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Efficient coverage for newly developed vaccines requires knowing which groups

of individuals will accept the vaccine immediately and which will take longer to

accept or never accept. Of those who may eventually accept the vaccine, there

are two main types: success-based learners, basing their decisions on others’

satisfaction, and myopic rationalists, attending to their own immediate per-

ceived benefit. We used COVID-19 vaccination data to fit a mechanistic model

capturing the distinct effects of the two types on the vaccination progress. We

estimated that 47% of Americans behaved as myopic rationalists with a high

variation across the jurisdictions, from 31% in Mississippi to 76% in Vermont.

The proportion was correlated with the vaccination coverage, proportion of

votes in favor of Democrats in 2020 presidential election, and education score.

Vaccination is a primary measure to reduce morbidity and mortality of new infectious

diseases (1), especially in areas that admit high coverage (2). High vaccination coverage re-

quires high vaccine acceptance–a collective outcome of individual-level decision-making pro-

cesses (3). Particularly, when facing a new vaccine, people need to decide between the promised

immunity followed by potential side-effects associated with accepting the vaccine versus the

mortality risk and governmental restrictions of refusing the vaccine. Individuals, however, vary

in their decision-making strategies (4–6), and different strategy compositions can result in dif-

ferent collective outcomes (7), including different vaccination rates and coverage (8, 9). Effec-

tive promotion of vaccination benefits from identifying the different types of decision-makers

and deploying tailored communication methods.
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In various contexts, people are known to be mainly one of the following two decision-

making types (6, 7, 10, 11): (i) those who learn from others’ success, particularly, those who

take the action of others with a higher payoff, known as success-based learners (12, 13), or

imitators (14), and (ii) those who base their decisions on their own perceptions of the environ-

ment, often aiming to maximize their instant perceived payoff (5,6), named myopic rationalists,

or best-responders (15). Exclusive populations of myopic rationalists who perceive the social

context similarly are likely to reach satisfactory decisions (16) whereas exclusive populations of

success-based learners may undergo perpetual changes of decisions (13,17). Mixed populations

of the two may exhibit a wide range of behaviors depending on the proportions (8, 18). Under-

standing the collective outcome of mixed populations, hence, requires knowing the proportions

of success-based learners and myopic rationalists.

The two types of decision makers also differ in the type of information they attend to (13).

Myopic rationalists seek information that shapes their payoffs, whereas success-based learners

focus on the satisfaction achieved by others. Hence, in addition to providing insights to the

vaccination dynamics, knowing the proportions of the two types inform health management

and media.

The proportion, however, is unknown and needs to be estimated from data – a yet unaccom-

plished challenging task. The challenge is mainly because the proportions of decision-makers

are unobserved. A natural approach to tackle this problem is to build a mechanistic model

with the proportion of decision-makers as a parameter and estimate it by fitting the equations

to existing data on measured quantities such as vaccine uptake. However, for this approach to

be successful, it must be first shown that such a parameter is identifiable. Several other chal-

lenges exist. There may be insufficient detail in data from previous seasonal or relatively old

diseases, where decisions were made typically once a year (19, 20) or lifetime (21). Baseline

trust regarding a vaccines’ effectiveness and safety may change as an initially distrustful public

gradually becomes accustomed to it (22). The resulting hesitancy followed by the desire for

immunity results in frequent decision revisions, e.g., on a bi-weekly basis (22). Finally, not all

the population may be concerned about the vaccine as can be seen in some previously recorded

vaccination programs (23).

The recorded data on COVID-19 in the US provides a unique opportunity to tackle each

of these challenges. Although the proportion is unobservable, the two decision-making groups

have different vaccination paces and differently shape the vaccination progress curve, which

is observable. Indeed, we prove that the proportion of myopic rationalists is an identifiable

parameter. Hence, by fitting the collective decision-making dynamics of the two types to vacci-

nation data, we can estimate the proportion and use bootstrapping methods to obtain confidence

intervals. Owing to the importance of timely vaccination and thanks to the advancement of tech-

nology, the vaccination data are available on a daily basis (24). The changes in baseline attitude

toward the vaccine’s side effects were captured through longitudinal surveys (25). Moreover,

almost every resident had to decide on vaccination (26).

