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Abstract

Reconstructing the states of ancestral organisms has long been central to our understanding of
the evolution of a wide range of traits. Ancestral state inference tools that account for trait-
dependent properties are limited, because of challenges associated with inferring past states in
a manner consistent with a phylogenetic tree (and its uncertainty) and with a stochastic pro-
cess describing how states change over time. In phylogeography, ancestral state inference is
used to reconstruct the past locations of viruses, bacteria or other rapidly-evolving organisms,
characterizing, for example, how often and when a virus moved among locations, or from one
host species to another. However, such reconstructions are sensitive to differences in sampling
among different locations or host species, and this can bias the reconstruction of the location of
ancestors towards the more widely sampled region/species. Here, we introduce a new method,
Sampling Aware Ancestral State Inference (SAASI), which builds on recent advances in state-
dependent diversification models and reconstructs ancestral states, and in particular for phylo-
geographic applications, accounting for sampling differences. Indeed, we find that accounting
for sampling changes the inferred historical location of viral lineages and the times of key viral
movements. We use simulations to show that with known sampling differences, SAASI infers
past viral locations considerably more accurately than standard methods. We apply our method
to the spread of the H5N1 virus in the United States in 2024, and explore how robust phylo-
geographic reconstruction is to differences in sampling and epidemiological rates between wild
bird populations, cattle, humans and other species. We find that the key transmission event from
wild birds to cattle is estimated to occur later under lower sampling in wild birds (compared to
other species) than when sampling is not accounted for. SAASI is rapid and readily scales to
trees with 100,000 tips, making it feasible for modern phylogeographic applications.

1. Introduction

Ancestral state inference (sometimes called ancestral state reconstruction) refers to infer-
ring the states of the ancestors of a set of taxa, given data about the states of the taxa. It is used
in phylogenetics to infer the likely molecular sequences of ancestral organisms, for example
to estimate when and in which lineages a particular polymorphism (for example conferring
antibiotic resistance) emerged [1]. Ancestral state inference is also used to infer traits such as
a pathogen’s host species [2, 3], organisms’ geographic locations [4–6], accessory gene pres-
ence/absence [7, 8] or morphological or other traits [9, 10]. Phylogeography, in particular, is a
major application of ancestral state inference, in which past geographic movements of viruses
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or other pathogens are reconstructed. Understanding viral transmission between groups of a
heterogeneous host population is important for reconstructing epidemic origins and design-
ing effective control strategies. For example, reconstructing the geographic spread of a virus
can inform policy decisions about transportation and borders [11]. Estimates of interspecific
transmission of multi-host species movements in zoonotic viruses can help us identify the de-
terminants of cross-species transmission events and, hence, of zoonotic risk.

Ancestral state inference methods use models that describe the process by which traits
change over time, or by which the ‘state’ (which could be the geographic or host location of the
taxa) changes. Different traits or states may also be associated with different rates of specia-
tion (branching), extinction (of the relevant lineage) and sampling. The binary state-dependent
speciation and extinction (BiSSE) family of models [12], taking this into account, can esti-
mate trait-specific branching and extinction rates given a phylogenetic tree and traits of the
sampled taxa. These models include multiple-state (MuSSE) models, hidden Markov models
(HiSSE), cladogenesis (ClaSSE) models and more [13–15]. Since trait-dependent speciation
and extinction also impact the likelihood of a phylogenetic tree given sequence and trait data,
these models inform phylogenetic reconstructions [16] in which state-dependent rates can be
estimated alongside phylogenetic trees.

Inferring the states of ancestral organisms poses a problem that is distinct from estimat-
ing state-dependent rates. In ancestral state inference, each node in the phylogeny (and some-
times each point in the phylogeny) is associated with a particular state, or with a set of prob-
abilities that the point is in each of the possible states. This may be done with stochastic
character-mapping: mapping characters (or traits, or states) on to a phylogeny using a stochastic
model [17–19], which is implemented for the case of a molecular evolution model in simmap
[20]. Freyman and Höhna [21] developed a stochastic character mapping method for state-
dependent models (the BiSSE family). This approach, however, is not yet widely used in viral
(or pathogen) phylogeography. In this context, the states (e.g. geographic locations) are usu-
ally modelled as changing along a phylogenetic tree according to a continuous-time Markov
chain, in a similar manner to how a molecular sequence evolves over time [22–24]: using a
continuous-time Markov chain with a given instantaneous rate matrix Q specifying the rates
at which the state (location) changes [20, 22]. This is implemented, for example, in the ace
function in R’s ‘ape’ package [25]. A feature of viral geographic and/or host species data that
is not yet represented in the BiSSE-based/stochastic mapping literature is the heavily-biased
sampling of lineages across space or among host species.

