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ABSTRACT
Modeling infectious disease dynamics has been critical throughout the COVID-19 pandemic. Of particular
interest are the incidence, prevalence, and effective reproductive number (Rt). Estimating these quantities is
challenging due to under-ascertainment, unreliable reporting, and time lags between infection, onset, and
testing. We propose a Multilevel Epidemic Regression Model to Account for Incomplete Data (MERMAID)
to jointly estimate Rt , ascertainment rates, incidence, and prevalence over time in one or multiple regions.
Specifically, MERMAID allows for a flexible regression model of Rt that can incorporate geographic and time-
varying covariates. To account for under-ascertainment, we (a) model the ascertainment probability over
time as a function of testing metrics and (b) jointly model data on confirmed infections and population-
based serological surveys. To account for delays between infection, onset, and reporting, we model stochas-
tic lag times as missing data, and develop an EM algorithm to estimate the model parameters. We evaluate
the performance of MERMAID in simulation studies, and assess its robustness by conducting sensitivity
analyses in a range of scenarios of model misspecifications. We apply the proposed method to analyze
COVID-19 daily confirmed infection counts, PCR testing data, and serological survey data across the United
States. Based on our model, we estimate an overall COVID-19 prevalence of 12.5% (ranging from 2.4% in
Maine to 20.2% in New York) and an overall ascertainment rate of 45.5% (ranging from 22.5% in New York
to 81.3% in Rhode Island) in the United States from March to December 2020. Supplementary materials for
this article, including a standardized description of the materials available for reproducing the work, are
available as an online supplement.
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1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the Severe
Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2),
has spread to over 227 countries across all habitable continents.
Governments and public health agencies have implemented
multifaceted measures to contain the spread of the virus, and
are now working to distribute vaccines. Monitoring the real-
time spread and predicting future trends have been important to
inform policy, public guidance, and resource allocation. Math-
ematical and statistical epidemic modeling has played a central
role in these efforts (Inglesby 2020; Hao et al. 2020; Gostic et al.
2020).

Several organizations have published real-time data on newly
confirmed infections, tests conducted, and deaths. The available
data on COVID-19 have presented several challenges for sta-
tistical inference (Jewell, Lewnard, and Jewell 2020; Roda et al.
2020; Bertozzi et al. 2020). We describe three of these challenges
below, focusing on the 2020 data.

First, many SARS-CoV-2 infections are unascertained. In
Wuhan, an estimated 87% of infections prior to March 2020
were unascertained (Hao et al. 2020). Underascertainment has
persisted across the world and throughout the COVID-19 pan-
demic. For example, in the U.S. state of Massachusetts, the
COVID Tracking Project reported that 130,900 infections were
confirmed by September 2020 (COVIDTracking 2021), whereas
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a CDC seroprevalence study estimated 252,717 infections by
that date (Bajema et al. 2020). Under-ascertainment is partly
driven by individuals who experience few or no symptoms
after being infected, and are therefore less likely to seek test-
ing. Globally, an estimated 25% of SARS-CoV-2 infections are
asymptomatic or mildly symptomatic (Alene et al. 2021). Also,
insufficient testing capacity has caused under-ascertainment,
particularly in the early stages of the pandemic. Moreover, ascer-
tainment rates may vary across regions and time due to differ-
ences in testing availability and public awareness.

Second, there are time lags between infection, symptom
onset, testing, and reporting. COVID-19 symptoms appear
on average 5 days after exposure (He et al. 2020), and many
infected individuals do not receive testing until days after initial
symptom onset. Further delays between testing and reporting
are sometimes evident, as noted in Schechtman (2021) and
elsewhere. COVID-19 testing data also show cyclical weekday
trends and oscillations, which may reflect biases in reporting,
testing capacity, and other factors (Bergman et al. 2020).

Third, while a variety of polymerase chain reaction (PCR)-
test-based data and serological-test-based data on COVID-
19 incidence and prevalence are publicly available (e.g.,
COVIDTracking 2021; CDC 2021; COVIDTracking 2021;
JHU-CSSE 2021; USAFacts 2021). The most widely analyzed

© 2021 American Statistical Association

https://doi.org/10.1080/01621459.2021.2001339
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.2001339&domain=pdf&date_stamp=2021-12-08
http://orcid.org/0000-0001-7067-7752
mailto:xlin@hsph.harvard.edu
http://www.tandfonline.com/r/JASA


1562 C. QUICK, R. DEY, AND X. LIN

COVID-19 data include confirmed and probable infections,
hospitalizations and deaths, PCR tests, and antibody tests over
time. Many of these variables show discrepancies across data
sources; for example, Schechtman (2021) discussed differences
between PCR test counts reported by federal and state sources.
Other data sets provide complementary information, for
example, positive and negative PCR test counts provide partial
information about incidence and ascertainment, while periodic
population-based antibody studies provide information about
the prevalence up to a small number of time points (here
defined as the prevalence of having any past SARS-CoV-
19 infection throughout the study period). However, care is
needed to account for uncertainty, sampling designs, and test
characteristics across these data sources to make inferences
about the spread of disease in the population.

The rate of new infections in a population depends crucially
on the number of individuals that are currently infectious, the
levels of immunity in the population, and the contagiousness of
the disease. The latter two factors are encapsulated by the effec-
tive reproductive number Rt , defined as the expected number of
secondary infections arising from a single infectious individual
at time t. Each of these quantities is important to understand
past trends and predict the future, and each is challenging to
estimate for COVID-19. The fraction of the population that is
infectious at a given time point is determined by the numbers
of infections in previous weeks, as COVID-19 infectiousness is
estimated to last 8–20 days following symptom onset (Wölfel
et al. 2020; van Kampen et al. 2021; He et al. 2020). Absent vac-
cines, the fraction of the population that is immune is approx-
imately the prevalence, as COVID-19 infection generally leads
to immunity; however, recurrent infections have been reported
(Iwasaki 2021), and could potentially become more frequent as
new SARS-CoV-2 variants emerge (Murray and Piot 2021).

Estimating the incidence and prevalence of COVID-19
based on reported infections is challenging due to under-
ascertainment (Manski and Molinari 2021). Several estimation
procedures have been proposed using auxiliary datasets, for
example, on influenza-like illness (ILI) and COVID-19 fatalities
(Lu et al. 2020). However, data on ILI and COVID-19 fatalities
also suffer from unreliable reporting, and are further compli-
cated by variation in non-COVID-19 ILI disease outbreaks and
fatality rates. Seroprevalence studies, which use antibody tests
to detect past infections in random or convenience samples,
provide another means to estimate the prevalence. Beginning
July 2020, the CDC began conducting seroprevalence studies
every 2 weeks for a few weeks in each U.S. state (Bajema et al.
2020; Havers et al. 2020). However, these studies also have
several limitations. First, few time points are available (12–14
points before March 2021), and temporal resolution is limited
due to specimens being collected across multiple weeks and
aggregated. Second, they have limited statistical precision due
to sample size, stratification, and imperfect test sensitivity and
specificity. Third, they derive from convenience samples, which
may lead to bias despite any adjustments for demographic
composition and test characteristics.

The effective reproductive number Rt describes the expected
number of new infections that arise per infected case at time t.
As such, Rt depends on the transmissibility of the disease, the
level of immunity in the population, and other possibly time-

varying factors (Wallinga and Teunis 2004). The rate of new
infections tends to increase over time if Rt > 1, and otherwise
tends to decrease if Rt < 1. Rt is of particular interest for
assessing the efficacy of non-pharmaceutical interventions in
slowing the spread of the disease (Flaxman et al. 2020; Pei,
Kandula, and Shaman 2020; Pan et al. 2020). Several epidemic
methods have been proposed to estimate Rt (Wallinga and
Teunis 2004; Bettencourt and Ribeiro 2008; Cori et al. 2013),
and were recently compared in Gostic et al. (2020).

Previous methods to estimate Rt have several limitations.
First, they do not explicitly account for under-ascertainment,
and implicitly assume that all infections are observed. Rt esti-
mates under this assumption are robust if ascertainment is
constant over time; however, this is unlikely for COVID-19 due
to increases in testing capacity over time and periodic shortages.
Second, they model Rt at each time point discretely followed by
moving averages over time, and do not allow a direct regression-
based analysis of geographical and time-varying covariates, such
as containment policies. Third, they do not directly account for
delays between infection, onset, and testing, which can cause the
estimated Rt curves to appear shifted forward in time, or smooth
out the temporal variation of interest (Gostic et al. 2020). Sta-
tistical deconvolution can be applied to confirmed infection
count time series as a preprocessing step before estimating Rt
(discussed also in Gostic et al. 2020; Petermann and Wyler 2020;
Miller et al. 2020). However, this strategy does not account
for uncertainty due to stochastic time lags in the subsequent
statistical inference.