Our objective was to estimate the proportions of myopic rationalists and success-based

learners in each of the 50 states of the US and the District of Columbia (D.C.) separately, in de-
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ciding whether to take first dose of COVID-19 vaccination. We excluded later doses as they are

influenced by the experience in the first dose (27). We developed a mechanistic model to cap-

ture the behavior of the two types of interacting individuals augmented by a third group vaccine

refusers, those a priori known to refuse the vaccine based on surveys (28). A fixed parameter

(α) was used as the proportion of myopic rationalists in the population in each jurisdiction. The

perceived excess payoff of vaccination is shaped by the epidemiological conditions represented

by weekly cases and deaths, the risk of vaccine side effects, and the social and governmental

pressure on unvaccinated individuals.

Results

Our fitting results suggested that 47% (α = 0.47) of Americans aged 12 years and above be-

haved as myopic rationalists in receiving the first dose of COVID-19 vaccine, i.e., about 131
millions out of 279 million Americans, an equal proportion acted as success-based learners, and

the remaining 6% were COVID-19 vaccine refusers. The estimated percentage of rationalists

across the US varied from 31% in Mississippi to 76% in Vermont (Fig. 1). In fifteen states,

myopic rationalists composed more than 50% of residents.

To ensure that the estimations were as robust as possible, we reported the confidence in-

tervals (CIs) obtained from non-parametric bootstrapping as they resulted in larger CIs than

parametric bootstrapping (Table S1). The length of 95% CI of the proportion of myopic ratio-

nalists was 0.13 or less for all jurisdictions (Table S1). For 20 states, the upper limit of the CI

was lower than the estimated proportion across the US, i.e., 0.47, as well as the estimated pro-

portions of 25 other states, implying a significant difference in the proportions. Particularly, the

proportions of 46 states including California and Florida fell between the upper confidence limit

of Mississippi, the state with the lowest proportion and the lower confidence limit of Vermont,

the state with the greatest proportion (Fig. 2).

As of November 2021, all eligible American myopic rationalists were vaccinated. Success-

based learners had lower vaccine coverage. While in all jurisdictions more than half of the

imitators received at least one dose of a COVID-19 vaccine, in no jurisdiction were they all

vaccinated.

The weekly number of vaccinated individuals, particularly rationalists, was greatly influ-

enced by the vaccine doses available during the first months of vaccine rollout which was due

to vaccine supply limitations (Fig. 3A, B, D, E). The changes in the perceived benefit of vacci-

nation in some states were negligible compared to other states (Fig. 3C, F, Figs. S2-S26).

The proportion of myopic rationalists was correlated with the vaccination coverage, pro-

portion of votes in favor of Democrats in the 2020 presidential election, and education score

(Table 1–see Table S2 for the correlation with the other explanatory variables). The proportion

of myopic rationalists was not highly correlated with the accessibility to the vaccination facili-

ties (Table 1–last two rows). We evaluated the impact of each model component on the fitting

results. The averaged residual sum of the squares (RSS) over all jurisdictions increased if any
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Table 1: Linear correlation between explanatory variables and the estimated proportion of my-

opic rationalists.

Predictor variable Pearson-r R-squared

Vaccination coverage 0.87 0.76
Proportion of votes in favor of Democrats 0.82 0.68
Education score 0.74 0.54

Proportion of people living further than

10 miles from vaccination facilities
−0.37 0.14

Density of vaccination facilities −0.24 0.06

of the components were altered. More specifically, by assuming a fully myopically rational

population (α = 1), the RSS increased by 616%, whereas a population of success-based learn-

ers (α = 0), resulted in an increase of 626%. To investigate the effect of the possible delay in

delivering the vaccine doses compared to what was reported in the data, we introduced a 3-day

delay based on California vaccine distribution plan (29). The estimated composition of myopic

rationalists and success-based learners at the state level was fairly insensitive to the introduced

delay. More specifically, the variations in the estimated proportion of myopic rationalists were

less than 10%(see Table S3).

