about the value of regular 
vaccinations against COVID-19 (Lin et al., 2023). Here, we 
explore one aspect: how much do regular vaccinations reduce 
the burden of disease expected near an endemic equilibrium?

We consider the impact of policies aimed at future vaccine 
uptake, encouraging vaccination of a portion of the popula-
tion (v) per day. Given that vaccines are recommended only 
after a substantial amount of time has passed since the pre-
vious dose or infection, these vaccines are assumed to target 
individuals in the susceptible class, moving them into the first 
recovered class (S to R1; Equation 1). Unlike many previous 
epidemiological models (reviewed in Scherer & McLean, 

2002), we assume that the target vaccination rate is set by 
policy, adjusting public health campaigns, vaccine cost, and 
availability to meet these targets (i.e., dS/dt in Equation 1 
declines by a fixed daily rate, v, rather than a per capita rate, 
v S). This model choice also allows us to model the distri-
bution of a specific number of vaccines, whereas vaccinating 
susceptible individuals at a per capita rate causes vaccine cov-
erage to vary over time with S (see Appendix B for alternative 
models).

We consider vaccination rates in Canada as typical of what 
can be achieved when vaccines are available at regular inter-
vals (every 6 months). From April to July 2023, vaccination 
rates in Canada averaged only 0.012% of the population per 
day (annual rate of 4.5%; Health Infobase Canada, 2023). 
While these vaccinations help those individuals receiving a 
dose, this level has a negligible impact on the endemic level 
of cases (decreasing Î  from 2% to 1.94% for the nominal 
parameter values). Many public health agencies have encour-
aged COVID-19 vaccine updates in the fall (Mahase, 2023). 
For example, vaccination rates in Canada during September–
December 2022 were 14 times higher (0.174% of the pop-
ulation per day, an annual rate of 63.5%; Health Infobase 
Canada, 2023), a rate that substantially lowers the endemic 
equilibrium level if maintained (from 2% to 1.16% for the 
nominal parameter values).

At an individual level, vaccination reduces the number of 
infections that one expects to have. Individuals on a regular 
6-month vaccination schedule are expected to be protected 
from neutralizing antibodies for 1/δ  out of every 180 days. 
Calculating the probability of waning and infection before 
their next vaccine (Equation A2; Appendix A), a regularly 
vaccinated individual expects to have about 60% as many 
infections per year (0.88 vs 1.46) for the nominal parameter 
values (Appendix A). Across the range of parameters con-
sidered plausible, vaccination every 6 months leads to only 
40%–66% as many infections annually (Supplementary 
Mathematica package).

At a population level, in our model, vaccination reduces the 
endemic level of infections to ̂Iv = Î − v

δ+κ (Equation 2). That 
is, the endemic level of infections is reduced by approximately 
the number of vaccinations conducted during the infectious 
period (v/κ, given that waning is considerably slower than 
recovery). Figure 6 illustrates the impact of increasing and 

Figure 5. Long-term impact of a variant. The percent change in the endemic equilibrium is shown as a function of the percent by which the variant 
increases the rate at which recovered individuals become susceptible again (∆δ, panels A and B) or transmissibility (∆β , panel C). A transiently 
immune-evasive variant has no long-term impact, while a persistently immune-evasive variant causes the endemic incidence of disease to rise nearly 
in proportion (dashed curve) across all parameters considered plausible (shading, with the nominal parameter values illustrated by a thicker curve; see 
Appendix A and Supplementary Table S1). By contrast, the impact of a more transmissible variant that increases β depends strongly on R̃0 (but none of 
the other parameters), leading to a less than proportional rise in cases whenever R̃0 ≥ 2 (see Equation 6).
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maintaining the vaccination rate at the higher levels observed 
in Canada in the fall of 2022 (v = 0.174%). In this case, the 
long-term incidence of infection can be driven down substan-
tially (panel A). Across the range of parameters considered in 
Appendix A, this population-level benefit leads to a 12% to 
100% decline in incidence of disease, falling at the lower end 
of the benefit when disease incidence is high without vacci-
nation (Î = 4%) but at the higher end and allowing complete 
eradication when disease incidence is low without vaccina-
tion (Î = 0.5%).

One policy option considered in many jurisdictions is to 
regularly vaccinate only the more vulnerable segment of the 
population. Figure 6B illustrates, however, that limiting vac-
cination to the more vulnerable population (shown here as 
vaccinating only those over 70 at a rate v = 0.174%) has less 
impact on the frequency of infections experienced by this 
vulnerable population, because the incidence of COVID-19 
remains high overall, increasing their risk of exposure.

That said, the additional protection provided by COVID-19 
vaccines against severe disease, above and beyond the protec-
tion provided against infection, means that the risk of hospital-
ization and death can be lowered by vaccinating the vulnerable 
(Chemaitelly et al., 2022; Nyberg et al., 2022). Further reduc-
ing the risk of infection and severe disease, however, requires a 
broader vaccination campaign. Broad vaccination campaigns 
provide additional protection for the vulnerable, while also 
reducing the number of sick days, risks of long COVID, and 
severe disease among those not known to be vulnerable.

