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Many natural systems exhibit tipping points where slowly chang-
ing environmental conditions spark a sudden shift to a new
and sometimes very different state. As the tipping point is
approached, the dynamics of complex and varied systems sim-
plify down to a limited number of possible “normal forms” that
determine qualitative aspects of the new state that lies beyond
the tipping point, such as whether it will oscillate or be sta-
ble. In several of those forms, indicators like increasing lag-1
autocorrelation and variance provide generic early warning sig-
nals (EWS) of the tipping point by detecting how dynamics slow
down near the transition. But they do not predict the nature
of the new state. Here we develop a deep learning algorithm
that provides EWS in systems it was not explicitly trained on, by
exploiting information about normal forms and scaling behav-
ior of dynamics near tipping points that are common to many
dynamical systems. The algorithm provides EWS in 268 empirical
and model time series from ecology, thermoacoustics, climatology,
and epidemiology with much greater sensitivity and specificity
than generic EWS. It can also predict the normal form that char-
acterizes the oncoming tipping point, thus providing qualitative
information on certain aspects of the new state. Such approaches
can help humans better prepare for, or avoid, undesirable state
transitions. The algorithm also illustrates how a universe of
possible models can be mined to recognize naturally occurring
tipping points.

dynamical systems | machine learning | bifurcation theory |
theoretical ecology | early warning signals

Many natural systems alternate between states of equilib-
rium and flux. This has stimulated research in fields rang-

ing from evolutionary biology (1) and statistical mechanics (2)
to dynamical systems theory (3). Dynamical systems evolve over
time in a state space described by a mathematical function (3).
Thus, dynamical systems are extremely diverse, ranging in spa-
tial scale from the expanding universe (4) to quantum systems
(5) and everything in between (6–8).

Different dynamical systems exhibit vastly different levels of
complexity, and correspondingly diverse behavior far from equi-
librium states. Sometimes, a system that is close to equilibrium
may experience slowly changing external conditions that move
it toward a tipping point where its qualitative behavior changes
(we note that “tipping point” has been used to refer to a variety
of phenomena (9), but here we will treat it as being synonymous
with a local bifurcation point). In these circumstances, dynamical
systems theory predicts that even very high-dimensional systems
will simplify to follow low-dimensional dynamics (10, 11). More-
over, there exist a limited number of typical bifurcations of steady
states, each of which may be described by a “normal form”—a
canonical example capturing the dynamical features of the bifur-
cation (Box 1) (3). For instance, in a fold bifurcation, the system
exhibits an abrupt transition to a very different state. A trans-
critical bifurcation usually causes a smooth transition, although it
may sometimes cause an abrupt transition (12). Or, a Hopf bifur-

cation can lead the system into a state of oscillatory behavior via
a smooth (supercritical) or abrupt (subcritical) transition.

Different bifurcation types correspond to distinct types of
dynamical behavior. Moreover, other behaviors can emerge near
the bifurcation that are common to many normal forms. For
example, all local bifurcations, that is, those where eigenvalues
of the respective matrices cross the imaginary axis, are accom-
panied by critical slowing down (3, 13). This is where system
dynamics become progressively less resilient to perturbations as
the transition approaches, causing dynamics to become more
variable and autocorrelated. As a result, statistical indicators
such as rising variance and lag-1 autocorrelation (AC) of a time
series often precede tipping points in a variety of systems (14–
16). These generic early warning indicators have been found to
precede catastrophic regime shifts in systems including epilep-
tic seizures, Earth’s paleoclimate system, and lake manipulation
experiments (17–19).

Mathematically, critical slowing down occurs when the real
part of the dominant eigenvalue (a measure of system resilience;
Box 2) diminishes and eventually passes through zero at the
bifurcation point. This happens for fold, Hopf, and transcritical
bifurcations, and thus critical slowing down is manifested before
these three bifurcations types (16). Generic early warning indi-
cators are intended to work across a range of different types of
systems by detecting critical slowing down. But this strength is
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also their weakness, since these indicators do not tell us which
type of bifurcation to expect (16).

The dominant eigenvalue is derived from a first-order approx-
imation to dynamics near the equilibrium. Higher-order approx-
imations can distinguish between different types of bifurcations.
But they are not often used to develop early warning indicators
because 1) the first-order approximation dominates dynamics
sufficiently close to the equilibrium, causing critical slowing down
to generate the strongest signal, and 2) the first-order approxi-
mation is more tractable to mathematical analysis of stochastic
systems than the higher-order approximations (20). However, as
a system gets closer to a bifurcation, it can drift farther from
equilibrium due to critical slowing down. As a consequence, the
higher-order terms become significant and may be large enough
to provide clues about the type of transition that will occur. Sta-
tistical measures such as skew and kurtosis reflect the influence
of these highest-order terms, for instance (20–22). Higher-order
terms could be associated with features in time series data that
are subtle but detectable, if we knew what to look for. Knowing
qualitative information about the tipping point (such as whether
it will be sudden or gradual) and the state that lies beyond it (such
as whether it will oscillate or be stable) based on predicting the
bifurcation type could be valuable in a range of applications.