Discussion

We considered vaccination coverage as a collective outcome resulting from decisions of individ-

uals that are known to be mainly either myopic rationalists or success-based learners. Although

crucial to the vaccination dynamics, the proportion of the two types of decision makers has

to date been unknown and not measured directly. We tackled this problem by developing a

mechanistic model capturing the evolution of vaccinated population with fixed ratios of the two

types of decision-makers in the context of vaccine uptake. We additionally considered a third

type of vaccine refusers who never intended to be vaccinated. By fitting the model to data on

the number of first-dose COVID-19 vaccinated individuals in the US, we found that, exclud-

ing the 6% vaccine refusers, about half of the Americans behaved as myopic rationalists, and

half as success-based learners. The results may inform health management and guide tailored

communication towards promoting vaccination uptake.

The main challenge in this work was how to estimate this unobserved proportion of myopic

rationalists. We took the natural approach of building a mechanistic model with the propor-

tion of decision-makers as a hidden parameter and then estimated it by fitting the equations to

existing data on observed quantities such as vaccine uptake. However, there are two potential

drawbacks with this approach. First, there could be parameter identifiability issues, resulting

in a low estimation confidence. We tackled this issue by proving that the proportion of myopic

rationalists is an identifiable parameter that can be uniquely estimated.

The fact that the proportion is identifiable implies that it can be estimated using a sufficiently
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rich dataset, which appeared to be the case for our study due to the sufficiently narrow confi-

dence intervals. As the fitting errors did not follow a normal distribution and were temporally

correlated, the confidence intervals could not be obtained based on the common assumption

of independence and normally distribution. We addressed this issue by using non-parametric

bootstrapping methods and applying an auto-regression to reduce the temporal correlation.

The second drawback is that even with a unique solution, there may be other possible mod-

els for the observed human behaviour. Alternative explanations of the vaccine uptake trends

could be a population consisting of (i) multiple groups of success-based learners with different

learning rates, (ii) multiple groups of myopic rationalists with different uptake rate, and (iii)

multiple groups of both success-based learners learning at different rates and myopic rational-

ists with different uptake rates who are interacting. The first two hypotheses, however, ignore

the evidence from other studies of the coexistence of success-based learners and myopic ra-

tionalists. Indeed, the dichotomy of decision-making populations has been acknowledged in

previous vaccination studies (8, 30) as well as other contexts, such as marketing, psychology,

and cultural evolution (7, 10, 11, 31–33). A population with multiple groups of both decision-

makers is likely to be more realistic. Despite this, we have considered the simplest model that

includes both myopic rationalists and success-based learners and the more complex models are

left for future work.

The proportion of the two types of decision-makers has not been estimated in previous vac-

cination studies; only homogeneous models have been fitted to data (34, 35). Some marketing

studies estimated the relative proportion of the two types in adopting several products using the

Bass model (7, 36, 37). Our work complements these studies in that (i) rather than estimating

the proportion among the final adopters, we estimated the proportion in the whole population,

including unvaccinated individuals, (ii) we considered the influence of time-varying variables

including epidemiological indices, and the perceived risk associated with vaccine side effects,

(iii) we incorporated supply limitation in the model, and (iv) we showed that the proportions of

these decision-makers are identifiable.