Compartmental models provide an alternate framework for
infectious disease dynamics. In this approach, individuals in a
population are partitioned into discrete compartments at dif-
ferent time intervals, and the transition rates between compart-
ments over time are specified by a set of differential equations.
The classical compartmental model is the susceptible-exposed-
infectious-recovered (SEIR) model (Anderson and May 1992).
A number of Bayesian compartmental models have been pro-
posed for COVID-19 by extending the SEIR model (Hao et al.
2020; Ndaïrou et al. 2020; Tian et al. 2021). These models
incorporate additional compartments to account for unascer-
tained infections and time lags between infection and testing.
However, they often make restrictive assumptions on Rt and
other transition parameters, most commonly using piece-wise
constant functions over time. For example, Hao et al. (2020)
used piece-wise constant functions with intervals of length 9–
21 days. These compartmental models are difficult to extend to
flexible regression models on covariates.

In this article, we propose a multi-level regression frame-
work, MERMAID (Multilevel Epidemic Regression Model to
Account for Incomplete Data), to model epidemic dynamics
with incomplete data in one or multiple regions. MERMAID
addresses key challenges modeling COVID-19 dynamics
through four improvements. First, we model Rt using a
flexible regression model, which can capture smooth trends
over time, as well as explicit effects of geographic and time-
varying covariates. Second, we model the probability of
infection ascertainment as a function of time-varying covariates
(e.g., numbers of PCR tests performed). Third, to calibrate
baseline ascertainment and estimate prevalence, we incorporate
serological survey data as an explicit term of the likelihood
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in addition to modeling confirmed infection counts. Fourth,
we account for stochastic time lags between exposure, onset
and reporting by treating the unobserved dates of infection as
missing data, and assuming that discretized lag times follow a
categorical distribution.

To estimate the model parameters, we develop an efficient
EM algorithm, which avoids more computationally costly
Markov Chain Monte Carlo procedures. We evaluate the
performance of MERMAID using simulation studies, and
study its robustness by conducting sensitivity analyses in
a range of scenarios of misspecified models. We apply the
proposed methods to analyze state-level COVID-19 daily
confirmed infection counts, PCR testing data, and serological
survey data across the U.S. in 2020. We estimate the time-
varying reproductive numbers, the time-varying population
prevalences, and the effects of state-level containment policies.
For discussions of extending the methods to the analysis of the
2021 data, see the Discussion Section and the Rejoinder.

The remainder of the article is organized as follows. Section 2
describes the proposed model. Section 3 presents the procedures
for maximum likelihood estimation of parameters and statistical
inference under the proposed model using the EM algorithm.
Section 4 provides simulation studies to assess the performance
and robustness of our method under a variety of scenarios.
Section 5 applies MERMAID to analyze state-level COVID-19
data in 2020, followed by discussions in Section 6.

2. Multilevel Epidemic Regression Model

We developed MERMAID (Multilevel Epidemic Regression
Model to Account for Incomplete Data), a statistical frame-
work to estimate epidemic dynamics (Rt , ascertainment,
incidence, and prevalence) over time in one or multiple regions.
MERMAID incorporates three sources of data (confirmed
infections, serological surveys, and PCR testing metrics)
and comprises four model components. First, we model the
numbers of infections over time as conditionally Poisson
variables. Second, we model the time lags between infection
and potential confirmation by binning infection counts on each
day by the length of time lag. Third, we model the numbers
of confirmed infections as conditionally binomial variables,
where success (ascertainment) probability is a function of
testing metrics. Fourth, we model positive tests in serological
surveys using binomial or hypergeometric distributions. In this
section, we describe each model component given complete
data. Estimation and inference procedures given observed
(incomplete) data are described in Section 3.

2.1. Complete Data Likelihood

We use the following notations throughout the article. Let Yit
denote the number of newly infected individuals in region i
on day t for regions i = 1, 2, . . . ,R and days t = 1, . . . , Ti.
We assume that the number of days between infection and
confirmation (or reporting) for each individual is iid following
a discrete distribution with support 0, 1, . . . , mA. For infected
individuals that are never confirmed (i.e., unascertained), this
time lag can be interpreted as a counterfactual variable, which

would have occurred if the individual had been confirmed. In
other words, we treat ascertainment as a subsequent thinning
process, independent of lag times.

We denote the number of individuals infected on day t and
potentially confirmed on day t + k in region i by Aitk for k =
0, . . . , mA, and define Ait = (Ait0, . . . , AitmA) which bins the
individuals infected on day t by the day of confirmation, so
Yit = ∑mA

k=0 Aitk. The total number of infected individuals that
are potentially confirmed on day t is Mit = ∑mA

k=0 Ai,t−k,k, out
of which Cit infections are actually confirmed (ascertained) on
day t. (We set Yit′ := 0 and Ai,t′,k := 0 for all time-points
t′ ≤ 0 before the start of the outbreak.) The remaining Uit =
Mit − Cit individuals are unascertained on day t. Finally, we
use seroprevalence survey data to calibrate the ascertainment
rate model. At seroprevalence survey periods j = 1, 2, . . . , Ji, we
assume that antibody tests were performed in a random sample
of Nij individuals in region i at time τij, of which Kij individuals
tested positive.

The overall model can be described as follows:

New infections at time t : Yit , where
Y i = (Yi1, . . . , YiTi) ∼ FY(·; θY , φ)

Infections Yit binned by time to potential confirmation
at time t, t + 1, . . . , t + mA

Ait = (Ait0, . . . , AitmA)|Yit ∼ FA|Y(·|Yit ; φ)

Potentially confirmed infections at time t:
Mit = Ait0 + Ai,t−1,1 + · · · + Ai,t−mA,mA

Confirmed infections at time t : Cit|Ai ∼ FC|A(·|Mi; θC);
Seroprevalence data: Kij|Y i ∼ FK|Y(·|Y i; Nij),

where the unknown parameters are θ = (θY , θC), known
(fixed) parameters are φ, and F(·|·)(·) denotes the corresponding
joint/conditional distribution. Figure 1 provides a schematic
view of the MERMAID model where the infection potential
�it is a function of daily infections from past m� days, and
is a weighted average of Yi,t−m� , . . . , Yi,t−1 as defined in Sec-
tion 2.2.1 (Cori et al. 2013). A toy numerical example illus-
trating these notations is given in Supplementary material S1
Table 1.

The complete data across the R regions are (Y , M, A, C, K),
where Y = (Y1, . . . , YR), M, C, K are defined similarly, and
A = (A11, . . . , A1T1 , . . . , AR1, . . . , ARTR). As the total num-
bers of newly infected individuals Yit = ∑mA

k=0 Aitk and poten-
tially confirmed individuals Mit = ∑mA

k=0 Ai,t−k,k on each day
are both deterministic linear functions of A, we denote the
complete data by (A, C, K) for simplicity. The complete data
likelihood for this model can be written as follows:

L(θ |A, C, K) = P(A, C, K|θ)

= P(Y(A)|θY)︸ ︷︷ ︸
Transmission

× P(A|Y(A); φ)︸ ︷︷ ︸
Time lag

× P(C|M(A); θC)︸ ︷︷ ︸
Ascertainment

× P(K|Y(A))︸ ︷︷ ︸
Seroprevalence

(1)

where we here write Y(A) = Y to emphasize that Y is a function
of A.

https://doi.org/10.1080/01621459.2021.2001339
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Figure 1. Simplified representation of the MERMAID framework. The number of infections Yit in region i on day t = 0, 1, ..., T depends on the current infection potential
�it , which is determined by the numbers of infections of the previous days. In practice, we assume that individuals are infectious for at most m� days, so that �it depends
on Yit′ only for t − t′ ≤ m� (not shown). New infections Yit that arose on day t are binned by day that they are potentially confirmed; these binned infection counts
are denoted by Ait . The total number of individuals potentially confirmed on day t is denoted by Mit , and of these, only a subset of Cit individuals are confirmed, and the
remaining Mit − Cit individuals are labeled as unascertained. In practice, we assume that new infections are potentially confirmed at most mA days after infection, so that
Mit depends on Yit′ only for t − t′ ≤ mA (not shown). For simplicity, serological survey outcomes and acquired immunity are not shown.