Deep Learning and Bifurcation Theory
Generic early warning indicators such as variance and lag-1 AC
use insights from dynamical systems theory to detect patterns
that emerge before a bifurcation (Box 2). Supervised DL algo-
rithms can also detect patterns (features) in time series, and have
achieved state of the art in time series classification (23)—the
ability to classify time series based on characteristic features in
the data. We hypothesized that DL algorithms can detect both
critical slowing down and other subtle features that emerge in
time series prior to each type of bifurcation, such as the features
generated by higher-order terms.

However, supervised DL algorithms require many thousands
of time series to learn classifications—something we do not have
for many empirical systems (24). And they can only classify time
series similar to the type of data they were trained on. Here, we
propose that simplification of dynamical patterns near a bifur-
cation point provides a way to address the problem of limited
empirical data, and allows us to relax the restriction that DL
algorithms can only classify time series from systems that they
were trained on. Our first hypothesis (H1) is that, if we train a
DL algorithm on a sufficiently large training set generated from
a sufficiently diverse library of possible dynamical systems, the
relevant features of any empirical system approaching a tipping
point will be represented somewhere in that library. Therefore,
the trained algorithm will provide early warning signals (EWS)
in empirical systems that are not explicitly represented in the
training set. Thus, even a relatively limited library might con-
tain the right kinds of features that characterize higher-order
terms in real-world time series. Our second hypothesis (H2) is
that the DL algorithm will detect EWS with greater sensitivity
(more true positives detected) and specificity (fewer false posi-
tives) than generic early warning indicators. Our third hypothesis
(H3) is that the DL algorithm will also predict qualitative infor-
mation about the new state that lies beyond the tipping point,
on account of being able to recognize patterns associated with
higher-order terms. All three hypotheses are based on the simpli-
fication of complex dynamics close to a bifurcation point (Boxes 1
and 2).

To test these hypotheses, we developed a DL algorithm to
provide EWS for tipping points in systems it was not trained
upon. We used a CNN-LSTM architecture (convolutional neural
network—long short-term memory network; see Materials and
Methods). CNN-LSTM sandwiches two different types of neural

Box 1. Dimension Reduction Close to a Bifurcation

As a high-dimensional dynamical system approaches a bifur-
cation, its dynamics simplify according to the center manifold
theorem (10). That is, the dynamics converge to a lower-
dimensional space, which exhibits dynamics topologically
equivalent to those of the normal form of that bifurcation.
Examples of a fold, (supercritical) Hopf, and transcritical
bifurcation are shown in Box 1a–c. Dynamics close to the
bifurcation (gray box) are topologically equivalent to the
normal forms

dx

dt
=µ− x2, [1]

dx

dt
=µx − y − x (x2 + y2),

dy

dt
= x +µy − y(x2 + y2),

[2]
dx

dt
=µx − x2, [3]

respectively, where x and y are state variables that depend
on time t , and µ is the bifurcation parameter. The bifurcation
of each system occurs at µ=0. These normal forms are con-
tained within the set of two-dimensional dynamical systems
with third-order polynomial right-hand sides, motivating
this as the framework for training the deep learning (DL)
algorithm (see Materials and Methods).

network layers. The CNN layer reads in subsequences of the time
series and extracts features that appear in those subsequences.
The LSTM layer then reads in the output of the CNN and inter-
prets those features. The LSTM layer loops back on itself to
generate memory, enabling the layer to recognize the same fea-
ture appearing at different times in a long time series. As a
result, this approach excels at pattern recognition and sequence
prediction (25, 26).

We created a training set consisting of simulations from a
randomly generated library of mathematical models exhibiting
local bifurcations (see Materials and Methods). Specifically, we
generated three classes of simulations eventually going through
a fold, Hopf, or transcritical bifurcation, and a fourth neutral
class that never goes through a bifurcation. (We note that
other types of state transitions are possible, such as those ca-
used by a global bifurcation (27), but we restrict attention to local
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Box 2. Significance of Higher-Order Terms Close to a
Bifurcation