We found that myopic rationalists greatly determined the evolution of the number of weekly

vaccinated individuals (vaccination speed) during the first months of the vaccine roll-out – a

crucial factor in the success of vaccination programs (38–40). In later months, the vaccina-

tion speed was mainly determined by success-based learners. Considering the excess payoff

formulation, the only factor capable of inducing a negative excess payoff is the perceived risk

associated with side effects. This factor, however, according to a longitudinal survey, declines

over time (22). This suggests that once vaccination has a higher payoff than remaining unvac-

cinated, which was the case during the first months, all myopic rationalists tended to take the

vaccine–the only limiting factor being vaccine availability. Although success-based learners

also tended to take the vaccine once the excess payoff is positive, they based their decisions on

others’ success, determined by the magnitude of the excess payoff and the number of vaccinated

individuals. Hence, they tend to delay vaccination during the first months of the vaccine roll-out

but exhibit a higher vaccination speed when many are vaccinated and available to imitate.

Myopic rationalists also greatly determined the vaccination coverage – another key factor in
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the success of vaccination programs (41). Our findings suggest that as of November 2021, all

American rationalists have received their first dose of vaccine and consequently, excluding the

vaccine refusers, those who remained unvaccinated were success-based learners.

The results suggest the proportion of success-based learners as a factor behind the collective

vaccination behavior and contributing to the success of mass vaccination programs. The begin-

ning of vaccination programs may mainly address access issues to expedite vaccination among

myopic rationalists. Later on, vaccine-promoting interventions should be tailored to success-

based learners to increase their perceived benefit of vaccination. The initiation of this second

phase depends on the composition of the decision-makers, i.e., the more success-based learners

in the population, the sooner the second phase should be initiated.

We observed high variations in the estimated proportion of myopic rationalists across the

US jurisdiction, ranging from 0.31 to 0.76. The result is in line with studies highlighting the

variation of different indices throughout the states (42, 43). The delivered doses in the first

months shaped the number of vaccinated rationalists. However, the variation may not be at-

tributed to vaccine supply disparity, because the doses were distributed proportionally to the

state populations (44).

There are candidate factors to explain the inter-state differences in the ratio of myopic ra-

tionalists and success-based learners. The proportion of myopic rationalists was positively cor-

related with the vaccination coverage (Pearson-r = 0.87). The proportion of myopic rationalists

was also positively correlated with the proportion of votes in favor of Democrats in 2020 presi-

dential election (Pearson-r = 0.82). These findings are then consistent with the known relation

between vaccination coverage and 2020 presidential election outcome (45). The ratio of my-

opic rationalists was also positively associated with education score. In view of the correlation

between the ratio of myopic rationalists and vaccination coverage, this is indirectly corrobo-

rated by studies suggesting American adults with less education being less likely to receive the

vaccine (22, 46).

Our model shows how interactions between myopic rationalist and success-based learner

groups have determined the course of the vaccination for COVID-19 in the United States. Ad-

mittedly, true population could have additional heterogeneities, where different age, gender, or

socio-economic status groups have different perception of the payoff (47–49). The extension

of the model to capture this heterogeneity is subject to future work. Another limitation of this

work comes from assuming a well-mixed population rather than the more realistic structured

population as supported by Twitter echo-chambers (50). This assumption may not greatly affect

myopic rationalists as important information about the excess payoff is often obtained from and

shared by all reputable and publicly accessible news agencies. In the same way, online influ-

encers – usually perceived as the most successful – make the interactions of success-based learn-

ers more well-mixed than structured (51). Overall, while acknowledging the aforementioned

limitations, the results of this study provide strong evidence that the COVID-19 vaccine up-

take dynamics were determined by interactions between myopic rationalists and success-based

learners and at least half of the Americans relied on the success of others in taking COVID-19

vaccine.
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proportion of myopic rationalists

0.30, 0.38 0.38, 0.42 0.42, 0.45 0.45, 0.49 0.49, 0.51 0.51, 0.54 0.54, 0.76

AK

HI

Figure 1: Estimated proportion of myopic rationalists in taking the first dose of COVID-