As noted in Appendix B, seroconversion rates upon vac-
cination are high (Wei et al., 2021), so we do not correct v 
for the small fraction of doses that fail to elicit an immune 
response. Not all individuals will, however, achieve high levels 
of immunity following vaccination and not all will be pro-
tected from infection. A mixture of induced immunity could 
be modeled by moving vaccinated individuals into a distribu-
tion of Rj  classes. In addition, some individuals being vacci-
nated may have been exposed in the recent past (i.e., coming 
from the infectious or recovered compartments, not solely 
from the susceptible classes). These possibilities are expected 
to lower the protection offered by vaccination, because a frac-
tion of vaccines are distributed to individuals who are already 
immune and so would require higher vaccination uptake to 

achieve the benefits described above (see Appendix B for an 
example where vaccinations are distributed regardless of dis-
ease status).

NPI measures
A wide variety of non-pharmaceutical interventions have 
been deployed to counter the spread of SARS-CoV-2, includ-
ing testing and self-isolation, enhancing ventilation and air 
filtration, and wearing of high-quality masks (see evaluation 
of evidence in the report by The Royal Society, 2023). Here, 
we consider the individual-level and population-level benefits 
of NPIs, as a function of their impact on preventing trans-
mission of the virus, modeled by NPIs preventing a portion 
p of transmissions both from and to NPI users. Specifically, 
we assume that the NPI measures reduce transmission from 
β to (1− p) β if one member in an interaction practices the 
measures and to (1− p)2 β if both do. Recent meta-analyses 
suggest that properly wearing high-quality masks, for exam-
ple, protects against infection by p = 25%–50% (Appendix 
C). For the sake of comparison to the impacts of variants, 
we explore a limited model, ignoring age and spatial struc-
ture, but including heterogeneity in NPI adherence as well 
as disease structure, as illustrated in Supplementary Figure 
S5. Specifically, we assume a fraction f  who regularly engage 
in NPI measures and are denoted by a ‡ (compartments S‡,  
I‡, R‡

j  for j = 1 to n, which sum to f ) and a fraction 1− f  
who do not (compartments S, I , Rj , which sum to 1− f ). See 
Appendix C for model details.

We first determine the benefit to an individual who adheres 
to NPI measures (e.g., masking). Near the endemic equilib-
rium, an individual engaging in the NPI measure has a lower 
risk of being infected at any given point in time of:

Î‡ / f

Î / (1− f )︸ ︷︷ ︸
Relative risk of infection

=
1

1+ Ŝ p
(1−p)(1−f)

,

(7)

where Ŝ is the fraction of the population at the endemic equi-
librium who are susceptible and do not engage in the NPI 
measure (given by Equation A11, Ŝ ≈ κ/β  when f is small). 
This relative risk is mathematically equivalent to the relative 
rate at which individuals become infected for those who do 

Figure 6. Impact of vaccination strategies. Plots illustrate the dynamics over time when vaccination is increased to 0.174% of the population per day 
(annual rate of 63.5%), either (A) within the entire population or (B) limited to a more vulnerable population (illustrated as 70 + in age). Parameters are 
identical to Figure 3, with v = 0.00174.
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versus do not engage in the NPI measure, as well as the rela-
tive number of infections expected per year.

Figure 7 illustrates the relative risk of infection (Equation 
7). As expected, the more effective the NPI measure is (the 
higher p) the lower the relative risk to individuals who engage 
in the NPIs (panel A). This individual-level benefit is only 
weakly dependent on the fraction of the population currently 
engaging in these measures (f = 10%, 50%, and 90% shown 
as solid, dashed, and dotted curves), with the relative risk ris-
ing slightly as f  increases because non-practitioners gain a 
slight benefit from those who do practice the NPI measure.

The individual benefits depend strongly, however, on the 
endemic reproductive number of the disease (R̃0). At the 
nominal value of R̃0 = 2 and assuming low population-level 
uptake (f small), a person’s relative risk of infection can be 
substantially reduced for NPIs that provide fairly modest pro-
tection (by 14% and by 33% for p = 25% and 50%, respec-
tively). For R̃0 = 6 (on the high end of the range considered 
plausible; Appendix A), however, these individual-level bene-
fits diminish (to 5% and 14% for p = 25% and 50%, respec-
tively), because individuals are exposed so often that modestly 
protective NPIs only moderately delay infection.

Not only is a susceptible individual who regularly engages 
in NPI measures less likely to become infected when in con-
tact with an infectious individual (by a factor 1− p), but they 
are also less likely to pass the infection on to one of their con-
tacts (by another factor 1− p), compared to a non-practicing 
individual who is currently susceptible. Accounting for the 
proportion of time that practicing and non-practicing indi-
viduals are susceptible (as in Equation 7), the risk per unit 
time of being infectious and infecting a contact is substan-
tially lowered for those engaging in NPI measures relative to 
those who do not (Figure 7B). This validates the approach 
used by many who adhere to NPI measures, such as masking, 
in order to protect vulnerable contacts.

The curvature of the relative risks in Figure 7 highlights the 
utility of multiple complementary interventions: other pol-
icies that reduce transmission (lowering R̃0) make masking 
more effective to individuals, because those individuals are 
less repeatedly exposed.

