Four applications of statistics to COVID-19 modelling

The Canadian Network for Modelling In BIRS 23w5151

Lloyd T. Elliott, November 16 2023

The Canadian Network for Modelling Infectious Diseases: Progress and Next Steps

Statistic support for COVID-19 response

- Epidemiology:
 - 1. NPI modulation (MAGPIE)
 - 2. Prevalence estimates from serology (MAGPIE)
 - 3. True prevalence from case counts (UVic)
- Host genetics:
 - The HostSeq project: Host gen CanCOGeN/CGEn & SickKids)

ology (MAGPIE) nts (UVic)

4. The HostSeq project: Host genetics in Canada (Genome Canada/

Statistical support team Sonny Min Renny Doig Elika Garg Olga Vishnyakova

> MAGPIE collaboration Caroline Colijn Jessica Stockdale Nicola Mulberry Liangliang Wang

UVic collaboration Matthew Parker Junling Ma Yangming Li Laura Cowen Jiguo Cao

Acknowledgements

Elika Garg Steve Jones Lisa Strug Shelley Bull Rayjean Hung Jerry Lawless Lei Sun Study Pls

- HostSeq collaboration
- Paola Arguello Pascualli
- Olga Vishnyakova
- Jennifer Brookes
- France Gangnon
- Celia Greenwood
- Andrew Patterson
- Sub-Committees Study participants

GenomeCanada

Canadian Network for Modelling Infectious Diseases

Réseau canadien de modélisation des maladies infectieuses

Michael Smith

Health

1. NPI modulation

Conclusion

After health authorities recommend or require changes to *non-pharmaceutical interventions* (e.g. adding or removing a mask mandate, starting or stopping a lockdown), it can take some time for the changes to be reflected in case counts. Sometimes up to 2.5 months.

J Stockdale, R Doig, J Min, N Mulberry, L Wang, L Elliott, C Colijn. *Long time frames to detect the impact of changing COVID-19 measures, [BC] Canada, March to July 2020.* Eurosurveillance 2021

Modelling effect of NPI change

 If non-pharmaceutical interventions (NPIs) change, how long until we see a statistically significant change in case counts? (Case counts are "noisy")

$$f(t) = \begin{cases} f_0 \\ f_1 \\ f_2 \end{cases}$$

before distancing is enacted when distancing measures are in place after relaxation of distancing

- distancing; Anderson et al. 2020)
- case counts)

• The distancing function f gives the amount of distancing at time t (f = 1 is no distancing)

• For a given function f, we can simulate case counts (SEIR-type with quarantine and

• We can then compare the simulated case counts, and find out at what time they "differ significantly" (i.e., they differ more than what we'd expect from random fluctuations in

Definition of "differing significantly"

- Suppose scenario M1 is with more relaxation and scenario M2 is with no relaxation (the scenarios match until the time of relaxation)
- Simulate 100 case count trajectories from scenario M1, and 100 case count trajectories from scenario M2
- Find the first date for which 95% of the time, scenario M1's case count is higher than scenario M2's case count by an "alarm" threshold of "10" or more

M1: Relaxation to f2. M2: No relaxation

- We vary the "alarm" threshold: 5, 10, 15, 20
- In another section of work, we find MLE estimates: $f^2 = 0.65$, $f^1 = 0.36$

Simulations were based on epidemiological parameter priors drawn from literature

2. Prevalence estimates from serology

Conclusion

counts and serological survey. We provide an estimate of seroprevalence of 0.57% [0.48%, 0.68%] in Vancouver on May 27 2020. This refines Skowronski et al. 2020's estimate of 0.55% [0.15%, 1.37%].

L Wang, J Min, R Doig, L Elliott and C Colijn. *Estimation of SARS-CoV-2 antibody* January to May 2020]. 2022. Canadian Journal of Statistics

We can reduce variance of seroprevalence estimates using a joint model of both case

prevalence through integration of serology and incidence data [Vancouver BC Canada,

Case counts from BCCDC (January to May 2020). Serological survey from Skowronski 2020 et al. 2020: n = 885, mp = 4 on May 27 2020 (0.45% age standardized 0.55%)

> We provide an estimate of seroprevalence of 0.57% [0.48%, 0.68%] in Vancouver on May 27

4. The HostSeq project: Host genetics in Canada

Question

How does human genetic variation modulate COVID-19 susceptibility and severity? The HostSeq project is Canada's contribution to the global effort to answer this question. Our mandate is to DNA sequence the human genome of 10,000 COVID-19 positive Canadians, and make these genomes and case reports available to researchers.