The local behavior of a dynamical system about an equilib-
rium point is often well described by a linear approximation of
the equations that govern its dynamics. However, for systems
nearing a bifurcation, higher-order terms become significant.
We illustrate this for a one-dimensional system dx/dt = f (x )
with equilibrium x∗, that is, f (x∗)= 0. The dynamics about
equilibrium following a perturbation by ε satisfy

d(x∗+ ε)

dt
= f (x∗+ ε)= f (x∗)+

∂f

∂x

∣∣∣∣
x∗
ε+

1

2

∂2f

∂x2

∣∣∣∣
x∗
ε2 + · · ·

=λ1ε+λ2ε
2 + · · · ,

where λ1, λ2, . . . are coefficients of the Taylor expansion, and
λ1 is referred to as the dominant eigenvalue. The potential
landscape of this system centered on x∗ is given by

V (ε)=

∫
f (x∗+ ε)dε=

1

2
λ1ε

2 +
1

3
λ2ε

3 + · · · ,

where we have dropped the arbitrary integration constant.
Far from a bifurcation in a regime of small noise, displace-
ment from equilibrium (ε) is small, and so the visited part of
the potential landscape is well described by the first-order
(linear) approximation (Box 2a). As a local bifurcation is
approached, λ1→ 0, which corresponds to critical slowing
down, and a flattening of the first-order approximation to the
potential landscape (Box 2b). This allows noise to push the
system farther from equilibrium, where higher-order terms
become significant.

A B

codimension-one bifurcations in this paper.) Then, we trained
the CNN-LSTM algorithm on the training set to classify any
given time series into one of the four categories based on the
prebifurcation portion of the simulation time series. The F1
score of the algorithm—a combined measure of precision (how
many positive classifications are true positives) and sensitiv-
ity/recall (how many of the true positives are detected)—tested
against a hold-out portion of the training set was 88.2% when
training on time series of length 1,500 data points, and was 84.2%
when training on time series of length 500 data points.

We evaluated the out-of-sample predictive performance of the
algorithm, using data from study systems that were not included
in the training set. We tested three model systems and three
empirical systems. The model systems included a simple har-
vesting model consisting of a single equation that exhibits a fold
bifurcation (28); a system of two equations representing a con-
sumer−resource (predator−prey) system exhibiting both Hopf
and transcritical bifurcations (29); and a system of five equations
representing the coupled dynamics of infection transmission
and vaccine opinion propagation, and exhibiting a transcritical
bifurcation (12). The three empirical datasets consisted of data

from paleoclimate transitions (17), transitions to thermoacous-
tic instability in a horizontal Rijke tube which is a prototypical
thermoacoustic system (30), and sedimentary archives capturing
episodes of anoxia in the eastern Mediterranean (31) (see Materi-
als and Methods). We selected these empirical datasets because,
in each case, they have been previously argued to show critical
slowing down before a tipping point, based on lag-1 AC and/or
variance trends, followed by observation of a state transition. We
compared the performance of the DL algorithm against lag-1 AC
and variance for all six study systems.

Results
The EWS provided by lag-1 AC, variance, and the DL algorithm
can be compared as progressively more of the time series lead-
ing up to the bifurcation is made available for their computation,
as might occur in real-world settings where a variable is moni-
tored over time. A clear trend in variance or lag-1 AC is taken to
provide an early warning signal of an upcoming state transition
(32). For the two ecological models exhibiting the fold, Hopf and
transcritical bifurcations (Fig. 1 A–C), the lag-1 AC and variance
increase progressively before all three transition types except for
the Hopf bifurcation, where lag-1 AC decreases due to the pres-
ence of an oscillatory component to the motion (20) (Fig. 1 D–I).
Hence the trends in these two indicators suggest that a transition
will occur.

The DL algorithm assigns a probability for each of the four
possible outcomes (fold, transcritical, Hopf, and neutral) that the
time series will culminate in that outcome. Therefore, a height-
ened probability assigned to one of the outcomes compared to
the other three is taken to provide an early warning signal of that
outcome. According to this criterion, the DL algorithm also pro-
vides early warning of a transition in the two ecological models,
and correctly predicts the type of bifurcation in each of the three
cases (Fig. 1 J–L). Inspection of the time series provides support-
ing evidence for our first two hypotheses. Firstly, these model
equations were not used to develop our training library (although
we note that our hypothesis relies on the training library includ-
ing a representative type of dynamics from the models, such as
fold bifurcations). Secondly, the algorithm initially assigns sim-
ilar probabilities to all three transition types in the earlier part
of the time series, but, after a specific time point, the algorithm
becomes highly confident in picking one of the three bifurca-
tion types as the most probable outcome. This is consistent with
the algorithm being able to distinguish features based on higher-
order terms that are held in common between dynamical systems
exhibiting each bifurcation type, but that distinguish the bifurca-
tion types from one another. Examples of these time series for
the other four study systems appear in SI Appendix, Figs. S1–S10.