2.2. Specification of Each Component of the Complete
Data Likelihood

In the following subsections, we describe each of the four com-
ponents of the MERMAID model in detail for a single region.
We assume all regions i = 1, 2, ...,R are independent, and so
the complete data likelihood (1) can be written as a product of
the single-region likelihoods.

2.2.1. Modeling the Transmission Process P(Y|θY)

Here, we describe a model of disease transmission adopting the
notations of Cori et al. (2013). Let Yit denote the number of
new infections on day t in region i. Given the number of past
infections Yi0, ..., Yi,t−1, we assume that

Yit|Yi0, ..., Yi,t−1 ∼ Poisson(�itRit),

where the effective reproductive number Rit is defined as the
expected total number of secondary infections that arise from
a single primary infection given the level of exposure at time t
in region i (Wallinga and Teunis 2004; Fraser 2007; Cori et al.
2013), and �it is the infection potential in region i at time t.
We define �it = ∑t

s=1 wsYi,t−s, where wt is the probability
that the serial interval (time between onset of a primary case
and a secondary case that he or she infects) is equal to t days
(between t − 1/2 and t + 1/2). This definition of �it does not
account for migration across regions, but could be extended to
model between-region transmissions. As in Cori et al. (2013),
we estimate the discretized serial interval weights {ws}∞s=0 using
prior external data.

In practice, we assume that infectiousness lasts at most m�

days, hence wt = 0 for t > m�, and assume a fixed number
of initial infections prior to the outbreak period (t ≤ 0) within
each region. Specifically, we define �it = ∑(t−1)

s=1 wt−sYis + (1−∑t−1
s=1 ws)yi∅, where yi∅ can be interpreted as the average number

of new infections or imported infections (assumed known) on

or before time t = 0. Note that (1 − ∑t−1
s=1 ws) = 0 for t > m�,

and therefore yi∅ only affects the first m� time-points. This is
similar to the Gamma(a, b) prior on Rt used by Cori et al. (2013),
which effectively increases the infection potential by 1/b and the
incidence by a.

The likelihood for daily infections over time in region i is
given by

P(Y i) =
Ti∏

t=1
P(Yit|Yi0, ..., Yi,t−1) =

Ti∏
t=1

(Rit�it)Yit

Yit! e−Rit�it ,

where Yi = (Yi1, . . . , YiTi)
�. We model Rit using a (possibly

semiparametric) log-linear regression model,

log Ri = a(R)
i + Xiβ

(R)
i , (2)

where Ri = (Ri1, . . . , RiTi), the offsets a(R)
i = (a(R)

i1 , . . . , a(R)
iTi

)

are given by a(R)
it = log(1 − pit), and pit is the fraction of

the population that is immune to infection at time t. We abuse
notation by denoting log Ri = (log Ri1, . . . , log RiTi). This mean
model can include a B-spline basis matrix of time, and we can
then write the linear predictor as a spline function of time t as,
x�

it β i = ∑
l Bl(t)βil, where Bl(t) denotes the lth B-spline basis.

We use this approach in practice to model smooth trends over
time. The independent variables Xi can further include time-
varying or region-specific covariates that affect transmission
rates, such as time-varying non-pharmaceutical interventions.
This specification differs from Cori et al. (2013), where the effec-
tive reproductive number was estimated as a constant within a
sliding window over time, and did not depend on covariates.
A related maximum likelihood model for epidemic data was
developed by Rojas et al. (2016) in which the probability of
transmission was modeled using a piece-wise constant logistic
regression equation, and subsequently used to estimate Rt .
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2.2.2. Modeling Infection-Confirmation Lag Times P(A|Y ; φ)

Next, we model the time between infection and confirmation
conditional on the total numbers of daily new infections (Gostic
et al. 2020; Miller et al. 2020; Petermann and Wyler 2020).
Here, confirmation refers to the time that a positive infection
is reported, which we assume follows infection and disease
testing. For mathematical convenience, we assign unascertained
(unobserved) infections a counterfactual lag time, that is, the
time at which they would have been ascertained had they
been tested. We assume the number of individuals infected
on day t with confirmation on day t + k in region i is Ai,t,k,
and,

Ait0, ..., AitmA |Yit ∼ Multinomial(Yit , φi), (3)

where φi determines the distribution of days lag between infec-
tion and confirmation in region i. Therefore, the conditional
likelihood of the lagged confirmations given the daily infections
is,

P(Ai|Y i) =
Ti∏

t=1

(
Yit

Ait0, ..., Aitp

) mA∏
k=0

φ
Aitk
itk ,

where Ai = (Ai10, . . . , AiTi0, . . . , Ai1mA , . . . , AiTimA) is the
Ti(mA + 1) × 1 vector of lagged confirmations. Miller et al.
(2020) similarly proposed a method to account for delays
in reporting using a categorical distribution; however, their
method does not explicitly model the infection process or
account for underascertainment.

2.2.3. Modeling Ascertainment Probabilities P(C|M; θC)

The third component of the MERMAID likelihood accounts for
underascertainment. Conditional on the number of potentially
confirmed infections Mit = ∑mA

k=0 Ai,t−k,k on each day t in
region i, the number of ascertained individuals Cit is assumed
to follow a binomial distribution,

Cit ∼ Binomial(Mit , πit). (4)

The corresponding conditional likelihood is given by

P(Ci|Mi) =
Ti∏

t=1

(
Mit
Cit

)
π

Cit
it (1 − πit)

Mit−Cit .

We model the probability of ascertainment using a logistic
regression model

logit(π i) = Ziβ
(π), (5)

where π i = (πi1, . . . , πiTi). The covariates Zi may include
the numbers of tests performed, or the proportion of popu-
lation being tested in region i, or other informative metrics
for the ascertainment rate. The intercept parameter in Equa-
tion (5) is not identifiable from ascertained infection counts
alone without further data or constraints. Here, the intercept is
made identifiable by incorporating seroprevalence data in the
likelihood.

2.2.4. Modeling Seroprevalence Survey Data P(K|Y)

The final component of the likelihood incorporates indepen-
dent information on the prevalence of disease in the population
from serological (seroprevalence) survey data. Suppose sero-
prevalence surveys were conducted on dates τij for collection
periods j = 1, 2, ..., Ji in each region i. At collection period j,
Nij total antibody tests were performed and of them Kij were
positive. We assume that individuals were randomly selected
from the population in region i on each of the survey dates, and
that individuals test positive if and only if they have experienced
an infection at any point in the past. Then, under random
sampling,

Kij|Y i ∼ Binomial(Nij, pij), pij = 1
ni

Sij = 1
ni

τij∑
t=0

Yit , (6)

where ni is the total population size of the region i, and Sij =∑τij
t=0 Yit is the total number of infections up to time t in region

i. Therefore, the likelihood for this component of the model is,

P(K i|Y i) =
Ji∏

j=1

(
Nij
Kij

)
pKij

ij (1 − pij)
Nij−Kij

Alternatively, if individuals are tested without replacement, then
the exact distribution of Kij is hypergeometric (given ni, Sij, and
Nij), which is approximately binomial when ni is large.

Given the numbers of infections Y i, the likelihood P(K i|Y i)
involves no unknown parameters. Rather, this component of
the likelihood calibrates the conditional expectationsE(Y|C, K)

that arise in the E step of the EM algorithm to estimate the
parameters πit and Rit .

When seroprevalence sample sizes are small relative to
observed infection counts, the prevalence is nearly unidenti-
fiable. Therefore, we multiply the seroprevalence log-likelihood
by a constant, cS, to increase its influence on the overall MER-
MAID log-likelihood. This weight has little effect on standard
errors for R̂it , but can cause anti-conservative standard errors
for ascertainment probabilities π̂it . We apply an approximate
adjustment by multiplying the naive standard errors for π̂it
by a factor of √cS. In real data applications, we set cS = 25;
Rit estimates were generally insensitive to the choice, while
prevalence shows greater concordance with seroprevalence
higher cS values.

2.3. Observed Data Likelihood

From the available data sources, only the daily reported infec-
tion counts (C) and numbers of positive antibody tests (K) are
observed. The remaining variables (Y, M, A) in the complete-
data log-likelihood (1) are unobserved. Let Dobs = (C, K)

denote the observed data, Dmis = A denote the missing (unob-
served) data, and D = (Dobs,Dmis) the complete data. As
the total number of infected individuals Yit = ∑mA

k=0 Aitk, and
the total number of potentially observed individuals Mit =∑mA

k=0 Ai,t−k,k can be written as deterministic functions of Ai,
the vectors Y and M are not shown explicitly in the missing data
Dmis. Then, the observed data log-likelihood is

�(θ |Dobs) = log
∫

L(θ |A, C, K)dA,
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which is not analytically tractable, and hence we use an EM
algorithm to fit the model.