S Yoo, E Garg et al. HostSeq: a Canadian whole genome sequencing and clinical data resource [Canada, March 2020 to October 2022]. BMC Genomic Data 2023

HostSeq version 9

- 10,059 samples at 15 study sites across Canada released March 2023
- WGS and joint call with ~153M variants available through DACO https:// www.cgen.ca/daco-main/

Month of infection

Analyzing HostSeq

- After QC (subset to complete cases), we retain 8,474 samples
- Imputed ancestries: 455 African (5.4%), 537 Admixed American (6.3%), 519 South Asian (6.1%), 654 East Asian (7.7%), 6107 European (72.1%), and 202 uncategorized (2.4%)
- We perform a genome-wide association study (GWAS) on the contrast B1: hospitalized cases vs non-hospitalized cases (HGI's B1)

HostSeq GWAS results

with MAF<0.05 on GNOMAD easy to sequence regions)

HostSeq univariate GWAS with LMM (regenie; N = 8,474; 4,708,250 variants

HostSeq GWAS results

regions, 17351 genes)

HostSeq rare variant SNP-Set Kernel Association Optimal Unified Test GWAS for Hospitalization (N = 8,474; variants on GNOMAD easy to sequence

HGI GWAS on B2 (hospitalized vs population)

- Host Genetics Initiative (HGI): Global consortium to meta-analyze COVID-19 host genetics
- Release 2: No hits. N = 1,332 (May 15 2020)
- Release 7: 91 hits. N = 289,919 cases (April 2022; 119 studies)

 Contrast: Hospitalized covid vs. population

We replicate 2/3 top B1 hits from HGI7

RSID	Nearest-Gene	Locus	REF	EFF	Data	EAF	BETA	SE	Ρ
rs17763742	SLC6A20	chr3:45805277	Α	G	HGI7	0.16	0.38	0.0320	2.40E-32
rs17763742	SLC6A20	chr3:45805277	Α	G	HostSeq	0.10	0.33	0.0700	2.50E-06
rs2496646	FOXP4-AS1	chr6:41515629	Т	С	HGI7	0.85	-0.29	0.0430	2.20E-11
rs2496646	FOXP4-AS1	chr6:41515629	Т	С	HostSeq	0.91	-0.29	0.0760	1.80E-04
rs2834164	IFNAR2	chr21:33249643	Α	С	HGI7	0.43	-0.10	0.0180	1.70E-08
rs2834164	IFNAR2	chr21:33249643	Α	С	HostSeq	0.48	-0.09	0.0410	2.90E-02

variance in severe COVID-19 in our sample

E Garg et al. Canadian COVID-19 host genetics cohort replicates known severity associations [Canada, March 2020 to October 2022]. Under review

• A polygenic risk score (PRS) with these genetic variants explains 1.01% of the

Thank you!

3. True prevalence from case counts Question

- How many COVID-19 infections are there at a given time?
- \bullet published by centres for disease control may be underestimates
- al. 2020)
- What is the true prevalence of COVID-19?

M Parker, Y Li, L Elliott, J Ma and L Cowen. Under-reporting of COVID-19 in the Northern Health Authority region of British Columbia [March to October 2020]. Canadian Journal of Statistics 2021

Due to testing and reporting protocols, and asymptomatic cases, case counts

Seroprevalence studies show that case counts underestimate (Skowronski et

True prevalence Methods

- Adapt the open population model from ecology (growth, importation, recovery, death)
- Usual open population model:

$$\mathscr{L} = \prod_{i=1}^{U} \left[\sum_{N_{i1}=n_{i1}}^{K} \cdots \sum_{N_{iM}=n_{iM}}^{K} \left\{ \left(\prod_{t=1}^{M} \operatorname{Binom}(n_{it}; N_{it}, p) \right) \operatorname{Pois}(N_{i1}; \lambda) \prod_{t=2}^{M} P_{N_{it-1}, N_{it}} \right\} \right]$$

$$P_{a,b} = \sum_{c=0}^{m=\min\{a,b\}}$$

 $Binom(c; a, \omega) Pois(b - c; \gamma)$

True prevalence Methods

Open population model for epidemiology:

$$\mathscr{L} = \sum_{N_1=n_1}^K \cdots \sum_{N_T=n_T}^K \left\{ \operatorname{Pois}(N_1; \lambda) \cdot \left(\prod_{t=1}^T \operatorname{Binom}(n_t; N_t - a_{t-1} + r_{t-1} + D_{t-1}, p) \right) \cdot \left(\prod_{t=2}^T P_{N_{t-1}, N_t} \right) \cdot \left(\prod_{t=1}^{T-1} \operatorname{Mult}(a_t - D_t - r_t, D_t, r_t; a_t, p_a, p_d, p_r) \cdot \sum_{R_t=r_t}^{N_t - D_t} \operatorname{Mult}(A_t, D_t, R_t; N_t, p_a, p_d, p_r) \right) \right\}$$

$$P_{a,b} = \sum_{c=0}^{m=\min\{a,b\}} \operatorname{Pois}(c;\omega a) \cdot \operatorname{Pois}(b - c) = 0$$