The individual-level benefits of NPI measures diminish 
with R̃0 (x-axis of Figure 7) because individuals practicing 

NPI measures are more likely than non-practitioners to 
have remained uninfected and so are more often suscep-
tible at the time of exposure, which increases their rela-
tive risk of infection as R̃0 increases. Different results are 
obtained if individuals frequently switch their behavior 
(e.g., masking some days and not others). Modifying the 
model as described by Equation A12, all individuals are 
then equally likely to be susceptible on any given day, and 
the NPI measure always reduces the risk of infection by a 
factor (1− p) for each practicing individual in an interac-
tion. That is, the benefits remain at their maximal value of 
(1− p) in panel A and (1− p)2 in panel B, regardless of R̃0 
and f (Appendix C). Although not modeled, heterogeneity 
in contact rates is also likely to affect the value of NPI 
measures. If individuals who regularly adhere to NPI mea-
sures also strive to limit contact rates generally, their value 
of R̃0 may be lower than non-practitioners. We conjecture, 
based on Figure 7, that NPI measures would benefit such 
individuals more than predicted from R̃0 of the population 
as a whole.

We next evaluate the population-level advantages of NPI 
measures by calculating the fraction of infected individuals 
expected at the endemic equilibrium (Î + Î‡) when a fraction 
f of the population upholds these measures, relative to a pop-
ulation in which nobody does:

Î + Î‡Ä
Î + Î‡

ä
f=0︸ ︷︷ ︸

Relative fraction of population infected

=
Ä
1− Ŝ− Ŝ‡

ä R̃0

R̃0 − 1
,

(8)

using the equilibrium values given by Equation A11. 
The right-hand side of Equation 8 emphasizes that the  
population-wide benefits increase (fewer people will be 
infected) when there are more susceptible individuals avail-
able (Ŝ+ Ŝ‡ larger).

While the population-level impact is small when few indi-
viduals engage in NPI measures (left panel of Figure 8), there 
are substantial benefits to having moderate to high adher-
ence (central and right panels). These benefits are strongest 
when the endemic reproductive number is small, potentially 
moving the population away from the endemic case, where 

Figure 7. Risk of infection for individuals regularly engaging in an NPI measure such as masking, relative to unmasked individuals. Colored lines illustrate 
different levels of protection, p, provided by the NPI measure, in a population where the fraction of individuals engaging in the NPI measure is f = 10% 
(solid), 50% (dashed), and 90% (dotted). Panel A shows the risk of infection and panel B the risk of becoming infected and infecting a contact for an 
individual engaging in NPI measures, relative to those who do not. The x-axis gives the endemic reproductive number in this heterogeneous population, 
R̃0 =

Ä
(1− f ) + f (1− p)2

ä
β/κ. Parameters: Relative risk depends on the parameters only through R̃0, f, and p.
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COVID-19 persists, to the disease-free equilibrium (when 
the curves cross the x-axis), again emphasizing the added 
benefits that come from combining interventions. While  
transmission-reducing measures are less valuable at a popula-
tion level when exposure is very rapid (R̃0 high), we estimate 
more modest exposure rates because of the substantial immu-
nity in current populations (with R̃0 ranging from {1.1,6.8}), 
making effective NPI measures still a valuable means of 
reducing population-wide incidence.

The reduction in cases caused by NPI measures is expected 
to result in a proportionate reduction in severe cases and 
deaths. Even a modest reduction (say 20%) can have non- 
linear benefits when hospitals are at capacity, improving care 
for all (Wichmann & Wichmann, 2023). Achieving such bene-
fits at a population level, however, requires that there be clear 
messaging and incentives to obtain the moderate to high levels 
of uptake required to impact population-wide infection rates.

Discussion
This article aims to expand our understanding of the impact of 
variants, as well as behavioral and public health measures, on 
endemic diseases like COVID-19. Widespread measures, both 
by individuals and public health agencies, repeatedly “flat-
tened the curve” of COVID-19 during the first 2 years of the 
pandemic, reducing viral transmission to save lives and avoid 
the collapse of healthcare systems (Ogden et al., 2022; Talic 
et al., 2021). Since mid-2022, however, COVID-19 has per-
sisted at high levels throughout the world, becoming endemic 
with no sign of abating even during the summer months. The 
mantra to “flatten the curve” is no longer relevant, as endemic 
levels are already fairly flat, and we lack a compelling guide to 
govern our collective behavior in its place.

For COVID-19, endemic does not mean constant, with 
wavelets expected as a result of new variants, changing 
behavior, vaccination campaigns, as well as damped oscilla-
tions from previous waves (“echo” waves). Nor does endemic 
mean rare, as ongoing high levels of COVID-19 health 
impacts remain. Nor does endemic mean out of our control, 
as protective measures continue to have important benefits, 
boosting immunity through vaccination and reducing trans-
mission through effective NPI measures. The goal of this arti-
cle is twofold: to explore the impact of evolutionary changes 
in the virus on disease incidence and to discuss how protective 
measures can counteract these rises, reducing disease risks.