19 vaccination across the 50 states and the D.C in the US. Darker colors show a higher

proportion of myopic rationalists. For each jurisdiction, the proportion of myopic rationalists

aged 12 years and above was estimated by fitting the developed mechanistic model to the data

on weekly newly vaccinated individuals starting from Dec 2020 to Nov 2021. The vaccine

supply limitations during the first months of vaccine roll-out were captured by using the data

on delivered doses to each jurisdiction over time. The national wide estimated proportion of

myopic rationalists was 0.47. There was a high degree of variation across the 51 jurisdictions,

i.e., 0.31 for Mississippi to 0.76 for Vermont. About 52% of the residents of the states located in

the Northeast region behaved as myopic rationalists in taking COVID-19 vaccination, while in

southern states, this proportion was about 43%. The estimated proportion of myopic rationalists

in West and Midwest regions was respectively 0.49 and 0.46.
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Figure 2: Estimated %95 confidence interval of the proportion of myopic rationalists for

five states of the US and the D.C. The US of Vermont and has the highest proportion of myopic

rationalists, while Mississippi has the lowest. Error bars indicate the %95 confidence interval

obtained using non-parametric bootstrapping. For all states and the D.C., the lengths of the

confidence intervals were 0.13 or shorter.
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Figure 3: Number of weekly vaccinated individuals, myopic rationalists, success-based

learners, and the excess payoff over time for states of California and Florida, Dec 2020-Nov

2021). Each panel includes 46 data-points. Left panels depict the results and data for California

and the right ones are for Florida. Panels A and D depict the weekly number of vaccinated

residents in red, its estimation in blue, and weekly number of delivered doses in green. Panels

B and E depict the estimated weekly number of vaccinated myopic rationalists and success-

based learners in blue and red, respectively. The panels in the last row depict the evolution

of the benefit of vaccination (excess payoff). The number of weekly vaccinated individuals is

shaped by the vaccine doses available particularly during the first months of vaccine roll-out

(Panels A and D). Almost all myopic rationalists receive the vaccine by July, 2021 (the blue

curves in Panels B and E). As vaccination progresses, success-based learners are persuaded

to receive a vaccine (Panels B and E). Over the studied time interval, the perceived benefit of

vaccination among Californians changes slightly compared to that of Floridians (Panels C and

F).

Materials and Methods

Data

To calculate the cumulative number of available COVID-19 vaccine doses for administering the

first shot, we used the temporal data on the number of delivered doses to each jurisdiction’s

provider locations. The data were available on the website of Centers for Disease Control and

Prevention (CDC) (52) and captured the last part of the vaccine distribution process (53). To

avoid double-counting, the numbers of individuals completing the primary series of a two-dose

vaccine, receiving the first and the second booster doses were subtracted from the data. In all 51
jurisdictions across the US, the decision whether to vaccinate children under the age of 12 was

left up to their guardians. Hence, we narrowed the population to those of 12 years and older.

As the emergency authorization of vaccinating children of age 5 through 11 was issued on late

October, 2021, we set October 30, 2021 as the last day of the dataset (54).

December 14, 2020 was selected as the starting date. Daily data on the total number of

individuals who received their first dose, the number of individuals who completed the pri-

mary course of vaccination, and the number of individuals who received their first and second

booster doses were collected from (55). State level data on daily new cases and deaths were

obtained from (56). The negative values were replaced with zero and then we replaced zero

new cases with their immediate non-zero values in the next day. We converted the temporal

scale from daily to weekly. The state-wide estimated proportion of COVID-19 vaccine refusers

was obtained from (28) (see SI).

To estimate the trend of reduction in perceived risk of vaccine side-effects, we used the data

collected by the US Census Bureau (25). To determine the start date at which containment,

closure or health policies differentiated based individuals’ vaccination status, we used the US
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sub-national data available in (24). The data on state level population by age was obtained

from (57).

We additionally explored a number of features that could possibly relate to the proportions

of success-based learners and rationalists. We collected data on votes in favor of each political

party from (58), income per capita and proportion of people below the poverty line from (59),

state-level education score from (60), proportion of population with driving distance greater

than 10 miles to the closest vaccination facility and density of potential vaccination facilities

from (61, 62), age, sex distribution, education level distribution, number of intensive care unit

beds, ventilator capacity and percent insured residents, meat plants, religious congregation ratio

and immigrant student ratio from (63).