3. Estimation and Statistical Inference

This section describes estimation procedures for the unknown
parameters θ in MERMAID, which includes θY = β(R) for
the effective reproductive numbers and θC = β(π) for the
probability of ascertainment. We assume that the remaining
parameters, φ for infection-reporting delay times in Equation
(3) and {wt}m�

t=1 for the serial interval distribution, are known
and fixed. In practice, these fixed parameters can be specified
based on previous literature or external data (discussed in Cori
et al. 2013 for the serial interval and Petermann and Wyler 2020
for infection-reporting delays).

We estimate the model parameters using the EM algorithm,
where we write the observed data log-likelihood as follows:

�(θ |Dobs) =
∫

P(Dmis|Dobs; θ ′) log P(D|θ)dDmis

−
∫

P(Dmis|Dobs; θ ′) log P(Dmis|Dobs; θ)dDmis

= Q(θ |θ ′) + H(θ |θ ′),

where Q(θ |θ ′) := ∫
P(Dmis|Dobs; θ ′) log P(D|θ)dDmis is the

expected complete data log-likelihood where the expectation
is taken with respect to the distribution of the missing
data (Dmis) given the observed data (Dobs) evaluated at
the parameter value θ ′, and the second term H(θ |θ ′) :=
− ∫

P(Dmis|Dobs; θ ′) log P(Dmis|Dobs; θ)dDmis. In the tradi-
tional EM algorithm, the E step consists of calculatingQ(θ |θ̂ (c)

)

given the current estimate θ̂
(c)

, and the M step consists of
maximizing Q(θ |θ̂ (c)

) with respect to θ to obtain the next
estimate θ̂

(c+1)
. Here, we use an accelerated variant of the EM

algorithm in which the M step consists of a single Newton-
type update using the expected complete data score vector
S(θ |θ̂ (c)

) = ∂Q(θ |θ̂ (c)
)/∂θ and the observed data information

matrix. Note that the expected complete data score vector
S(θ |θ ′) is equal to the observed-data score vector when
evaluated at θ = θ ′, as H(θ |θ ′) is minimized (Lange 1995b).

Explicitly, the expected complete data score here is given by
S = (SR,Sπ ) (we replace the notation S(θ |θ̂ (c)

) with S where
it is obvious to do so), where the components are,

SR = ∑R
i=1 X�

i

{
E(Y i|Dobs) − μ

(R)
i

}
,

Sπ = ∑R
i=1 Z�

i

(
Ci − μ

(π)
i

)
.

Here, the mean vectors are given by μ
(R)
i =

(
μ

(R)
i1 , . . . , μ(R)

iTi

)
and μ

(π)
i =

(
μ

(π)
i1 , . . . , μ(π)

iTi

)
, where μ

(R)
it = RitE(�it|Dobs)

and μ
(π)
it = πitE(Mit|Dobs).

To find the maximum likelihood estimates, we iteratively
calculate

S(θ |θ̂ (c)
) = E

θ̂
(c)

{
∂
∂θ

� (θ |D)
∣∣Dobs

}
,

θ̂
(c+1) = θ̂

(c) + J −1
Dobs

(
θ̂

(c))S
(
θ̂

(c)∣∣∣θ̂ (c))
,

and terminate when Q(θ̂
(c+1)|θ̂ (c)

) −Q(θ̂
(c)|θ̂ (c)

) falls bellow a
specified threshold. To see that the above is a Newton-Raphson
update, recall that the score equality implies S(θ̂

(c)|θ̂ (c)
) =

∂
∂θ

�(θ |Dobs)
∣∣
θ=θ̂

(c) . Here,JDobs denotes the observed informa-
tion matrix, which is given by Louis’ formula (Louis 1982) as
follows:

JDobs(θ) = JD
(
θ

∣∣∣θ̂ (c)) − JDmis|Dobs

(
θ

∣∣∣θ̂ (c))
,

where JD(θ |θ ′) = −∂2Q
(
θ |θ ′) /∂θ∂θ� is the conditional

expectation of the complete-data information matrix, and
JDmis|Dobs(θ |θ ′) = varθ ′ {∂�(θ |D)/∂θ |Dobs } is the atten-
uation of the information matrix due to the missing data.
After convergence, JDobs is used to obtain the asymptotic
standard errors for the model parameters. Explicit forms for
these matrices are given in Supplementary material S1 Section
C.

The proposed Newton–Raphson-type update is similar
in spirit to the quasi-Newton acceleration of Lange (1995a)
and the Newton-type EM algorithm of Oakes (1999), and
differs primarily in the handling of JDmis|Dobs . Lange (1995a)
proposed a quasi-Newton acceleration in which the Hessian
is approximated using gradients from previous iterations, and
Oakes (1999) showed that JDobs (θ) can be calculated using
the derivatives of Q(θ |θ ′). Here, we use an approximation to
calculate the score and information matrix, which is described
below.

Omitting terms that are constant with respect to θ , the com-
plete data log-likelihood � (θ |D) is linear with respect to the
missing data vector Dmis = A. Therefore, only the conditional
expectation Eθ ′(A|Dobs) is required to calculate the score vec-
tor S(θ |θ ′) = ∂Eθ ′ {� (θ |D) |Dobs } /∂θ , and the conditional
variance varθ ′(A|Dobs) is required to calculateJDmis|Dobs(θ |θ ′).
We approximate these moments using Laplace’s method at the
E-step.

Fully exponential Laplace approximations (Tierney, Kass,
and Kadane 1989) have similarly been used to approximate
intractable integrals in EM algorithms (Steele 1996; Rizopoulos,
Verbeke, and Lesaffre 2009). Here, we instead use first-order
approximations of the conditional moments, which are expected
to perform adequately since each element of the missing data
Ai,t,k is marginally Poisson distributed with a relatively large rate.
The Laplace approximation of A|Dobs can be derived as a Taylor
series approximation of the log of the conditional probability
function,

log Pθ ′(A = a |Dobs ) ≈ log Pθ ′(A = a∗ |Dobs )

+ 1
2
(a − a∗)�HA(a∗)(a − a∗),

where a∗ = arg maxa log P(A = a |Dobs ), the gradient eval-
uated at a∗ has vanished, and HA = ∂2 log P(A = a |Dobs )

/
∂a∂a� is the Hessian. This log-likelihood has the form of a
multivariate normal distribution with mean a∗ and covariance
matrix −HA(a∗), which serve as first-order approximations
to the conditional moments of A given Dobs. Specifically, we
approximate the conditional mean Eθ ′(A|Dobs) by a∗ and the
conditional covariance varθ ′(A|Dobs) by −HA(a∗) to calculate
the score vector and information matrix as described above.

https://doi.org/10.1080/01621459.2021.2001339
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The conditional mode a∗ does not have closed form;
therefore, we find a∗ at each E step iteration using a Newton-
Raphson-type iterative algorithm. Convergence is generally
attained quickly, as starting values can be recycled from the
previous E step. Further details are given in Supplementary
material S1 Section B.

4. Simulation Studies

We conducted simulation studies to evaluate the performance
of MERMAID, including bias and calibration of model param-
eter estimates. This section is organized as follows: (i) data-
generating procedures used across all simulation studies; (ii)
simulation studies under correctly specified models, where the
assumed model matches the data-generating model; and (iii)
simulation studies with model misspecification, where one or
more attribute of the data-generating model is misspecified in
MERMAID. Additional simulations using a different but more
realistic data generating model where Rt follows a smooth curve
with respect to time, and ascertainment depends on the symp-
tomatic/asymptomatic/uninfected status of the individuals, is
presented in Supplementary material S1.

4.1. Simulation Procedures

Here, we describe procedures to simulate epidemic data. In this
section, we describe the core simulation algorithm and define
key parameters. In the subsequent sections, we state the specific
parameter values and summarize the results from each simu-
lation setting. The fixed model parameters are the regression
coefficients in the reproductive and ascertainment regression
models β

(R)
i and β

(π)
i , respectively, for each region, and the

serial interval infection and observation lag distribution weights
are {wt}∞t=0 and {φt}∞t=0, respectively, which are truncated so
that wt = 0 for t > m� and φt = 0 for t > mA for
some thresholds m� and mA. The total population size ni, total
number of time points T, initial numbers of infections y∅, and
reproductive and ascertainment regression covariate matrices
Xi and Zi respectively are also pre-specified and fixed constant
across replicates within each simulation setting.