Bayesian approaches to phylogeography have also been developed, building on continuous
time Markov chains for discrete states [5, 26] and on structured coalescent models [27, 28],
among others. Bayesian stochastic search variable selection (BSSVS) [5, 26] allows deter-
mination of which transition rates (i.e. which elements of Q) are supported, using a Markov
diffusion model. Rates are parameterized as a log-linear function of any number of predictors
(these can be phylogenetic distances, range overlap, morphological similarity among species,
etc), and predictors may fail to be selected by the model. BSSVS does not, however, account
for state-dependent speciation and extinction rates, and it does not allow the phylogeographic
reconstructions to depend on the sampling among species or locations.

Sampling differences are known to impact phylogeographic estimates [4, 29, 29–32]. Down-
sampling is often used to try to achieve relatively uniform sampling across locations through
maximizing spatial or temporal coverage [11, 32–34], using epidemiological data as a reference
point (e.g. hospitalizations vs cases) [35], or incorporating information about recent migration
events and/or adding ‘sequence-free’ samples [36, 37]. Down-sampling reduces the amount of
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data that can be incorporated, may need to be replicated many times and so is time-consuming,
and may not ultimately solve the problem. Structured coalescent models, like Bayesian struc-
tured coalescent approximation (BASTA) [27] and Marginal Approximation of the Structured
Coalescent (MASCOT) [28] are more robust to sampling, and can accommodate sampling dif-
ferences through adjusting deme sizes, but they are computationally demanding, still sensitive
to unsampled demes, and are not feasible for trees with many thousands of taxa. Sampling may
be accounted for in structured coalescent models using a doubly-intractable model [31]. Fur-
thermore, sampling differences may be extreme, as in the case of the recent influenza H5N1
outbreak, in which samples from livestock and human cases are more readily available than
samples from wild animal populations. As genomic surveillance expands and we prepare for
additional zoonotic spillover events that could bring future large outbreaks or pandemics, it is
important to account for sampling and other state-dependent variation in our inferences of viral
(and other pathogen) locations.

Here, we develop sampling-aware ancestral state inference (SAASI), building on recent
work on stochastic character mapping on fixed phylogenetic trees in state-dependent speciation
and extinction (SSE) models [21]. We introduce two core developments: the inclusion of, and
consequent adjustment for, sampling differences, and a modification to the stochastic character
mapping method for BiSSE-like models in conditioning on the observed tree. Our approach
scales readily to very large phylogenetic trees. We test SAASI with simulated data, comparing
to ancestral character estimates from the widely used ace function in R [25] and simmap [20].
We then use SAASI to explore robustness to sampling for key host jumps and geographic
movements in the recent avian influenza H5N1 outbreak in the United States [2].

2. Methods

We consider a rooted binary phylogenetic tree T with known tree topology and character
states (e.g. location, host species identification) at the tips. We assume that this tree is the
result of a state-dependent birth-death-sampling process allowing for both cladogeneic and
anagenic state changes. Specifically, a lineage in state i gives birth (e.g., viral transmission in
the epidemiological context) to daughter lineages in states j and k at rate λi jk which define the
3D array Λ, dies (e.g., host recovery) at rate µi which define the vector µ⃗ , and transitions to state
j at rate qi j which define the matrix Q (see Table 1 for a list of notation). In addition to these
rates, we introduce the state-dependent sampling rate ψi ∈ ψ⃗ through time, with which viral
sequences are collected throughout an ongoing epidemic. Finally, let πi be the prior probability
that the root R of the phylogenetic tree is in state i (defining the vector π⃗).

Here, we propose and implement a method for calculating the probability that at any time
τ before the present day, an edge e in the phylogeny was in state i ∈ S, denoted Ye(τ) = i,
accounting for both the observed states at the tips of the tree and the topology of the tree
resulting from state-dependent diversification. Using the notation above, we wish to calculate:

Ae,i(τ)≡ Pr(Ye(τ) = i|T,θ)

where θ = {Λ, µ⃗, ψ⃗,Q, π⃗} is the diversification model. Throughout, we define this kind of
shorthand notation for each key probability, e.g. Ae,i(τ). To calculate this focal probability, we
formalize and extend the stochastic-mapping method presented by [21]. Our method involves
first a post-order traversal of the tree (from tips to root) followed by a pre-order traversal (from
root to tips) during which the ancestral state probabilities are obtained. To avoid confusion on
the direction of time, throughout, we use T to denote the height of the tree, τ to denote time
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from the present day to the root of the tree, and t to denote time from the root to the present
day such that τ = T − t. In line with SSE models, for functions that are neither more naturally
described backward vs. forward in time (e.g., Ae,i(τ)), we will use backward-in-time notation.
We give an overview, rather than a detailed derivation, of the pre- and post-order traversal
approach.