Variants of endemic diseases that increase transmissibility 
and/or immune evasion are selectively favored, with rises in 
frequency that can be measured empirically, yielding estimates 
of the strength of selection (s). While the strength of selection 
accurately predicts the speed with which one variant replaces 
another, it does not predict the long-term impact on endemic 
levels of disease. For a given selection coefficient, we have 
shown that the long-term impact on disease is negligible for 
a variant that is more immune evasive, but only transiently 
so, eliciting variant-specific antibodies that protect from rein-
fection (Figure 5A). By contrast, an immune evasive variant 
that fails to elicit variant-specific antibodies has a persistent 
advantage, leading to a nearly proportional increase in cases 
in the long term (Figure 5B). In Appendix B, we also consider 
a variant that causes immunity to become leakier, increasing 
the risk of infection for all recovered classes, which are partic-
ularly problematic (Supplementary Figure S3), causing a high 
long-term rise in cases because all individuals remain prone 
to infection if leakiness is persistent. A variant that is more 
transmissible generally has an intermediate impact on disease 
incidence (Figure 5C). Thus, depending on the exact prop-
erties of a new variant, we may see smaller or larger rises in 
cases over the long term, even for variants initially spreading 
at the same rate. Of course, a series of variants can lead to 
continual short-term rises in cases, but the analyses conducted 
here allow the long-term effects of each variant to be assessed 
separately.

As multiple variants arise and spread, their impact on the 
incidence of disease is predicted to accumulate (Supplementary 
Figure S4). For persistent immune evasive variants, however, 
subsequent infections with similar variants are expected to 
improve the breadth of neutralizing antibodies, gradually 
overriding immune imprinting and improving variant specific 
responses (Yisimayi et al., 2023). The co-evolution of variants 
and variant-specific immunity could be explicitly modeled in 
future work by lowering the degree of immune evasiveness 
(m) with subsequent infections. It would also be valuable to 
couple the expected changes in incidence predicted here to the 
rate of appearance of variants, as mutations continue to accu-
mulate in the large global population of infected individuals.

Lab assays of SARS-CoV-2 have dramatically sped up phe-
notypic assessment of new variants (Cao et al., 2023). Within 
days of new variants emerging, information has been shared 
by groups around the world, evaluating immune evasive-
ness (e.g., the titer of neutralizing antibodies in convalescent 

Figure 8. Reduction in cases at the endemic equilibrium when a fraction f of the population engages in an NPI measure, relative to when none do. 
Colored curves illustrate different levels of protection, p, provided by the NPI measure. Panels show the fraction of the population practicing the 
NPI measure: (A) f = 10%, (B) 50%, and (C) 90%. The x-axis gives the endemic reproductive number in a population that is not engaging in the NPI 
measure, given by R̃0 = β/κ. Parameters: Reduction in cases depends on the parameters only through R̃0, f, and p.
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plasma required to prevent infection of cell lines) and effi-
ciency of binding to ACE-2 receptors (e.g., via twitter.com, @
yunlong_cao). These assays often find that infection with one 
variant (e.g., BA.1) builds higher neutralizing capacity against 
that variant than other variants (e.g., BA.2), indicating some 
loss of immune evasiveness following infection with a variant 
(Cao et al., 2023). The impact on long-term immune evasion 
and reinfection rates for different variants remains an open 
question, and one whose answer determines the impact on 
endemic incidence of disease (Figure 5A and B).

We can counter variant-induced rises in cases, however, 
by encouraging higher uptake rates of vaccines and other 
non-pharmaceutical interventions. These measures always 
help individuals reduce their own risk of infection and the 
risk of infecting those around them (Figure 7). Widespread, 
but not universal, uptake is needed to substantially reduce 
levels of disease (Figure 8), except if the disease is near eradi-
cation (R̃0 near 1). The benefits could be enhanced by encour-
aging NPI measures around those who are most at risk of 
adverse outcomes and in places and times where risks of 
infection and/or the health care burden are high. Particularly 
valuable are investments in measures that protect all, regard-
less of uptake (such as improved air filtration and ventilation, 
adequate testing and job security to stay home when sick).

The models explored herein lack many important epidemi-
ological details, including spatial and age structure in contact 
rates and seasonal variation in transmission risk. As such, the 
results are meant to guide expectations rather than provide 
precise predictions. Details were sacrificed in an effort to help 
us better understand how the endemic level of disease is likely 
to change in the future, in response to our efforts as well as 
further evolution of the virus.
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Appendix A: Modeling the spread of variants

Dynamics
We include infections by a resident variant (I) and a new variant 
(I∗) in the SIRn epidemiological model illustrated in Figure 1.  
By allowing for multiple recovered classes, we can model new 
variants that are more immune evasive by allowing them to 
infect earlier in the waning period (infecting individuals in 
the last m recovered compartments Rj), when antibody levels 

are high enough to prevent infection by the resident virus but 
not the new variant. The dynamics are then described by the 
following set of differential equations:

dS
dt

= δnRn − βSI − β∗SI∗

dI
dt

= βSI − κI
dI∗

dt
= β∗

Ñ
S+

n∑
j=1+n−m

Rj

é
I∗ − κ I∗

(A1)

dR1

dt
= κ I + κ I∗ − δ1R1

dRj

dt
= δj−1Rj−1 − δjRj for 2 ≤ j ≤ n−m

dRj

dt
= δj−1Rj−1 − δjRj − β∗RjI∗ for n−m < j ≤ n

Setting all waning rates between recovered classes equal to 
δi = δ/n ensures that the average time from first recovering to 
returning to the susceptible class has a mean of 1/ δ days. The 
distribution of waning times is then given by a gamma distri-
bution with a coefficient of variation (CV) of 1/

√
n, becom-

ing more bell shaped with higher n (Hethcote et al., 1981).