We simulated data for regions i = 1, 2, ...,R and time-points
t = 1, 2, ..., T as follows:

1. Set the infection potential �it = ∑t−1
s=1 wsYi,t−s + I(t ≤

m�)
∑m�

s=t wsy∅.
2. Draw the number of new infections Yit ∼ Poisson(Rit�it),

where Rit := exp(x�
it β

(R)
i ).

3. Draw Ait ∼ Multinomial(Yit , φ), where Ai,t,k is the num-
ber of infections potentially confirmed on day t + k (k =
1, . . . , mA) among the number of individuals infected on day
t in region i, Yit .

4. Calculate the number infections that are potentially con-
firmed on day t as Mit = ∑mA

s=0 Ai,t−s,s.
5. Draw the number of infections that are actually confirmed as

Cit ∼ Binomial(Mit , πit), where πit := expit(z�
it β

(π)
i ).

We simulated seroprevalence survey data for each region i
and survey panels j = 1, 2, ..., Ji by specifying the dates of
survey panels τij to be evenly spaced across all time points

t = 1, 2, ..., Ti. We simulated positive serological tests Kij in
study panel j as Kij ∼ Hypergeometric(ni, Ni,

∑τij
s=0 Yis), where

ni is the population size, Ni is the seroprevalence sample size
(which is constant across study panels), and

∑τij
s=0 Yis is the total

number of infections that occurred by time τij in region i.

4.2. Simulation Results Under Correctly Specified Models

To assess bias and calibration of Rit and πit estimates from
MERMAID under correctly specified models, we considered 4
simulation settings, varying the data-generating model for Rit .
In each setting, we simulated epidemics lasting 1 year (Ti = 365
days) in a single region with a population size of ni = 8,000,000
and initial infection potential y∅ = 50 for 500 replicates. We
assumed a serial interval distribution with mean 4.7 days and
standard deviation of 2.9 days (Nishiura, Linton, and Akhmet-
zhanov 2020) truncated to 30 days, and an infection-reporting
lag distribution as NegativeBinomial(r = 5, μ = 5) truncated to
21 days. We assumed seroprevalence studies were conducted at
Ji = 6 evenly spaced time points with sample sizes Ni = 80,000
(1% of the population), and used a log-likelihood weight of
cS = 25 (matching the value used in real-data analysis).

We specified log Rit curves using either (a) a B-spline basis
or (b) a piece-wise constant function. The specific values and
curves are shown in Figure 2. We then specified the ascertain-
ment probabilities as logit(πit) = β0π +zitβπ , where βπ = 0.05
and β0π is chosen so that the mean value of logit(πit) is 0,
roughly 50% ascertainment rate on average. We simulated the
testing rate covariate as zit = √

t + ∑4
k=1 ak cos(bk + ckt) + εit

where each εit is iid normal with mean 0 and variance 5/2. This
specification mimics the period trends and gradual increase in
testing in the United States; the resulting curves are shown in
Figure 3A.

First, we assessed Rit estimates from MERMAID (Figure 2).
For comparison, we further fit Poisson generalized linear
models (GLMs) using either (a) the raw reported daily
infection counts (Cit) or (b) the reconvolved infection-counts
(as described in Petermann and Wyler 2020), defined as
C̃it = ∑mA

s=0 φsCi,t+s where φs is the probability that an
infection-reporting lag is s days, as proxies for the complete-date
response Yit . For the reconvolved infections, we used the last
observation carried forward to fill missing values at the end of
the epidemic. To assess the calibration of standard errors (SEs),
we compared the mean estimated standard errors for R̂it across
simulation replicates, and the empirical SEs for R̂it estimated
using the standard deviation of R̂it estimates across replicates.
Estimates from MERMAID showed little bias, particularly
when compared with the two proxy methods, while the proxy
methods using reported infections and reconvolution infections
gave biased estimates of Rt ’s. We calculated standard errors for
Rit using the delta method, with ŜE(R̂it)2 = R̂2

itx�
it ˆvar(β̂

(R)
)xit .

Standard errors for R̂it were generally concordant with the
standard deviations across replicates (Figure 2, panel B).

Second, we assessed estimates of the ascertainment probabil-
ity πit , which was fixed constant across the 4 settings as Rit was
varied (Figure 3A). Ascertainment probability estimates from
MERMAID showed low bias. We similarly calculated standard
errors for π̂it using the Delta method, with ŜE(π̂it)2 = cS(π̂it(1−

https://doi.org/10.1080/01621459.2021.2001339
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Figure 2. Estimates of Rit in 4 simulation scenarios each with 500 replicates under the correctly specified model, where the Rit is specified either using B-splines or piece-
wise constant functions. Panel A: Shown are curves for true Rit (solid green), and R̂it estimated using MERMAID (black), a standard (misspecified) Poisson GLM with raw
reported infection counts (magenta), or a Poisson GLM with reconvoluted infection counts (blue). Serosurveys were conducted on February 21, April 14, June 4, July 26,
September 15, and November 6. Panel B: Comparison of mean estimated SE of R̂it (y axis) and empirical SE of R̂it for MERMAID, calculated as the SD of R̂it (x axis) across
replicates, in each scenario.

π̂it))2z�
it ˆvar(β̂

(π)
)zit , where the constant cS adjusts for the sero-

prevalence likelihood weight. The adjusted SEs are conservative
compared to the empirical SEs (Supplementary material S2).

Third, we assessed estimates of the predicted daily incidence
(Figure 3B) and prevalence (Figure 3C). The daily incidence was
defined as Yit/ni, where Yit is the number of new infections on
day t and ni is the population size in region i, and the prevalence
as

∑
s≤t Yit/ni. The predicted values are calculated in MER-

MAID as Ê(·|K i, Ci), and the standard errors of predictions
using ˆvar(Y i|K i, Ci). In this case, because Y i varies across simu-
lation replicates, we evaluated the calibration of standard errors
by calculating the standard deviations of the centered predicted
daily incidence, Ê(Yit/ni|K i, Ci) − Yit/ni, across replicates and
analogously for the prevalence. For the GLM models (using raw
counts or reconvoluted counts, as described above), we plot the
predicted values rather than the raw proxy counts. Both preva-
lence and daily incidence predictions from MERMAID showed
little bias, and standard errors were well-calibrated (Figure 3
panels B and C; Supplementary material S2), whereas estimates

based on raw or reconvoluted reported infection counts showed
significant under-estimation due to failure to account for under-
ascertainment.

4.3. Simulation Results Under Misspecified Models

We conducted additional simulations to evaluate the impact
of model misspecification on the performance of MERMAID.
First, we assessed the impact of the fixed parameters that char-
acterize the distributions of the serial interval and infection-
confirmation lag times, which may be uncertain in practice.
Second, we assessed the impact of misspecification of the regres-
sion functions for the Rit and ascertainment probability πit
models.

We selected a single specification of the Rit , and simulated
data under 8 settings by varying the data-generating distribu-
tions of infection-confirmation lags, which are assumed to fol-
low Negative Binomial (r, μ), and the serial interval, which are
assumed to follow a discretized Gamma distribution. For the lag
distribution, we varied the stopping-time parameter r ∈ 1, 999,

https://doi.org/10.1080/01621459.2021.2001339
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Figure 3. Ascertainment, daily incidence, and prevalence in 4 simulation settings each with 500 replicates. Ascertainment probabilities πit are identical across the 4
simulation settings, while Rit is varied. In each panel, we compare true values (green) with estimates from MERMAID (black), which jointly estimates both πit and Rit ,
and standard (misspecified) Poisson GLMs that ignore ascertainment and estimate Rit using either raw reported infection counts (magenta) or reconvoluted infection
counts (blue). Serosurveys were conducted on February 21, April 14, June 4, July 26, September 15, and November 6. Panel A: True ascertainment probabilities (solid green)
and estimated values from MERMAID (black) in each simulation setting. Panel B: Mean daily incidence (percentage of population infected on each day) across replicates.
Panel C: Mean prevalence (percentage of population that has ever been infected) across replicates over time.

with the mean parameter μ = pr/(1 − p) ≡ 5 held constant.
Here, a larger value of r corresponds to a larger variance of the
lag times. For serial interval distribution, we varied the mean of
the serial interval (3.7, 4.7, or 5.7), and the standard deviation
of the serial interval (1.9, 2.9, or 3.9). For each setting, we fit
MERMAID models to the simulated data and misspecified the
lag distribution as NegativeBinomial(r = 5, μ = 5) (i.e.,
p = 1/2), and the serial interval as a discretized Gamma
distribution with mean 4.7 and standard deviation 2.9 (as in
the previous simulations). Results are shown in Supplementary
material S2. In general, estimates were robust to misspecification
of serial interval and lag; the mean of the serial interval had
the greatest effect on the bias for Rit estimates. Ascertainment
probabilities, prevalence, and incidence showed little bias under
misspecification of the serial interval and lag distribution.