Model Formulation

For each jurisdiction, we considered a large fixed population of N interacting individuals of

which an unknown fixed portion α are myopic rationalists, a known fixed portion (refer to SI,

Section Data) are COVID-19 vaccine refusers and the remainder are success-based learners.

The individuals decide based on the conceived excess payoff of receiving a vaccine defined by

∆π(t) = Cs(t) + CdD(t)/N + CiI(t)/N, (1)

where I(t) and D(t) are the weekly number of confirmed cases and deaths from COVID-19 as

a function of time. The conceived excess payoff of vaccination comprises of three terms: First,

the quantity Cs(t) is the perceived benefit of vaccination in the absence of confirmed cases or

deaths and is equal to the perceived socio-economic benefit of vaccination, cv̄ minus the per-

ceived risk of vaccine associated side-effects, Cv(t). Second, the perceived vaccine-induced risk

reduction of dying from COVID-19, Cd, that is the perceived cost of dying, times the perceived

effectiveness of the first dose, multiplied by D(t)/N , which is the perceived chance of death

from COVID-19. Third, the perceived vaccine-induced risk reduction of COVID-19 infection

is defined similarly as CiI(t)/N . According to Household Pulse survey, a longitudinal survey

conducted by Census Bureau, the perceived risk of vaccine associated side-effects declines over

time (22). Our fitting result indicates that this decreasing trend can be best described by a power

law function of the form (t− t0)
λ (see SI). Hence, Cv(t) is replaced with cv0(t− t0)

λ where cv0
is a free parameter (see SI). The perceived socio-economic benefit of vaccination is modeled by

a free parameter, cv̄.

The myopic rationalists follow the best-response dynamics (64), that is, they compare the

payoff to vaccination with that of remaining unvaccinated and choose to get vaccinated if the

excess payoff is positive, i.e., ∆π(t) > 0. The success-based learners, however, base their de-

cisions on their interactions with others in the population: Upon an interaction, they compare

their own payoff with those of others. If the others have a higher payoff, the success-based

learner imitates their decisions with a probability proportional to the excess payoff. The in-

dividuals may update their decisions over vaccination independently at an exponential rate, or

11



over discrete periods of time. In either case, the collective decision making process can be ap-

proximated by the mean dynamics (64), which we do in (4) and (5). Focusing on the first dose,

the vaccinated people never change their strategies.

Let Mv(t) (resp. Lv(t)) denote the number of vaccinated myopic rationalists (resp. success-

based learners). Similarly, define Mv̄(t) (resp. Lv̄(t)) as the number of unvaccinated myopic ra-

tionalists (resp. success-based learners). Let Ms(t) (resp. Ls(t)) denote the number of vaccine-

seeker myopic rationalists (resp. success-based learners) that is those who are unvaccinated

and want to receive a dose of vaccine. The number of vaccine-seeker myopic rationalists (resp.

success-based learners) will be Ms(t) = Mv̄(t) × ρM(t) (resp. Ls(t) = Lv̄(t) × ρL(t)), where

ρM (t) (resp. ρL(t)) denotes the proportion of unvaccinated myopic rationalists (resp. success-

based learners) who are vaccine-seekers, which is influenced by the number and payoffs of

vaccinated and unvaccinated individuals. Inspired by (64), the proportion of success-based

learners who are vaccine seeker is ρL(t) = ηv(t)Nv(t)/N , where Nv(t) denotes the cumulative

number of vaccinated individuals up to time t, which is equal to Lv(t) + Mv(t). Therefore,