Spread of a new variant
The spread of a new variant into a population at the sta-
ble endemic equilibrium (Equation 2) is given by the lead-
ing eigenvalue, λL of the external stability matrix describing 
the dynamics of the variant (see details in the Supplementary 
Mathematica package), which equals:

λL = Ŝβ∗ +mR̂jβ
∗ − κ (A2)

If the new variant did not change the transmission rate 
(β∗ = β) and was unable to infect any additional sector of the 
population (m = 0), it would be neutral (λL = 0, plugging in 
Equation 2).

The selection coefficient favoring a new variant is defined 
by the rise in frequency of the new variant relative to the 
old variant (dxdt ≡ s x, where x = freq(new variant)/freq(old 
variant)), which predicts an exponential rise in the relative 
frequency of the new variant over time (xt = es tx0). The 
strength of selection can thus be estimated empirically by the 
slope on a logit plot (plotting log of xt over time). Near the 
endemic equilibrium, it can be shown that selection, defined 
in this way, equals λL (see Supplementary Mathematica pack-
age). Plugging in Equation 2 for Ŝ into Equation A2 then 
gives the selection coefficient reported in Equation 4.

Parameter values
We consider the following parameter values for the current 
endemic phase during which Omicron predominates, giving 
the nominal value considered typical and the plausible range 
in square brackets:

•	 κ of 0.2 (mean of 5 days) [range of 3–10 days]. Source: 
Estimates of the infectious period for Omicron vary 
depending on the study design, but several studies are 
consistent with infectiousness for a couple of days prior 
to symptom onset and 5 days thereafter (UKHSA, 2023). 
We take into account some self-isolation upon infection 
and use a 5-day average infectious period as a default.
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•	 δ of 0.008 (mean of 125 days) [range of 100–180 days]. 
Source: Waning rate depends on the exact sequence of 
vaccinations and infections. The half-life of protection 
against symptomatic infection with Omicron among 
studies summarized by Menegale et al. (Menegale et 
al., 2023) was 87 days without a booster and 111 days 
with a booster, yielding δ values ranging from 0.0071 to 
0.0094 per day. Waning rates were similar for older and 
younger individuals (Figure 14 of Menegale et al., 2023).

•	 Î  of 2% [range of 0.5%–4%]. Sources: The last report 
of the Coronavirus (COVID-19) Infection Survey UK 
(Office for National Statistics, 2023), which assayed 
nose and throat swabs from households, found 2.66% 
of England were infected (March 13, 2023). In Canada, 
models suggest that 1 in 28 were infected the week of 
April 16, 2023, while 1 in 80 were infected the week of 9 
September 2023 (COVID-19 Resources Canada, 2023).

•	 Age structure for Canada: 13% of the population is 
70 + in age (Statistics Canada, 2023).

Combining these estimates with Equations 2 and 3 allows 
estimation of the transmission rate and reproductive num-
ber. The nominal parameters given above yield estimates of 
β = 0.42 and R̃0 = 2.1, ranging from β = {0.11–2.27} and 
R̃0 = {1.1,6.8} (Supplementary Table S1), although some com-
binations are not possible (e.g., a mean waning time of 180 
days is inconsistent with an incidence of ̂I  = 4% if mean clear-
ance times are too short, κ > 0.13), and the disease is then 
expected to decline.

The expected number of disease bouts per year is 1.46 
for the nominal parameter values, ranging from 0 (when the 
disease disappears) to 2.92 when incidence is high (Î  = 4%), 
waning is fast (δ = 1/100), and recovery is fast but not so fast 
that the disease disappears (κ = 1/5).

We can also calculate the expected number of infections 
per year for an individual who is vaccinated at regular inter-
vals (every T days). For simplicity, we make the approxima-
tion that vaccinations are frequent enough and waning slow 
enough that we need only consider the chance of one infec-
tion between vaccinations. If waning times were exponen-
tially distributed, then the probability of becoming infected in 
the period between vaccinations would be:

P =

T̂

0

δ e−δt︸ ︷︷ ︸
Waning at time t

∗
Ä
1− e−βÎ(T−t)

ä
︸ ︷︷ ︸

Probability of infection after waning

dt

(A3)

= 1− e−δTβÎ − e−βÎTδ

βÎ − δ
.

The approximate annual number of infections is then 
365 P/T , which is 0.88 for those on a 6-month vaccina-
tion interval (T = 365/2) and the nominal parameter values 
(κ = 0.2, δ = 0.008, ̂I = 2%, β = 0.42).

Appendix B: Model sensitivity and oscillatory 
behavior
Different choices about the number of recovered classes, 
movement among them, and whether immunity is leaky, as 
well as the inclusion of a latent period and incomplete sero-
conversion, were explored to determine sensitivity of the 
results to model assumptions (Supplementary Mathematica 

package). To simplify the presentation, we focus on the case 
where daily vaccination rates are low and are ignored (except 
where noted).