We also conducted simulations studies where the data are
generated under a more realistic model where the probability
of getting tested varies depending on whether the individuals
are symptomatic, asymptomatic, or uninfected, and Rt follows
an arbitrary smooth curve. The data generating model and
simulation results are presented in Supplementary material
S1 Section E. The results suggest that the estimates for Rt
and ascertainment probabilities based on MERMAID are
robust under moderate misspecification of the regression
functions.

5. Data Application

We applied MERMAID to analyze COVID-19 transmission
dynamics across US states in April-December 2020 using con-
firmed infection count, testing rate, and seroprevalence survey
data from multiple sources. This section is organized as fol-
lows: First, we describe data sources and processing procedures.
Second, we describe the Rt profile, incidence, and prevalence
estimates in selected individual US states. Third, we describe
changes in Rt associated with state containment policies across
the US from the MERMAID analysis.

5.1. Data Sources and Processing Procedures

This subsection describes data sources and preprocessing pro-
cedures for (1) COVID-19 reported infections over time, (2)
COVID-19 tests conducted over time, and (3) seroprevalence
surveys.

5.1.1. COVID-19 Reported Infection Counts and PCR Tests
We obtained daily reported COVID-19 infections across US
states from three sources: (1) the CDC data repository (CDC
2021), (2) the COVIDTracking project (COVIDTracking 2021),
and (3) the USAFacts.org webpage (USAFacts 2021). We
obtained daily COVID-19 testing data (numbers of positive and

https://doi.org/10.1080/01621459.2021.2001339
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negative PCR and other test specimens or individuals tested)
from 2 sources: (1) the COVID Electronic Laboratory Reporting
Program (CELR), conducted by the US federal government
and available from the HealthData.gov data repository (Health-
Data.gov 2021) and (2) the COVIDTracking project, which
primarily uses data from state-level sources (COVIDTracking
2021; Schechtman 2021). We noted substantial discordance
between data sources for both the numbers of confirmed
infections and the numbers of tests performed (Supplementary
material S3–4). For subsequent statistical modeling, we primar-
ily used data from CELR, which appeared to provide proper
reporting and fewer irregularities than other data sources.
Because CELR reports only the numbers of positive PCR test
specimens over time (and not the number of unique individ-
uals), we constructed a consensus confirmed-infection time
series by re-scaling the numbers of positive specimens reported
by CELR. To that end, we estimated time-varying scaling factors
(the number of unique confirmed infections per positive test
specimen) in each state using confirmed infection counts from
the other three data sources (CDC 2021; COVIDTracking
2021; USAFacts 2021) as a reference. We used this approach
to ensure that confirmed infection counts are well-aligned with
PCR test counts over time. A complete description of all data
QC and preprocessing procedures is given in Supplementary
material S1 Section F.

5.1.2. COVID-19 Seroprevalence Surveys
We obtained data from nationwide commercial laboratory sero-
prevalence surveys from the CDC website (Bajema et al. 2020).
These studies performed antibody tests in pseudo-random con-
venience samples at multiple time points within each U.S. state.
We calculated an adjusted positive antigen test count for each
survey using the adjusted prevalence estimate reported by the
CDC, in which observations were weighted to adjust for differ-
ences in the distribution of sex, ethnicity, and age between the
seroprevalence sample and population based on the American
Community Survey (Bajema et al. 2020). Sample sizes ranged
from 83 to 2,553 (mean 985) within seroprevalence survey
panels across states, and each state had 4-8 survey panels (mean
7.77) in the year 2020, with the earliest panel occurring on
August 1. Specimen collection periods for each survey panel
ranged from 1 to 22 days (median 14). Because the available data
were aggregated across collection dates within each panel, we
identified each survey panel with the midpoint of its start and
end dates in our later analysis.

5.2. MERMAID Application to U.S. COVID-19 Data

5.2.1. Modeling U.S. State-Specific Epidemic Dynamics
Using the daily reported COVID-19 infections, total and pos-
itive COVID-19 tests conducted, and seroprevalence survey
data as described in Section 5.1.2, we fit MERMAID models
across all US states between March 15 and December 31, 2020.
We modeled Rit in each state i by specifying the covariate
matrix Xi as a cubic B-spline basis with 9 evenly spaced knots,
and modeled the probability of ascertainment πit by specify-
ing Zi to include the log-transformed numbers of PCR tests
conducted as a time-varying covariate. We expected consider-

able differences in Rit trajectories between states due to differ-
ences in the time of initial outbreak and policy interventions,
and therefore specified separate B-spline coefficients β

(R)
i for

each state i. Similarly, we specified state-specific ascertainment
coefficients βπ

i .
Because all regression coefficients were region-specific, we

fit each U.S. state model separately as an independent unit.
We specified the serial distribution as a discretized Gamma
(Cori et al. 2013) with a mean of 4.7 and standard deviation of
2.9, matching the estimates reported in Nishiura, Linton, and
Akhmetzhanov (2020), truncated to m� = 30 days. We spec-
ified the lag distribution as NegativeBinomial(r = 5, μ = 5)
based on the median incubation period (time between infection
and symptom onset) estimated at 5 days by Lauer et al. (2020),
and truncated to mA = 21 days. We note that the time from
infection to confirmation may be longer than the incubation
period due to testing and reporting delays, or shorter if indi-
viduals test positive after exposure but before symptom onset.

Results for the states of Michigan (Figure 4) and Texas (Fig-
ure 5) are shown here as examples; results for all US states are
included in Supplementary material S5. Six states (Alaska, Mon-
tana, Wyoming, North Dakota, South Dakota, and Vermont)
had insufficient data or failed to converge and were therefore
excluded from subsequent analysis. Notably, large numbers of
unascertained infections were estimated in March-April 2020 in
many states, as expected. Across all states, the estimated effective
reproductive number was highest at the beginning of the study
period (mid-March 2020), and typically lowest in April-May
2020. In many states, MERMAID estimated a large early wave
of unascertained SARS-CoV-2 infections during this period.
Ascertainment estimates were generally higher in later waves,
as PCR testing increased across the US.

5.2.2. Prevalence and Ascertainment Across the United
States

Across the 44 U.S. states, we estimated that 12.45% of the overall
population was infected by December 24, 2020 (model-based
95% CI: 12.42%–12.49%). The estimated prevalence varied sub-
stantially across states, ranging from 2.4% in Maine (model-
based 95% CI: 2.3%–2.5%) to 20.2% in New York (model-
based 95% CI: 20.0%–20.3%) (Figure 6, Panel B). Overall, we
estimate that 45.4% of all infections between March and Decem-
ber 2020 were ascertained in the 44 U.S. states (model-based
95% CI: 45.3-45.5%). The estimated percentage ascertained also
varied, ranging from 22.5% ascertained in New York (model-
based 95% CI: 22.3%–22.7%) to 81.3% ascertained in Rhode
Island ( model-based 95% CI: 76.6%–86.7%) (Figure 6, Panel
A). Visualizations of all state-specific prevalence and ascertain-
ment estimates are given in the Supplementary material S5.
We caution that these model-based CIs are sensitive to model
assumptions, and do not capture all sources of uncertainty (e.g.,
in SI parameters, which were fixed).

Comparing across states, we observed a negative trend
between the estimated prevalence, estimated as

∑
t Ŷit/ni,

and proportion of infections ascertained, estimated as
∑

t Cit/∑
t Ŷit (Figure 6, Panel C). In contrast, the longitudinal asso-

ciation between ascertainment rate and prevalence is positive,
as both have increased over time due to simultaneous disease

https://doi.org/10.1080/01621459.2021.2001339
https://doi.org/10.1080/01621459.2021.2001339
https://doi.org/10.1080/01621459.2021.2001339
https://doi.org/10.1080/01621459.2021.2001339
https://doi.org/10.1080/01621459.2021.2001339


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1571

Figure 4. MERMAID analysis of COVID-19 epidemic dynamics in Michigan, March–December 2020. Panel A: Estimated total infections (red), estimated unascertained
infections (blue), and confirmed infections (green) over time. Panel B: Estimated effective reproductive number over time. Panel C: Estimated ascertainment probability
(black), percentage of positive PCR tests (red), and the total number of PCR tests scaled by its maximum value (blue) over time. Panel D: Estimated prevalence over time
(magenta). Seroprevalence estimates and 95% confidence intervals reported from the CDC are shown in green.