Nv(t)/N denotes the probability that an unvaccinated success-based learner meets a vaccinated

individual. The term ηv(t) is proportional to the probability of being a vaccine-seeker after

interacting with a vaccinated individual. A pairwise proportional comparison form is consid-

ered for ηv, i.e., ηv(t) = σ[∆π]+, where [x]+ equals x if x > 0 and equals zero otherwise,

and σ is the constant of proportionality (65). In other words, if the vaccinated individuals’

payoff is higher, i.e., ∆π(t) > 0, the success-based learners will be vaccine-seeker with a prob-

ability proportional to ∆π(t). The proportion of vaccine-seeker rationalists can be written as

ρM = H(∆π), where H(·) is the Heaviside function, which equals one for a positive argument

and zero otherwise. The number of non vaccine-refusers is denoted by Nn, which equals to the

total non-hesitant population aged 12 years and above. The number of success-based learners

then equals (1−α1)Nn, where α1 = αN/Nn. By subtracting the number of vaccinated success-

based learners Lv, we obtain the number of unvaccinated success-based learners, Lv̄. Similarly,

the number of unvaccinated myopic rationalists, Mv̄, equals α1Nn from which the number of

vaccinated rationalists Mv is subtracted. The number of vaccine-seeker success-based learners

at time t is then

number of
vaccine-seeker
success-based

learners
︷ ︸︸ ︷

Ls(t) =

number of
unvaccinated

success-based learners
︷ ︸︸ ︷

((1− α1)Nn − Lv(t))

proportion of
vaccinated
individuals

︷ ︸︸ ︷

Lv(t) +Mv(t)

N

dimensionless
excess
payoff

︷ ︸︸ ︷

σ[∆π(t)]+ . (2)

Similarly, for the myopic-rationalists we have,

number of
vaccine-seeker myopic

rationalists
︷ ︸︸ ︷

Ms(t) =

number of
unvaccinated

myopic rationalists
︷ ︸︸ ︷

(α1Nn −Mv(t))

sign indicator of
excess payoff
︷ ︸︸ ︷

H(∆π(t)) . (3)
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Providing there are sufficient vaccine doses, each vaccine seeker can get vaccinated. In the

presence of vaccine limitation, however, not all vaccine seekers can be inoculated at once. The

available doses are then assigned randomly to the vaccine seekers of each group of decision-

making types. The per capita available vaccine doses for vaccine-seekers can be formulated

as v(t)/(Ls(t) + Ms(t)) where v(t) denotes the number of available doses at time t for the

first shot and Ls(t) + Ms(t) represents the total demand for vaccination at time t. Having

v(t)/(Ls(t) +Ms(t)) > 1 simply means that given the available doses, each vaccine seeker has

the opportunity to receive the vaccine. the rate of change of vaccinated success-based learners

can be written as

rate of change of
vaccinated success

based learners
︷ ︸︸ ︷

L̇v(t) =

rate of
vaccination
︷︸︸︷
κ

number of vaccine-seeker
success-based learners
who can get a vaccine

︷ ︸︸ ︷

Ls(t)min{1,
v(t)

Ls(t) +Ms(t)
}, (4)

where κ represents the vaccination rate. Similarly, for the rate of change of vaccinated

myopic rationalists, we have

rate of change of
vaccinated myopic

rationalists
︷ ︸︸ ︷

Ṁv(t) =

rate of
vaccination
︷︸︸︷
κ

number of vaccine-seeker
myopic rationalists

who can get a vaccine
︷ ︸︸ ︷

Ms(t)min{1,
v(t)

Ls(t) +Ms(t)
} . (5)

Both types of decision-makers share the same excess payoff function (1). The excess pay-

off function, however, impacts each group differently. Myopic rationalists verify whether the

payoff of vaccination is higher than the that of remaining unvaccinated and if so proceed to vac-

cination immediately, although their vaccination rate will be affected by κ capturing, e.g., the

limitation in facilities. Contrary to myopic rationalists, success-based learners are influenced

by the value of the excess payoff.