Alternate models of recovery
In the main text, we used multiple recovered classes in the 
SIRn model to capture observed declines in neutralizing 
antibodies, measured on a log scale, over time since vac-
cination and/or infection. While this reflects the dynam-
ics of neutralizing antibody levels, a side consequence is 
that the distribution for the total waning time becomes 
increasingly bell shaped as n rises (CV of 1/

√
n). This syn-

chronizes the recovery of individuals infected at the same 
time. If n is large enough, this synchronization can desta-
bilize the endemic equilibrium, leading to persistent cycles 
(Hethcote et al., 1981). While the rise in frequency of a 
variant, as described by its selective advantage (Equation 
4) and the long-term impact of the variant on the endemic 
equilibrium (Equation 5) are insensitive to the number of 
recovered compartments (n), the extent of oscillations fol-
lowing the initial spread of the variant are much stron-
ger as n increases (Supplementary Figure S2, panels A–C). 
Empirically, the distribution of waning times is close to 
exponential (CV = 1; Menegale et al., 2023), suggesting 
that intrinsic oscillations are likely to be damped (like 
Supplementary Figure S2A, where CV = 1).

Similar behaviors to Supplementary Figure S2A are seen 
in a model with only two recovered classes (n = 2), corre-
sponding to high (R1) and low (R2) antibody levels, where 
an immune evasive variant (but not the resident virus) 
can infect the second class. By setting the waning rates to 
δ1 = δ/x (from R1 to R2) and δ2 = δ/ (1− x) (from R2 to 
S), the equilibrium fraction of recovered individuals in the 
second class (x) can be adjusted to allow for more immune 
evasive variants, while keeping the average time from first 
recovering to susceptibility at 1/δ days for the resident 
virus. This model has a nearly exponential waning time, 
with rapidly dampening oscillations, for more transmis-
sible variants (Supplementary Figure S2D), more immune 
evasive variants (Supplementary Figure S2E), or both 
(Supplementary Figure S2F). The selection coefficient and 
equilibrium remain unchanged, all else being equal (given 
by Equations 4 and 5, respectively).

Leaky immunity
In the main text, we considered immunity to be polarized: 
individuals are either susceptible to infection (S compart-
ment) or not (Rj compartments, with j depending on the 
variant). There is evidence, however, that SARS-CoV-2 
immunity is leaky, such that high viral exposure can lead to 
infection for those who would otherwise be immune (Lind 
et al., 2023). Furthermore, variants may differ in the extent 
of leaky immunity (e.g., Lind et al., 2023 found higher 
hazard ratios following close exposure for Delta than for 
Omicron).

We thus explored variants that increased leakiness of 
immunity, ξ, in the SIR (n = 1) and SIRn (n = 5) models 
(exploring the latter numerically only in the Supplementary 
Mathematica package). Incorporating leaky immunity in the 
SIR model changes the dynamics to:

dS
dt

= δ R− βSI − β∗SI∗
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dI
dt

= βSI + ξβRI − κI

dI∗

dt
= β∗S I∗ + ξ∗β∗R I∗ − κ I∗

(A4)
dR
dt

= κ I + κ I∗ − ξβRI − ξ∗β∗R I∗ − δ R

The equilibrium is then:

Ŝ =
1
2

Ä
−b+

√
b2 − 4c

ä

Î =
δ
Ä
κ
β − Ŝ

ä

Ŝξβ (A5)

where b = −κ −δ−ξβ
(1−ξ)β

 and c = −κ
β

δ
(1−ξ)β

. Selection on a vari-
ant then becomes:

s =
∆β

β
κ

︸ ︷︷ ︸
Transmission advantage

+ ∆ξ R̂ β∗
︸ ︷︷ ︸

Evasion advantage
(A6)

Supplementary Figure S3 illustrates cases where immunity 
was robust against the resident virus (ξ = 0) but leaky for 
the variant (ξ∗ > 0), combined with some to no transmission 
advantage (panels A–C). Again we see that the same selective 
advantage (s) is consistent with substantially different long-
term consequences for endemic disease levels. Variants that 
exhibit leakier immunity greatly increase the endemic equilib-
rium, more than seen in Figures 3 and 4 for a given selection 
coefficient, because all individuals are more prone to infection 
in the long term, not just those with low antibody levels.

Latent period
Viral infections are characterized by a latent period between 
infection and detectible viral load, which is thought to indi-
cate the onset of the infectious period (UKHSA, 2023). We 
can include this period by adding to the SIRn model a latent 
class (E), into which all new infections enter and then exit 
at rate ε. Including this period, the equilibrium fraction of 
infected individuals changes to:

Î =
Å
1− κ

β

ã
δ ε

ε δ + ε κ+ δ κ (A7)

Given that the rate of leaving the latent class is much faster 
than waning (ε � δ), the last δ κ term in the denominator 
is negligible, and ε cancels out of Equation A7. Thus, the 
equilibrium number of infections 

Ä
Î
ä
 is nearly unaffected by 

including a latent class.
Recalculating the leading eigenvalue at this endemic equi-

librium, the selection coefficient favoring the new variant 
(s = λL) changes slightly when a latent period is added, from 
s given by Equation 4 to:

s = −ε+ κ

2
+

 (ε+ κ

2

)2
+ s ε

(A8)

Assuming that the spread of the variant is slow relative to 
the latent and infectious periods (s � ε,κ), adding a latent 
period causes selection to weaken slightly, with Equation A8 
approaching s 1

1+ κ/ε
. This occurs because only during a frac-

tion 1/κ
1/ε+1/κ = 1

1+ κ/ε of the generation time of the virus is 

it infectious. Xin et al. (2023) estimate a mean latent period 

of 3.1 days for Omicron. For the parameters considered  
typical of Omicron (Appendix A), selection would be ~70% 
as strong with a latent period. We ignore this correction to 
simplify the model presentation.