Figure 5. MERMAID analysis of COVID-19 epidemic dynamics in Texas, March–December 2020. Panel A: Estimated total infections (red), Estimated unascertained infections
(blue), and confirmed infections (green) over time. Panel B: Estimated effective reproductive number over time. Panel C: Estimated ascertainment probability (black),
percentage of positive PCR tests (red), and the total number of tests scaled by its maximum value (blue) over time. Panel D: Estimated prevalence over time (magenta).
Seroprevalence estimates and 95% confidence intervals reported from the CDC are shown in green.

spread and increase in testing capacity (Figures 4 and 5, Panels C
and D). However, across states, higher prevalence is associated
with a lower mean ascertainment rate over time (defined
as

∑Ti
t=1 π̂it/Ti; not shown) and a lower total proportion

of infections ascertained (Figure 6, Panel C). Nevertheless,
prevalence shows a strong positive trend with the proportion
of the population that has been confirmed across states, as
expected (Figure 6, Panel F).

We note three factors that may contribute to the negative
trend between the overall ascertainment and prevalence across
states (Figure 6, Panel C). First, the total percentage of infections

ascertained is expected to be lower for states in which a larger
fraction of infections occurred earlier in the pandemic, when
testing capacity was more limited, for example, NY and NJ
(Figure 6, panels D and E). Second, a negative trend between
ascertainment and seroprevalence estimates could be caused
by excess variability in seroprevalence estimates, particularly
if the error variance is large relative to the actual variation in
prevalence across states. In other words, a spurious negative cor-
relation could arise from the fact that artificially increasing the
seroprevalence estimate would drive the ascertainment estimate
down and the prevalence estimate up, holding the numbers of
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Figure 6. Estimated COVID-19 infection ascertainment fraction and prevalence across U.S. states as of December 2020. Panel A: Total percentage of infections estimated
to be ascertained in each state, calculated as

∑Ti
t=1 Cit/

∑Ti
t′=1 Ŷit′ . Panel B: Estimated prevalence in 2020, calculated as

∑Ti
t=1 Ŷit/ni . States in gray in Panels A and B had

insufficient data or failed to converge. Panel C: Estimated total percentage ascertained (x-axis) and prevalence (y-axis). Panel D: Estimated prevalence (y-axis) and mean
infection date (x-axis), where mean infection date is calculated as

∑Ti
t=1 tŶit/

∑Ti
t′=1 Ŷit′ . Panel E: Estimated total percentage ascertained (y-axis) and mean infection date

(x-axis). Panel F: Estimated prevalence (y-axis) and the total percentage of the population ever confirmed positive (x-axis).

confirmed infections constant. Third, demand for PCR testing
may be greater in states with greater prevalence, leading to more
frequent and severe testing shortages.

5.3. Containment Policies and Effective Reproductive
Numbers in the United States

We assessed differences in effective reproductive numbers Rt
associated with containment policies over time across the US.
We obtained data on containment policies from the Oxford
Covid-19 Government Response Tracker (Hale et al. 2021).
We considered 5 policy categories: (i) public transportation
closures, (ii) facial covering mandates, (iii) gathering restric-
tions, (iv) stay-home orders, and (v) workplace closing. Within
each category, greater policy levels indicate stricter enforce-
ment. For example, stay-home policies include recommenda-
tions (Level 1), requirements with exceptions for exercise, gro-
cery shopping, and essential trips (Level 2), and requirements
with minimal exceptions (Level 3).

State containment policies are modeled as time-varying
covariates, which vary between states and within states across
time (Figure 7). In the previous section, we modeled log Rit

using state-specific smooth functions of the form,

log Rit = βi(t) = β�
i B(t), (7)

where B(t) is a cubic B-spline basis with 9 knots. Time-varying
policy covariate effects cannot be estimated simultaneously with
state-specific time trends of this form. For example, under a fully
saturated model for βi(t) (including the maximum number of
estimable spline knots), the effects of time-varying covariates are
clearly unidentifiable.

To quantify differences in log Rit associated with contain-
ment policies across all states regions, we considered the models
with a shared baseline time trend of the form,

log(Rit) = β0i + βB(t) +
∑

k
Xik(t)�βXk (8)

where β0i is a state-specific intercept, βB(t) is a shared time
trend unrelated to state policy, and Xik(t) characterizes policies
of category k in state i at time t. This model assumes that log(Rit)
curves are parallel across regions in the absence of containment
policies, and that the temporal variation from this within states
is due to changes in containment policies. We compared two
specifications of the shared time trend βB(t): (1) βB(t) ≡ 0,
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Figure 7. Differences in log Rit associated with non-pharmaceutical interventions. Panel A: Policy levels across U.S. states (y-axis) over time (x-axis) for six categories of
containment policies as reported by the Oxford COVID-19 Government Response Tracker. In each panel, the y-axis denotes the number of states in which the policy is
enforced at a specified level, where policy levels are indicated by color. Panel B: Differences in log Rit (x axis) associated with policy levels in each category estimated under
model (8) with either (a) a shared U.S.-wide time trend specified as a cubic B-spline with 9 knots, or (b) no time shared trend, whereby all changes in log Rit across time are
due to changes in policy. Shown are block bootstrap confidence intervals (Cameron, Gelbach, and Miller 2008), where each bootstrap block is a single state, and intervals
correspond to the 2.5% and 97.5% percentiles of bootstrapped estimates across 1000 bootstrap samples.

whereby all changes in log Rit across time are attributable to
changes in policy, and (2) βB(t) is modeled using a cubic B-
spline basis with 9 knots, as in the state-specific model (7).
While model (8) is restrictive, some modeling assumptions or
constraints are necessary to estimate policy effects from the
observed data.

We assumed that policy effects have the form Xik(t)�βk =∑mk
j=1 Xikj(t)βjk where mj is the number of levels for policy

category k, and Xikj(t) is a dummy variable that specifies policy
implementation. Here, Xikj(t) = 1 for time points t when
policy k level j is implemented in region i, and Xikj(t) = 0
otherwise. We fit (8) using a computationally efficient two-
stage approximate EM procedure described in Supplementary
material S1 Section D.

Policy effect estimates for each of the 5 categories and 3
baseline time trend models are shown in Figure 7, where policy
level 0 is the reference in each category. Greater policy levels
were generally associated with greater decreases in log Rit within
each policy category. This trend is expected, as greater policy
levels signify broader application and stricter enforcement, and
are expected to have greater adherence. Overall, stay-home and
face-covering policies were associated with the largest decreases
in log Rit .

We note four factors that could mask or confound the effects
of containment policies on log Rit in the U.S. First, the effects
of policies that vary little across states over time are nearly

unidentifiable in models that include state-specific intercepts
and a shared time trend. Second, simultaneous deployment of
multiple policy changes within states could mask the effects
of policies that are partially redundant (e.g., gathering restric-
tions and stay-home orders) or more effective individually than
in combination (e.g., face-covering mandates and stay-home
orders). Third, strategic deployment of policies in anticipation
of COVID-19 outbreaks (nonrandom assignment) could mask
or apparently reverse the effect of policy (Hernán, Brumback,
and Robins 2002). Given the recurring spread of COVID-19
throughout the U.S. in the time period we analyzed, this scenario
appears less probable. Fourth, omitted temporal confounders
(e.g., news reports and other communications that influence
both preventive behaviors and policy) may introduce bias in
policy effect estimates.

In addition, we note that the effects of policies may vary
across time and states. For example, differences in baseline
behavior across states (e.g., the proportion of the population that
would wear a face-covering in the absence of any face-covering
mandate) could contribute to differences in policy effects. Also,
de facto enforcement of and adherence to policies may vary
across regions and over time. Here, we assumed constant policy
effects on log Rit , as time- and state-specific effects are not iden-
tifiable from the data under our model. We therefore, interpret
the policy effect estimates with caution.

https://doi.org/10.1080/01621459.2021.2001339
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6. Discussion

In this article, we presented a comprehensive and flexible sta-
tistical regression framework to estimate Rt , ascertainment rate,
incidence, and prevalence of an infectious disease over time in
one or more regions while accounting for under-ascertainment
and reporting lags, by integrating data on reported infections,
testing, and serological studies. The method, called MERMAID,
solves four important challenges for modeling the dynamics of
the COVID-19 epidemic from empirical data. First, it provides
a principled framework to integrate confirmed infection data,
PCR testing metrics, and serological data to estimate incidence
and prevalence over time. Second, it accounts for temporal
variation in under-ascertainment in reported infection counts
by modeling the probability of ascertainment as a function of
testing capacity metrics. Third, it accounts for the delay between
exposure, symptom onset, and reporting by modeling stochastic
time lags as missing data in an EM framework. Finally, it paves
the way for regression-based analyses of epidemic dynamics by
modeling the effective reproductive number Rt as an explicit
function of covariates.