These time series, however, do not address how the
approaches might perform when faced with a neutral time series
where no transition occurs, and whether they might mistak-
enly generate a false positive prediction of an oncoming state
transition (33). Hence, we compared the performance of these
approaches with respect to both true and false positives through
a receiver operator characteristics (ROC) curve. The ROC curve
shows the ratio of true positives to false positives, as a discrim-
ination threshold that determines whether a classifier predicts a
given outcome (such as transition versus no transition) is var-
ied. The area under the ROC curve determines how well the
classifier does with respect to both sensitivity/recall (how many
true positives are detected) and specificity (how many false pos-
itives are avoided). The AUC is one for a perfect classifier, and
0.5 for a classifier that is no better than random. For variance
and lag-1 AC, higher positive values of the Kendall τ statistic
indicate a more strongly increasing trend. Therefore, these indi-
cators were taken to predict a given outcome when the Kendall
τ statistic exceeded the discrimination threshold. The DL
algorithm was taken to predict a given outcome simply when the
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Fig. 1. Trends in indicators prior to three different bifurcations in ecological models. (A–C) Trajectory (gray) and smoothing (black) of a simulation of an
ecological model going through a fold, Hopf, and transcritical bifurcation, respectively. (D–F) Lag-1 AC computed over a rolling window (arrow) of width
0.25. (G–I) Variance. (J–L) Probabilities assigned to the fold (purple), Hopf (orange), and transcritical (cyan) bifurcation by the DL algorithm. The vertical
dashed line marks the time at which the system crosses the bifurcation.

probability assigned to that outcome exceeded the discrimination
threshold.

We compared ROC curves for the criterion of predicting any
transition for lag-1 AC, variance, and the DL algorithm, for eight
comparisons across all six study systems (Fig. 2). In support of
our second hypothesis, the DL algorithm strongly outperforms
lag-1 AC and variance in six of the comparisons. There are two
interesting comparisons where the performance of the DL algo-
rithm is similar to that of lag-1 AC or variance. For the SEIRx
(Susceptible-Exposed-Infectious-Removed-vaccinator) coupled
behavior−disease model, all three classifiers are little better than
random in the model variable for the number of infectious per-
sons (I ; Fig. 2E). This occurs due to nonnormality of the system
associated with differing timescales for demographic and epi-
demiological processes (34). However, the early warning signal
is apparent in the variable x for the prevalence of provaccine

opinion, and the DL algorithm outperforms both lag-1 AC and
variance in this respect. Also, for the paleoclimate data, the DL
algorithm performs about as well as lag-1 AC, and both perform
better than variance (Fig. 2H). This may occur because the vari-
ance actually decreases before the transition in several of the
empirical time series, because the sampling data does not have
high enough resolution, or because the system was forced too
quickly.

In support of our third hypothesis, we note that the DL algo-
rithm usually predicts the correct type of bifurcation in all eight
comparisons (Fig. 2). An exception occurs for the thermoacous-
tic system (Fig. 2G), where the frequency of the favored DL
probability for the Hopf bifurcation is only slightly higher than
for the fold bifurcation. This could be due to our down-sampling
of the data to enable the time series to be accommodated by the
DL algorithm code.

4 of 9 | PNAS
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Fig. 2. ROC curves for predictions using 80 to 100% of the pretransition time series for model and empirical data. ROC curves compare the performance
of the DL algorithm (blue), variance (red), and lag-1 AC (green) in predicting an upcoming transition. The area under the curve (AUC), abbreviated to
A, is a measure of performance. Insets show the frequency of the favored DL probability among the forced trajectories: (F)old, (T)ranscritical, (H)opf, or
(N)eutral. (A) May’s harvesting model going through a fold bifurcation; (B and C) consumer−resource model going through a (B) Hopf and (C) transcritical
bifurcation; (D and E) behavior−disease model going through a transcritical bifurcation using data from (D) provaccine opinion (x) and (E) total infectious
(I); (F) sediment data showing rapid transitions to an anoxic states in the Mediterranean sea; (G) data of a thermoacoustic system undergoing a Hopf
bifurcation; and (H) ice core records showing rapid transitions in paleoclimate data. The diagonal dashed line marks where a classifier works no better than
a random coin toss.

These ROC curves came from classifiers with access to 80 to
100% of the time series (in other words, using the last 20% of
the time series). We also computed the ROC curves when the
three classifiers had access to 60 to 80% (the fourth quintile) of
the time series (SI Appendix, Fig. S11). This allows us to assess
the reliability of the approaches when they are required to pro-
vide early warning for a system that is still far from the tipping
point. We observe that the DL algorithm provides early warn-
ing with greater sensitivity and specificity than either lag-1 AC or
variance, in all comparisons except the I variable of the SEIRx
model, where they perform equally poorly. This result suggests
that the DL algorithm can provide greater forewarning of com-
ing state transitions, although additional statistical tests would be
required to show this conclusively.