Seroconversion
Another real-world complication is that not all individuals 
seroconvert following infection or vaccination (i.e., not all 
infections elicit a robust immune response). If a fraction 
q of infections boost immunity (meaning here that they 
recover to the R1 compartment in the SIRn model), while 
1–q become susceptible again (returning to the S com-
partment), the equilibrium fraction of infected individuals 
changes to:

Î =
Å
1− κ

β

ã
δ/q

δ/q+ κ
.

(A9a)

Thus, decreasing the seroconversion rate by a factor q has 
the same effect on the endemic equilibrium as increasing 
the waning rate by a factor 1/q (Equation 5), and the same 
holds for the selection coefficient of a variant, s (Equation 
4, Supplementary Mathematica package). The temporal 
dynamics of the wavelets are slightly different, with imme-
diate waning for those who do not seroconvert and slower 
waning for those who do (Supplementary Mathematica 
package).

Seroconversion rates for vaccines can also be included, 
changing the equilibrium to:

Î =
Å
1− κ

β

ã
δ/q

δ/q+ κ
− v qv/q

δ/q+ κ
.

(A9b)

where qv is the seroconversion rate for vaccination (here 
meaning the probability that a vaccine dose boosts antibod-
ies and provides protection from infection). If seroconversion 
rates are similar following infection and vaccination (qv = q), 
then the results for selection (Equation 3) and endemic inci-
dence (Equation 4) are again the same if we replace δ (ignor-
ing seroconversion) with δ/q (including it).

To simplify the presentation, we do not explicitly include 
seroconversion but consider a range of waning rates to cover 
both seroconversion and waning.

Empirically, high seroconversion rates have been reported 
following vaccination with a single dose of Pfizer’s BNT162b2 
(q = 99.5%) or AstraZeneca ChAdOx1 (q = 97.1%), lead-
ing to antibodies recognizing the spike protein (Wei et al., 
2021). Slightly lower seroconversion (q = 93.5%–95.3%) 
was observed following infection in early 2020 (Oved et al., 
2020). An estimate following Omicron infection inferred even 
lower rates of seroconversion of q = 74%–81% (here examin-
ing antibodies to nucleocapsid, as anti-spike antibodies were 
nearly universal in the highly vaccinated population exam-
ined; Erikstrup et al., 2022).

Multiple variants
To determine the robustness of our results to the assump-
tion that the population is at equilibrium, we introduce two 
variants into the population separated by a time interval 
of varying length. We then ask whether the model predic-
tions for the second variant are substantively altered by the 
spread of the first variant. We explore the case where the first 
variant is more transmissible and the second more immune 
evasive (Supplementary Figure S4, top row) and vice versa 
(Supplementary Figure S4, bottom row).
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Alternative vaccination models
In our core model, we considered a vaccination cam-
paign aimed at vaccinating a given number of susceptible  
individuals every day. Here we briefly summarize results 
for two alternative assumptions that were modeled in the 
Supplementary Mathematica package:

•	 If susceptibilities are vaccinated at a per capita rate 
(replacing −v in Equation 1 with −vSS), the equilibrium 
is unaffected given the same daily rate of vaccinations 
at the endemic equilibrium (i.e., setting vS = v/Ŝ), but 
the numerical dynamics are slightly different because the 
number of vaccines per day fluctuates as the number of 
susceptible individuals fluctuates.

•	 If vaccines are distributed to all individuals, regardless 
of past infection status, then vaccinations are less effec-
tive at reducing the incidence of disease. In this alternate 
model, we assumed that all individuals were vaccinated 
at per capita rate v, moving from their previous disease 
class into the first recovered class, R1. Compared to Figure 
6A, vaccinating all individuals caused the equilibrium to 
fall by only 23.6%, rather than 41.8%, because of the 
inefficiency of vaccinating individuals who are already 
immune.

Appendix C: Non-pharmaceutical 
interventions
We consider an expansion of the SIRn epidemiological 
model to allow heterogeneity in behavior. As illustrated in 
Supplementary Figure S5, we now allow two classes of indi-
viduals, those who regularly adhere to stronger NPI measures, 
such as masking (indicated by an ‡), and those who do not:

dS
dt

= δnRn − βSI − (1− p)βSI‡

dS‡

dt
= δnR‡

n − (1− p)βS‡I − (1− p)2βS‡I‡

dI
dt

= βSI + (1− p)βSI‡ − κI

dI‡

dt
= (1− p)βS‡I + (1− p)2βS‡I‡ − κ I‡

� (A10)

dR1

dt
= κ I − δ1R1

dR‡
1

dt
= κ I‡ − δ1R

‡
1

dRj

dt
= δj−1Rj−1 − δjRj

dR‡
j

dt
= δj−1R

‡
j−1 − δjR

‡
j for 2 ≤ j ≤ n

where the last two equations are repeated for the remaining 
waning classes (j from 2 to n). We again set all rates between 
waning classes to δi = δ/n (mean waning time of 1/δ days). 
The new parameter p measures the protection provided when 
one individual in an interaction engages in NPI measures 
(reducing β by a factor 1–p). If both infected and susceptible 
individuals uphold these measures, transmission is reduced 
by (1− p)2. All variables are measured as proportions of the 

total population, with f being the fraction of the population 
carrying out NPI measures, such as masking (the sum of the 
‡ variables).