Through simulation studies, we showed that the EM estima-
tion procedure performs well in estimating parameters of inter-
est under a correctly specified model. We further showed that
MERMAID is robust in realistic scenarios where the functional
form of the ascertainment and Rt models are misspecified, or
nuisance parameters characterizing the serial interval and lag
distribution are incorrectly specified. While analytic standard
errors (SEs) from MERMAID appeared well-calibrated in sim-
ulation studies with correctly specified or mildly misspecified
models, the model-based SEs likely underestimate uncertainty
in real data, where they often appear dubiously small. Thus, it
is of interest to develop robust SEs for MERMAID and other
maximum likelihood approaches for modeling epidemic data.

Our analysis of COVID-19 confirmed infections, PCR tests,
and seroprevalence studies in the US highlighted difficulties
establishing incidence and prevalence over time from public
data sources, and a possible methodological resolution. Two
common approaches to monitor COVID-19 incidence and
prevalence are a) the confirmed infection counts, and b) the
fraction of PCR tests that return positive. As expected, our anal-
ysis suggests that the percentage of the population that has been
confirmed is substantially less than the prevalence in the US,
while PCR test positivity is typically greater than the prevalence
due to over-representation of infections. Seroprevalence studies
provide an alternate approach to estimate prevalence, but have
limited sample size and statistical precision, small numbers of
time points, and possible biases due to convenience sampling.
Here, we presented a statistical approach to estimate incidence
and prevalence over time by integrating all three data sources.

Our analysis showed that containment policies are associ-
ated with substantially lower effective reproductive numbers
across the US. As we discussed, the estimates of containment
policy effects on Rt may be biased due to confounding or other
misspecification. While policies have specific dates of imple-
mentation, human behavior (e.g., adherence to policy) can vary
across time and regions. Human behavior and policy decisions
may also be influenced by recent outbreaks and other events
(e.g., via news reports), making it difficult to estimate causal

effects. Data characterizing the efficacy of specific behaviors
(e.g., face-covering and social distancing) for preventing trans-
mission and adherence to existing recommendations are also
therefore important to develop effective policies (e.g., Chu et al.
2020; Brooks, Butler, and Redfield 2020). Simulation studies
under realistic epidemic models are also valuable tools to assess
the potential impact of policies given adherence and efficacy
(e.g., Adam 2020; Currie et al. 2020).

Our analysis relied on restrictive assumptions about PCR and
antibody tests. First, we assumed that PCR tests have perfect
sensitivity and specificity to detect infected individuals. In real-
ity, PCR test sensitivity depends on the viral load, which varies
continuously following exposure. This assumption may be rea-
sonable, as the viral load is correlated with infectiousness (Lee
et al. 2021). Second, we assumed that SARS-CoV-2 antibodies
are detectable shortly after the infection, and remain detectable
for up to 9 months after infection. In reality, SARS-CoV-2
antibody response varies across individuals, may be detectable
only after 7-14 days following infection, and may decrease over
time. These factors could be modeled using stochastic time
lags as we used to account for the delays between infection
and reporting, and weighting past infection counts as used to
calculate the infection potential. Some previous studies have
suggested that SARS-CoV-2 IgG antibodies remain detectable
6–9 months following infection (Figueiredo-Campos et al. 2020;
Yao et al. 2021). However, recent studies have reported more
substantial decreases in sensitivity in later months for certain
SARS-CoV-2 antibody tests (Muecksch et al. 2021). If antibody
test sensitivity decreases substantially over time, then the sero-
prevalence studies (and therefore MERMAID) likely underes-
timate the prevalence. Third, we assumed that seroprevalence
studies provide unbiased estimates of the population prevalence
of SARS-CoV-2 antibodies; this assumption may be violated due
to convenience sampling.

MERMAID could be extended in several ways. First,
MERMAID assumes that disease transmissions are independent
across regions. This assumption is unlikely to substantially affect
our analyses of COVID-19 in US states, as we expect imported
infections to have little effect in large populations with large
numbers of locally infected individuals (e.g., Russell et al. 2021).
However, at the early stages of the outbreak in the United States,
and at finer geographic resolutions, imported infections play
a central role and cannot reasonably be ignored. MERMAID
could be extended in such cases by modifying the infection
potential �it to include between-region terms. Second, we
assume that the population size in each region is constant over
time. This assumption is relevant for estimating the proportion
of the population that is susceptible, and we believe it is
reasonable for U.S. states. However, death and migration are
of greater importance when modeling smaller populations.
Third, we assumed that individuals are immune after they
have been infected, and that all individuals who were never
infected are susceptible. We accounted for immunity acquired
from previous infections in the population by specifying an
offset term in the Rt regression model. An additional offset
could be used to account for immunity through vaccination.
Alternately, these factors could be estimated directly as a
component of Rt without including offsets. Fourth, MERMAID
could be extended to incorporate data on COVID-19 deaths
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over time, which may be informative for the incidence if death-
ascertainment is high and the infection fatality rate is stable
across time within each region. Fifth, the model could be
extended to allow overdispersion in daily infection counts.
Sixth, MERMAID could be extended to explicitly model the
impact of vaccinations on Rt via immunity in the population.
To this end, it will be important to understand the characteristics
of seroprevalence tests in vaccinated individuals, and to jointly
model vaccination and natural immunity in the population. Our
analysis was restricted to the U.S. data in 2020, before vaccines
became available; however, such an extension may be valuable
for analyzing more recent time periods, where vaccination rates
are expected to be a key determinant of Rt .

Available datasets on COVID-19 reported infections, tests,
and seroprevalence over time in the United States have several
limitations that we did not attempt to fully address. First, daily
reported infection and test counts show substantial discordance
between different data sources in several states (Supplementary
material S3–4). Here, we used a heuristic approach to aggre-
gate the data across different sources and remove outliers to
arrive at a consensus dataset. This highlights the importance of
accurate, consistent, and coordinated data collection efforts in
epidemics. Second, reported COVID-19 infection and test data
show some consistent irregularities across data sources, which
likely do not reflect true patterns in infections. For example,
sporadic lapses in reporting and strong weekday effects are evi-
dent for many U.S. states (Supplementary material S3–4). Third,
while serological surveys have provided a vital secondary means
of estimating the prevalence of COVID-19, their sample sizes
are relatively limited, and they may suffer from biases due to
non-random convenience sampling. Seroprevalence estimates
in several U.S. states are inconsistent with confirmed infection
numbers, or decrease over time. For example, the August 26
– September 10, 2020 round of serological survey in South
Dakota estimated 6,050 infections, which is smaller than the
cumulative reported infection counts until August 26 which
was 11,851 (based on COVIDTracking 2021). In New York, the
seroprevalence estimates steadily decreased from 23.3% to 17%
from July 31–August 11, 2020 survey round to September 11–
September 24, 2020 survey round. These apparently inaccurate
seroprevalence estimates may lead to unreliable inferences in
MERMAID (shown for all states in Supplementary material S5).

In summary, our work provides an integrated framework
to model infectious disease dynamics across one or multiple
regions over time, accounting for reporting lags and under-
ascertainment, and using flexible regression models for Rt .
Applied to the 2020 COVID-19 data from the United States,
MERMAID suggests that integrated analysis of seroprevalence
and PCR test data can provide more accurate estimates of
the prevalence over time. Our analysis also shows substantial
reductions in COVID-19 reproductive rates associated with
containment policies across the United States, and highlights
difficulties disentangling the causal effects of policy from the
observed data.

Software

The proposed procedure was implemented in the R package MERMAID,
which is publicly available at https://github.com/lin-lab/MERMAID

Supplementary Materials

The online supplementary materials provide technical proofs and addi-
tional data analysis results.

• S1: Supplementary text including technical proofs, additional simula-
tion study under a more realistic ascertainment scenario, and details on
preprocessing and QC procedures.

• S2: Figures and tables from simulation studies.
• S3: Figures on confirmed COVID-19 infection time series.
• S4: Figures on PCR test time series.
• S5: Figures from MERMAID analysis of all US states.
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