Discussion
We tested our DL algorithm on data from systems that exhib-
ited critical slowing down before a local bifurcation. However,
other types of transitions are possible, such as global bifurcations
that do not depend on changes to the local stability of equilibria
(27). EWS of global bifurcations are more challenging to detect.
State transitions may also occur through codimension-two bifur-
cations where two forcing parameters are varied simultaneously
(16, 35, 36), or bifurcations of periodic orbits (22), for which
EWS are more apparent. In general, DL algorithms only work
for the specific problems they are trained to do. In order for our
DL algorithm to provide early warning of other such bifurcations,
we speculate that the training set would need to be expanded to
include simulated data exhibiting those dynamics.

Bifurcations are not inherent to real-world systems but rather
are a property of our mathematical model of the systems. We
trained the DL algorithm on data from mathematical models,
but we applied it to empirical data from systems that have been

previously studied in the literature on EWS of tipping points.
The algorithm still detects bifurcations in the empirical sys-
tems because that is what it was trained to do. However, it
could be said that the algorithm is really predicting the type of
bifurcation that researchers would use to describe an observed
transition in the real-world system. This reflects the more general
issue of how humans leave their imprint—for better or worse—
on the classifications provided by supervised machine learning
algorithms (37).

Early warning indicators generally require high-resolution
data from a sufficiently long time series leading up to the tip-
ping point (38). This applies to DL algorithms as well as to lag-1
AC and variance. We did not analyze how the performance of
the DL algorithms, lag-1 AC, and variance compare as the time
series becomes shorter. Similarly, none of these approaches can
predict exactly when a transition will occur. This task lies in the
domain of time series forecasting instead of classification and is
a difficult undertaking, given that stochasticity could cause a sys-
tem to jump prematurely to a new basin of attraction even before
the system has reached the tipping point (39). Also worth noting
is that we generated a training set based on models with two state
variables and second-order polynomial model equations. This
limits its ability to detect features such as deterministic chaos
(22), which require at least three state variables (40).

We did not analyze whether the DL algorithm is using the
higher-order terms in the normal form equations, or whether
it is primarily relying on some other features in the data. This
could be addressed in future work by controlled tests of whether
the algorithm can distinguish supercritical and subcritical Hopf
bifurcations (which differ in the cubic term), for instance. Finally,
we note that, even though the DL algorithm can predict certain
qualitative features of the new regime (such as oscillations after
a Hopf bifurcation, or a stable state after a fold bifurcation), it
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cannot say much else about the new regime. For instance, a fold
bifurcation could lead an ecosystem into either a stable collapsed
state or a stable healthy state (41).

Other early warning approaches have been developed to
predict the type of bifurcation (20, 22, 34). However, these
approaches tend to be system specific. Our results show that
DL algorithms not only can improve the sensitivity and speci-
ficity of EWS for regime shifts but also apply with a great degree
of generality across different systems. Moreover, as long as the
generic dynamical features (the normal forms) of the system
near a tipping point are represented in the training set (Boxes
1 and 2), data from the study system are not required to train the
algorithm. In summary, by combining dynamical systems insights
with DL approaches, our results show how to obtain EWS of
tipping points with much greater sensitivity, specificity, and gen-
eralizability across systems than is currently possible, as well as
predicting the type of tipping point, and thus providing spe-
cific qualitative information about the new state that lies beyond
the tipping point. This information is important to know for
both theoretical and practical purposes, since tipping points in
many systems can lead to undesirable collapse (14). Improved
EWS can help us better prevent or prepare for such state
transitions (41).

Materials and Methods
Generation of Training Data for the DL Classifier. Training data consist of
simulations of randomly generated, two-dimensional dynamical systems of
the form

ẋ =

10∑
i=1

aipi(x, y) [4]

ẏ =

10∑
i=1

bipi(x, y), [5]

where x and y are state variables, ai and bi are parameters, and ~p(x, y) is a
vector containing all polynomials in x and y up to third order,

~p(x, y) = (1, x, y, x2, xy, y2, x3, x2y, xy2, y3).

An individual model is generated by drawing each ai and bi from a nor-
mal distribution with zero mean and unit variance. Then, half of these
parameters are selected at random and set to zero. The parameters for the
cubic terms are set to the negative of their absolute value to encourage
models with bounded solutions.

For a DL algorithm to be effective, the training data should cover a
wide representation of the possible dynamics that could occur in unseen
data. For this reason, we generate many versions of the model in Eqs.
4 and 5, each with a different set of parameter values. We continue to
generate models until a desired number of each type of bifurcation has
been found. For each bifurcation, we run simulations that are used as
training data for the DL algorithm. In this study, we consider codimension-
one bifurcations of steady states, including the fold, Hopf, and transcritical
bifurcation. The pitchfork bifurcation is another example; however, it only
occurs in models with symmetrical dynamics that are not often found in
ecological models.