 $-c;\gamma)$

3. True prevalence definitions

Statistics				
M	number of sampling sites			
T	number of sampling occasions			
a_{it}	detected cases still active at site i , time t			
	$i \in \{1, 2, \dots, M\}, t \in \{1, 2, \dots, T\}$			
n_{it}	new detected cases at site i , time t			
d_{it}	new detected deaths at site i , time t			
r_{it}	new detected recoveries at site i , time t			
H_i	total population size at site <i>i</i>			
Latent States				
N_{it}	total active cases at site i , time t			
A_{it}	cases which remain active in site <i>i</i> from time <i>t</i> to $t + 1$			
D_{it}	cases which die in site i from time t to $t + 1$			
R_{it}	cases which recover in site <i>i</i> from time <i>t</i> to $t + 1$			
S_{it}	new cases from domestic spread in site i from time t to $t+1$			
G_{it}	new cases from importation in site i from time t to $t+1$			

Parameters

ι	expected initial active cases per site			
a	probability of a case remaining active			
d	probability of a case dying			
r	probability of a case recovering			
' 1	expected new domestic spread from unobserved cases			
\mathbf{v}_2	expected new domestic spread from observed cases			
/	expected new imported cases per site			
)	probability of detecting an active case			
Derived Variables				
i	fraction of population susceptible at site <i>i</i>			
\hat{D}_{it-1}	expected new domestic spread in site i time $t - 1$ from all sources			
K	inflation factor for proportion of observed deaths			

3. True prevalence model

(1) Initial Active Cases: (2) Latent State Process: (3) Detected Active Cases: (4) Domestic Spread: $(5) \Omega_{it-1}$: (6) δ_i :

(7) Imported Cases:

 $N_{i1} \sim \text{Poisson}(\lambda)$ $\{A_{it}, D_{it}, R_{it}\} \sim \text{Multinomial}(N_{it}; p_a, p_d, p_r)$ $a_{it} = n_{it} + a_{it-1} - r_{it-1} - d_{it-1}$, for t > 0 $S_{it} \sim \text{Poisson}(\Omega_{it-1}), \text{ for } t > 1$ $\omega_1(N_{it-1} - a_{it-1}) \cdot \delta_i + \omega_2 a_{it-1}$ (mean domestic spread) $(H_i - N_{it})/H_i$ (fraction of susceptible population, where H_i is the total population size) $G_{it} \sim \text{Poisson}(\gamma), \text{ for } t > 1$ (8) Active Cases Updates: $N_{it} = A_{it-1} + S_{it} + G_{it}$, for t > 1(9) Observation Process I: $n_{it} \sim \text{Binomial}(N_{it} - a_{it-1}, p)$ (10) Observation Process II: $\{a_{it} - d_{it} - r_{it}, d_{it}, r_{it}\} \sim \text{Multinomial}(a_{it}; p_a^*, \alpha p_d, p_r)$

True prevalence Results

Covariates considered:

by $\hat{N}_t = n_t / \hat{p}_t$.

We found under-reporting rates up to 85% in Northern Health Authority of BC.

FIGURE 6: Estimated active cases \hat{N}_t per week from the best fitted model (*mob*, *vol*), as chosen by AIC. Bottom line (red): newly observed active cases. Top line (blue): estimated active cases with 95% confidence intervals. \hat{N}_t are calculated from the estimated probability of detection \hat{p}_t and newly observed active cases

True prevalence

vaccine rate, and testing volume

M Parker, J Cao, L Cowen, L Elliott and J Ma. *Multi-site disease analytics with* applications to estimating COVID-19 undetected cases in Canada [Canada, April 2020 to January 2022]. medrxiv preprint 10.1101/2022.07.11.22277508v1

• We have extended this model to a multi-site model to a) all Health Authorities of BC, b) all provinces and territories of Canada. Both considering covariates:

1. SEIR-type with quarantine and distancing

• We define M using an extension of the SEIR-type model (Susceptible, This is a compartment model, simulated through an ODE.

Exposed, Infected, Removed) developed by MAGPIE (Anderson et al. 2020).

- Q quarantined
- E1 pre-symptomatic & not infectious
- E2 pre-symptomatic & infectious
- physically distancing

4. Gene card: FOXP4

- Located on 6p21.1, 56k bases long
- Gene transcription regulator, with some lung-specific regulation. May be upkeep of healthy lung tissue ..."

Forkhead Box P4. A protein coding gene (coding Forkhead Box Protein P4).

involved in repressing some lung-specific expression. "... involved in the

genecards.org, AlphaFold and HGI

4. Gene card: SLC6A20

- Solute Carrier Family 6 Member 20. A protein coding gene (coding protein of same name)
- Located on 3p21.31, 41k bases long
- Transports small molecules across the cell membrane (prolines). Identified as a viral entry pathway

genecards.org, AlphaFold and HGI

4. HostSeq conditions