There are two equilibria of this system Equation A10, 
one where the disease is absent and one where the disease is 
endemic at:

Ŝ =
1
2

Ä
−B+

√
B2 − 4C

ä

Ŝ‡ =
κ− β Ŝ

(1− p)2β

Î =
Ä
1− f − Ŝ

ä δ

δ + κ

Î‡ =
Ä
1− f − Ŝ

ä δ

δ + κ

κ− β Ŝ

(1− p) β Ŝ (A11)

R̂j = R̂j−1 =
1− f − Ŝ− Î

n
for 1 ≤ j ≤ n

R̂‡
j = R̂‡

j−1 =
f − Ŝ− Î

n
for 1 ≤ j ≤ n

where B = (1−f) (1−p) β+f (1−p)2β−κ p
p β  and C = − (1−f) (1−p) κ

p β
.  

The disease-absent equilibrium is locally stable when trans-
mission rates are low relative to clearance, such that the 
endemic reproductive number if everyone were susceptible is 
less than one, R̃0 = (1−f) β+f (1−p)2β

κ < 1, in which case the 
endemic equilibrium does not exist (i.e., not all variables are 
positive). Otherwise, when R̃0 > 1, the endemic equilibrium 
exists and is stable for the parameters considered, but it may 
become unstable for large n (Hethcote et al., 1981).

At this equilibrium, the risk that an individual is in the 
infected class at any point in time is Î‡/f  if they regularly mask 
and Î/ (1− f ) if they do not, from which we calculate the rela-
tive risk in the main text. The population-level impact of NPI 
measures, such as masking, is determined by analyzing the frac-
tion of the population expected to be infected at any point in 
time, ̂I + Î‡.

The above assumes that an individual’s choice about engag-
ing in NPI measures remains constant over time, but we also 
consider the opposite case (detailed in the Supplementary 
Mathematica package), where individuals rapidly switch 
between engaging or not in NPI measures. Assuming that the 
behavior persists over the short time frame of infection but 
that individuals switch often while in the longer susceptible 
or recovered phases, we can simplify the model by monitoring 
only those engaging in NPI measures at the time of exposure, 
with f then representing the probability that an individual 
engages in the NPI measures at that time. We thus only sub-
divide the infectious class into those who were or were not 
practicing the NPI measures at the time of infection (I‡ or I , 
respectively). The dynamics are then:

dS
dt

= δnRn − (1− f )βSI

− (1− p) fβSI − (1− p) (1− f )βSI‡

− (1− p)2fβSI‡ (A12)

dI
dt

= (1− f )βSI + (1− p) (1− f )βSI‡ − κ I

dI‡

dt
= (1− p) fβSI + (1− p)2fβSI‡ − κ I‡
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dR1

dt
= κ I + κ I‡ − δ1R1

dRj

dt
= δj−1Rj−1 − δjRj for 2 ≤ j ≤ n

Results using Equation A12 instead of Equation A10 are 
similar, except that practicing and non-practicing individuals 
are equally likely to be susceptible at the time of exposure, so 
the individual-level protective effect of the NPI measure now 
depends only on p and not on R̃0, as discussed in the text.

Parameters: The protection (p) and uptake (f) depend on 
the NPI measure considered (The Royal Society, 2023). Here 
we briefly review data on masking as a protective measure. 
One meta-analysis of randomized control studies prior to the 
COVID-19 pandemic found protection provided by masks 
was p = 16% for respiratory infections, rising to p = 24% in 
studies longer than two weeks (Li et al., 2022). Importantly, 
many individual studies were underpowered, but the results 
were consistent across studies (see Figure 2 in Li et al., 2022).

For COVID-19, a meta-analysis of the impact of mask 
mandates estimated a 25% reduction in transmission rates, 
comparing transmission levels predicted if everyone were in 
the class that self-report wearing masks “most of the time 
in some public places” to that if no one wore masks (Leech  
et al., 2022). Importantly, the authors showed that the lifting  

or imposition of mandates rarely had dramatic immediate 
effects on mask-wearing, emphasizing that mandates are a 
poor proxy for mask-wearing. Their analysis thus benefited 
from a global analysis of trends in mask-wearing behavior 
around the time of mandates by incorporating data from a 
survey of masking behavior among nearly 20 million indi-
viduals.

As argued by Leech et al. (2022), this effect size is likely 
to be underestimated for a number of reasons. First, the 
study period (May 1–September 1, 2020) occurred when 
cloth masks predominated, because high-quality masks were 
largely unavailable outside of healthcare settings. Second, the 
definition of mask use was broad and included individuals 
who only occasionally mask and do so in a few public places. 
We thus consider that p = 0.25 represents a lower bound on 
the protection provided by masking.

Higher values are plausible when using high-quality masks and 
doing so consistently in indoor public spaces. For example, masks 
provided a stronger benefit, reducing the odds ratio of infection by 
an average of 50% among the studies summarized within health-
care settings (The Royal Society, 2023). We thus consider p = 0.5 to 
represent a reasonable upper bound on the protection provided by 
masking attainable by consistent wearing of high-quality masks. 
Combinations of NPI measures, including improved ventilation, 
avoiding crowded indoor environments, testing and self-isolation, 
and masking may provide considerably stronger protection.
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