We generated two different training sets: one consisting of 500, 000
time series of length 500 data points, and one consisting of 200, 000 time
series of length 1,500 data points. This was done because the time series
lengths in the three empirical and three model systems are highly vari-
able. The algorithm was trained separately on these two training sets (see
next subsection), resulting in a “500-classifier” and a “1,500-classifier.” The
500-classifier was used on shorter time series, while the 1,500-classifier
was used on the longer time series. For the model time series in Fig.
1, we use the 1,500-classifier. For the ROC curves in Fig. 2, we used the
500-classifier for the paleoclimate data and the ecological models, and
used the 1,500-classifier for the thermoacoustic data, anoxia data, and
disease model.

Upon generation of a model, we simulate it for 10,000 time steps from
a randomly drawn initial condition and test for convergence to an equi-
librium point. Convergence is required in order to search for bifurcations.

The simulation uses the odeint function from the Python package Scipy
(42) with a step size of 0.01. We say the model has converged if the
maximum difference between the final 10 points of the simulation is less
than 10−8. Models that do not converge are discarded. For models that
converge, we use AUTO-07P (43) to identify bifurcations along the equi-
librium branch as each nonzero parameter is varied within the interval
[−5, 5]. For each bifurcation identified, we run a corresponding “null” and
a “forced” stochastic simulation of the model with additive white noise.
Null simulations keep all parameters fixed. Forced simulations increase the
bifurcation parameter linearly in time from its original value up to the
bifurcation point. Stochastic simulations are run using the Euler Maruyama
method with a step size of 0.01, an initial condition given by the model’s
equilibrium value and a burn-in period of 100 units of time. The noise
amplitude is drawn from a triangular distribution centered at 0.01 with
upper and lower bounds 0.0125 and 0.0075, respectively, and weighted by
an approximation of the dominant eigenvalue of the model (SI Appendix,
Supplementary Note).

For each simulation, we set a sampling rate fs, the number of data points
collected per unit of time, which is drawn randomly from {1, 2, . . . , 10}.
Using a varied sampling rate provided a wider distribution of lag-1 AC
among the training data entries, which is important for representing a
wide range of systems and timescales. The simulation is then run for 700/fs

time units for the 500-classifier and 1,700/fs time units for the 1,500-
classifier, providing 700 and 1,700 points, respectively, when sampled at a
frequency fs.

Due to noise, the simulations often transition to a new regime before
the bifurcation point is reached. We only want the DL classifier to see
data prior to the transition. Therefore, we use a change-point detection
algorithm contained in the Python package ruptures (44) to locate a tran-
sition point if one exists. If a transition point is detected, the preceding
500 (1,500) points are taken as training data. If the transition occurs ear-
lier than 500 (1,500) data points into the simulation, the model is discarded.
If no transition point is detected, the final 500 (1,500) points are taken as
training data.

DL Algorithm Architecture and Training. We used a CNN-LSTM DL algorithm
(25, 26). We also experimented with a residual network, functional convolu-
tional network, and recurrent neural network but found that the CNN-LSTM
architecture yielded the highest precision and recall on our training set.
The code was written using TensorFlow 2.0 in Anaconda 2020.02. The CNN-
LSTM architecture appears in Fig. 3. The algorithm was trained for 1,500
epochs with a learning rate of 0.0005, and the hyperparameters were tuned
through a series of grid sweeps. The same hyperparameter values were
used for training on both 500-classifier and 1,500-classifier (see previous
subsection).

The simulation output time series from the random dynamical systems
were detrended using Lowess smoothing with a span of 0.2 to obtain the
residual time series that formed the training set. Each residual time series
was normalized by dividing each time series data point by the average
absolute value of the residuals across the entire time series. We used a
train/validation/test split of 0.95/0.04/0.01 for both the 500- and 1,500-
classifiers. The test set was chosen as a small percentage because a test set of
a few thousand time series is adequate to provide a representative estimate
of the precision and recall. The f1 score, precision, and recall for an ensemble
of ten 500-classifier models were 84.2%, 84.4%, and 84.2%, respectively. The
f1 score, precision, and recall for an ensemble of ten 1,500-classifier models
were 88.2%, 88.3%, and 88.3%, respectively.