Parameter Estimation

In Proposition 1 in the SI, we proved the identifiability of all parameters of the equations (2), (3),

(4), and (5) that govern the evolution of the number of vaccinated individuals. The parameters

{α1, cv0, cv̄, Ci, σ, κ} were estimated by fitting the derived equations to time series data. The

actual effectiveness of the first dose in death prevention was estimated to be 85% (66). Its

perceived effectiveness was set equal to 100% and the cost of dying from COVID-19 was chosen

to be 1 (the highest possible value), which resulted in Cd = 1. For each jurisdiction, the valid

interval for Ci was capped at maxtD(t)/I(t) to limit the impact of morbidity on the excess

payoff by that of mortality. The valid intervals for cv0 and cv̄ were then capped at 1. The
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valid interval for κ was set to [0, 10]. The constant of proportionality, σ, was bounded at 1.

A time-varying cv̄ was also considered to capture possible impacts of differentiating policies

based on vaccination on the perceived excess payoff of vaccination. In this regard, cv̄ is allowed

to be varying over the time following a piece-wise-linear function–Fig S1. A time-varying cv̄
was captured by three additional parameters, i.e., sf , η, and su. More specifically, as of the

announcement date of the differentiating policies, a linear increment in the perceived cost of

remaining unvaccinated is introduced with a start value, Cv̄0 , inclination, su, and the peak

value ηCv̄0 , as free parameters. The increment was then followed by a linear reduction whose

inclination was a free parameter denoted by sf .

The initial conditions, Lv(0), Mv(0) were set to zero. The power law exponent, λ, was

determined using the available data on Americans’ concern about vaccine side-effect (see SI).

We fit the model to the reported number of weekly newly vaccinated individuals, i.e., nv[k] =
Nv[k] − Nv[k − 1] with nv[0] = Nv[0]. The error function was chosen to be the residual

sum of squares, i.e., Σk||nv[k] − n̂v[k]||
2, where n̂v[k] denotes the estimated number of those

who received their first dose of COVID-19 vaccine at time k. The error was minimized us-

ing the dual annealing optimization algorithm (67) and its Python implementation (68). We

obtained the 95% confidence intervals of the estimated parameters using both parametric and

non-parametric bootstrapping approaches. Following (69) 500 bootstrapped datasets were syn-

thesized. For implementing the parametric bootstrap, for each time k, we assumed a Poisson

error structure whose mean was the estimated number of newly vaccinated individuals at k. For

each bootstrapped dataset, the number of newly vaccinated individuals at time k was drawn

from the constructed Poisson distribution for week k (70). To synthesize the datasets based

on the non-parametric approach, due to serial correlation between residual data points, an auto-

regressive model was constructed and out of the resultant uncorrelated residuals, 500 time-series

were drawn with replacements (71); see SI for more details. The 95% confidence interval then

was calculated using the percentile approach (72). After inferring the parameters of the excess

payoff function with a time-varying Cv̄, it turned out that this imposes high variability in the

estimated parameters (Tables S17-S24), hence, we modeled cv̄ as a constant free parameter. In

addition, it turned out that although σ is identifiable, its point estimate is not reliable (Table

S16). Hence, it is set to one. Fixing the constant of proportionality to one, did not, however, im-

pact the estimated value of our parameter of interest, i.e., α1. More specifically, the percentage

of variations in the estimated α1 was less than 10% for all jurisdictions.

Correlation with Explanatory Variables

The linear correlations between possible explanatory variables and the estimated proportion of

people who behaved like myopic rationalists in taking the first dose of COVID-19 vaccine, α
were investigated. There was insufficient data available for the D.C. across most potential ex-

planatory variables. Additionally, the distribution of the proportion of myopic rationalists did

not follow a normal distribution, as indicated by the Shapiro test. The distribution, however,

became normal by excluding the D.C. and the state of Vermont. Consequently, these two ju-
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risdictions were excluded from the linear regression analysis. For linear correlation, we used

Pearson-r coefficient and the simple linear regression was performed using the Python imple-

mentation of Ordinary Least Squares (73).
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