For testing the ability of the DL algorithm to provide EWS of bifurca-
tions, we developed variants where the algorithm was trained on censored
versions of the training time series. For the 500 (1,500) length classifier,
one variant was trained on a version of the training set where the resid-
uals of the simulation time series were padded on both the left and right
by between 0 and 225 (725) zeroes, with the padding length chosen ran-
domly from a uniform distribution. This allowed the algorithm to train
on time series as short as 50 (50), not necessarily representing the time
phase just before the transition. The intention was to boost the perfor-
mance of the DL algorithm for detecting EWS features from shorter time
series and from the middle sections of time series. The second variant was
trained on a version of the training set where the residuals of the simu-
lation time series were padded only on the left, by between 0 and 450
(1,450) zeroes, where the padding length was chosen randomly from a uni-
form distribution. This allowed the algorithm to train on time series as
short as 50 (50), representing time series of various lengths that lead up
to the bifurcation (except for the neutral class). As a result, the classifier
could better detect features that emerge most strongly right before the
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Fig. 3. CNN-LSTM architecture.

bifurcation. Ten trained models of each variant were ensembled by tak-
ing their average prediction at each point to generate all of our reported
results.

Theoretical Models Used for Testing. We use models of low and intermediate
complexity to test the DL classifier. Models are simulated using the Euler
Maruyama method with a step size of 0.01 unless otherwise stated. To test
detection of a fold bifurcation, we use May’s harvesting model (28) with
additive white noise. This is given by

dx

dt
= rx

(
1−

x

k

)
− h

x2

s2 + x2
+σξ(t),

where x is biomass of some population, k is its carrying capacity, h
is the harvesting rate, s characterizes the nonlinear dependence of har-
vesting output on current biomass, r is the intrinsic per capita growth
rate of the population, σ is the noise amplitude, and ξ(t) is a Gaus-
sian white noise process. We use parameter values r = 1, k = 1, s = 0.1,
h∈ [0.15, 0.27], and σ= 0.01. In this configuration, a fold bifurcation
occurs at h = 0.26. The parameter h is kept fixed at its lower bound for
null simulations and is increased linearly to its upper bound in forced
simulations.

To test the Hopf and transcritical bifurcations, we use the
Rozenzweig−MacArthur consumer−resource model (29) with additive
white noise. This is given by

dx

dt
= rx

(
1−

x

k

)
−

axy

1 + ahx
+σ1ξ1(t),

dy

dt
=

eaxy

1 + ahx
−my +σ2ξ2(t),

where r is the intrinsic per capita growth rate of the resource (x), k is
its carrying capacity, a is the attack rate of the consumer (y), e is the
conversion factor, h is the handling time, m is the per capita consumer
mortality rate, σ1 and σ2 are noise amplitudes, and ξ1(t) and ξ2(t) are
independent Gaussian white noise processes. We fix the parameter val-
ues r = 4, k = 1.7, e = 0.5, h = 0.15, m = 2, σ1 = 0.01, and σ2 = 0.01. In
this configuration, the deterministic system has a transcritical bifurcation
at a = 5.60 and a Hopf bifurcation at a = 15.69. For the transcritical bifur-
cation, we simulate null trajectories with a = 2 and forced trajectories
with a∈ [2, 6]; for the Hopf bifurcation, we use a = 12 and a∈ [12, 16],
respectively.

To test the DL algorithm on a model of higher dimensionality than the
ecological models, we used a stochastic version of the SEIRx model that
captures interactions between disease dynamics and population vaccinating
behavior (12, 45) given by

dS

dt
=µN(1− x)−µS− βSI/N +σ1ξ1(t),

dE

dt
= βSI/N− (σ+µ)E +σ2ξ2(t),

dI

dt
=σE− (γ+µ)I +σ3ξ3(t),

dR

dt
=µx + γI−µR +σ4ξ4(t),

dx

dt
=κx(1− x)(−ω+ I + δ(2x− 1)) +σ5ξ5(t),

where S is the number of susceptible individuals, E is the number of
exposed (infected but not yet infectious) individuals, I is the number of
infectious individuals, R is the number of recovered/immune individuals, x
is the number of individuals with provaccine sentiment, µ is the per capita
birth and death rate, β is the transmission rate, σ is the per capita rate
at which exposed individuals become infectious, γ is the per capita rate
of recovery from infection, κ is the social learning rate, δ is the strength
of injunctive social norms, and ω is the perceived relative risk of vaccina-
tion versus infection. For our simulations, we used µ= 0.02/y, β= 1.5/d
(based on R0≈ β/γ= 15), σ= 0.1/d, γ= 0.1/d, κ= 0.001/d, δ= 50, and
N = 100, 000, representing a typical pediatric infectious disease (12). Simula-
tions were perturbed weekly with σi = 5 for i = 1 . . . 4, and σ5 = 5× 10−4.
On account of the large timescale difference in vital dynamics and infec-
tion processes, the system is nonnormal (34). We note that S + E + I + R = 1,
and therefore, since R can be obtained as R = 1− S− E− I, the model is
four-dimensional. The forcing parameter ω was gradually forced from 0 to
100. As perceived vaccine risk increases along the (1, 0, 0, 0, 1) branch corre-
sponding to full vaccine coverage, the model has a transcritical bifurcation
at ω= δ (12), which leads to a critical transition corresponding to a drop
in the proportion of individuals with provaccine sentiment and a return of
endemic infection.

Empirical Systems Used for Testing. We use three different sources of
empirical data to test the DL classifier.

1) The first source is sedimentary archives from the Mediterranean Sea (46).
These provide high-resolution reconstructions of oxygen dynamics in the
eastern Mediterranean Sea. Rapid transitions between oxic and anoxic
states occurred regularly in this region in the geological past. A recent
study has shown that EWS exist prior to the transitions (31). The data con-
sist of output from three cores that, together, span eight anoxic events.
Variables include molybdenum (Mo) and uranium (U), proxies for anoxic
and suboxic conditions, respectively, giving us a total of 26 time series for
anoxic events (some are captured by multiple cores). The sampling rate
provides ∼10- to 50-y resolution depending on the core, with an almost
regular spacing between data points. We perform the same data prepro-
cessing as Hennekam et al. (31). Interpolation is not done, as most data
points are equidistant, and it can give rise to aliasing effects that strongly
affect variance and AC. Data 10 ky prior to each transition are analyzed
for EWS. Null time series of the same length are generated from an AR
(1) (autoregressive lag 1) process fit to the initial 20% of the data. Resid-
uals are obtained from smoothing the data with a Gaussian kernel with
a bandwidth of 900 y, and EWS are computed using a rolling window
of 0.5.

2) The second source is thermoacoustic instability. Thermoacoustic systems
often exhibit a critical transition to a state of self-sustained large-
amplitude oscillations in the system variables, known as thermoacoustic
instability. The establishment of a positive feedback between the heat
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release rate fluctuations and the acoustic field in the system is often the
cause for this transition. We perform experiments in a horizontal Rijke
tube which consists of an electrically heated wire mesh in a rectangu-
lar duct (30). We pass a constant mass flow rate of air through the duct
and control the voltage applied across the wire mesh to attain the tran-
sition to thermoacoustic instability via subcritical Hopf bifurcation as the
voltage is increased. We have data for 19 forced trajectories where the
voltage is increased over time at different rates (2 mV/s to 24,000 mV/s).
We also have 10 steady-state trajectories where the voltage is kept at a
fixed value between 0 and 4 V. Experimental runs at fixed higher voltages
are not used, as they exhibit limit cycle oscillations. We downsample the
data from 4 kHz to 10 kHz in experiments to 2kHz. Transition times are
picked by eye. For each forced time series, we analyze data 1,500 points
prior to the transition. From the steady-state time series, we extract two
random sections of length 1,500 to serve as null time series, giving a total
of 20 null time series. Data are detrended using Lowess smoothing with
a span of 0.2 and degree 1. EWS are computed from residuals using a
rolling window of 0.5.

3) The third source is paleoclimate transitions (47–50). We use data for
seven out of the eight climate transitions that were previously analyzed
for EWS by Dakos et al. (17). Time series for the desertification of North
Africa was not included due to insufficient data. We use the same data
preprocessing as Dakos et al. (17), which involves using linear interpola-
tion to make the data equidistant, and detrend with a Gaussian kernel
smoothing function. Bandwidth of the kernel is specified for each time
series (17) to remove long-term trends while not overfitting. For each
time series, we generate 10 null time series of the same length from an
AR (1) process fit to the initial 20% of the residuals, yielding a total of 70
null time series and 7 forced time series.

Computing Early Warning Indicators and Comparing Predictions with the DL
Classifier. Generic early warning indicators are computed using the Python
package ewstools (20) which implements established methods (51). This first
involves detrending the time series to obtain residual dynamics. This is done
using Lowess smoothing (52) with span 0.2 and degree 1 unless stated oth-
erwise. Variance and lag-1 AC are then computed over a rolling window
of length 0.5. To assess the presence of an early warning signal, we use
the Kendall τ value, which serves as a measure of increasing or decreas-
ing trend. The Kendall τ value at a given time is computed over all of the
preceding data.

To compare predictions made between variance, lag-1 AC, and the DL
classifier, we use ROC. The ROC curve plots the true positive rate vs. the
false positive rate as a discrimination threshold is varied. For variance and
lag-1 AC, the discrimination threshold is taken as the Kendall τ value,
whereas, for the DL classifier, the discrimination threshold is taken as the DL
probability.

Data Availability. Thermoacoustic data and machine learning and training
set code have been deposited in GitHub (https://github.com/ThomasMBury/
deep-early-warnings-pnas). The geochemical data (46) are available at the
PANGAEA repository (https://doi.pangaea.de/10.1594/PANGAEA.923197).
The paleoclimate data (47) are available from the World Data Center
for Paleoclimatology, National Geophysical Data Center, Boulder, Colorado
(http://www.ncdc.noaa.gov/paleo/data.html).
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