To understand the need for a post/pre-order traversal method, note that, for a focal edge
e which is alive at time τ before the present day, the full tree T can be subdivided into two
components: the descendants of edge e which we denote as the subtree Te(τ), and the remainder
of the tree, TC

e (τ), which contains all the ancestors of node e as well as their non-e descendants.
For ease of writing, we call TC

e (τ) the ‘ancestral complement’ of edge e. Importantly, as our
state model is Markovian (the type of speciation event and state-transition events depend only
on the current state of the lineage), Te(τ) and TC

e (τ) are conditionally independent given the
state of edge e at time τ , Ye(τ). As such, we can decompose the expression for the probability
Ae,i(τ) as:

Ae,i(τ) = Pr(Ye(τ) = i|T,θ) = Pr(Ye(τ) = i|TC
e (τ),θ)Pr(Te(τ)|Ye(τ) = i,θ)

∑ j Pr(Ye(τ) = j|TC
e (τ),θ)Pr(Te(τ)|Ye(τ) = j,θ)

(1)

where Pr(Te(τ)|Ye(τ) = i,θ) is calculated during the post-traversal step and Pr(Ye(τ) =
i|TC

e (τ),θ) during the pre-traversal step described below. (See the Supplementary Materials
for a derivation of (1).) Specifically, we can draw from the well-developed tree likelihoods for
SSE models to calculate the probability of observing a descendant sub-tree, Te(τ), given that
the edge e is present in state i at time τ before the present day:

De,i(τ)≡ Pr(Te(τ)|Ye(τ) = i,θ),

a probability that can be computed backward in time. As the probability Pr(Ye(τ) = i|TC
e (τ),θ)

is obtained through a the pre-traversal algorithm (forward-in-time) we rewrite this expression
in terms of time t:

D̃e,i(t)≡ Pr(Ye(T − t) = i|TC
e (T − t),θ).

Because D̃e,i(t) is conditioned on TC, its calculation departs from what is done in previous
literature [12, 38]. However, it is again a forward-in-time probability that can be obtained using
a system of ordinary differential equations. The initial conditions will depend on the backward-
in-time probabilities, hence we implement the post-order algorithm followed by the pre-order
algorithm. With this notation, Eq. (1) becomes

Ae,i(τ) = Pr(Ye(τ) = i|T,θ) =
D̃e,i(t)De,i(τ)

∑ j D̃e, j(t)De, j(τ)
. (2)

To calculate the probability that a node N is in state i, we use the time τN when the speciation
event occurred, and calculate the corresponding Ae,i(τN). In summary, SAASI return a vector
of Ai values at each node N, with the sum over states i equal to 1.
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2.1. Four-step Algorithm
Step 1: Post-order traversal

Here, we derive an initial value problem backward in time for De,i(τ) –– the probability that
an edge e in state i alive at time τ before the present day gives rise to the observed descendants
between time τ and the present. This derivation is standard (see [12, 38, 39] for a review), but
we review it here to emphasize differences with the pre-order traversal below (step 3).

We consider the change in De,i(τ) over a small interval of time ∆τ , assuming that at most
one event can occur.

De,i(τ +∆τ) =De,i(τ)∏
j,k
(1−λi, j,k∆τ)(1−µi∆τ)(1−ψi∆τ)∏

j,i
(1−qi, j∆τ)︸                                                                              ︷︷                                                                              ︸

no event

+∑
j,k

2λi, j,k∆τ ∏
j,i
(1−qi, j∆τ)(1−µi∆τ)(1−ψi∆τ)De, j(τ)Ek(τ)︸                                                                               ︷︷                                                                               ︸

hidden speciation

+∑
j,i

qi, j∆τ ∏
j,k
(1−λi, j,k∆τ)(1−µi∆τ)(1−ψi∆τ)De, j(τ)︸                                                                      ︷︷                                                                      ︸

state change

+O(∆τ
2)

where Ek(τ) is the probability that a lineage in state k at time τ has no observed descendants.
Using the definition of the derivative, we obtain:

d
dτ

De,i(τ) =−

(
∑
j,k

λi, j,k +µi +ψi +∑
j,i

qi, j

)
De,i(τ)

+∑
j,k

2λi, j,kDe, j(τ)Ek(τ)+∑
j,i

qi, jDe, j(τ).
(3)

An edge e, which by definition does not include the node itself, can originate (at time τe,0) at
one of two types of nodes, either a sampling event or a speciation event where the focal edge
gives rise to two descendant edges e1 and e2.

De,i(τe,0) =

{
ψi sampling event

∑i, j λi, j,kDe1, j(τ
−
e,0)De2,k(τ

−
e,0) speciation event

where the notation τ
−
e,0 is used to emphasize that these edges are descendants (closer to the tips)

of the focal edge.
To calculate De,i(τ), we need to first solve Ee,i(τ) - the probability that an edge e in state

i at time τ has no observed descendants between time τ and the present day. This probability
can be obtained with the following differential equation (which is derived in a similar manner
as above).

d
dτ

Ei(τ) = µi −

(
∑
j,k

λi, j,k +µi +ψi +∑
j,i

qi, j

)
Ei(τ)+∑

j,k
λi, j,kE j(τ)Ek(τ)+∑

j,i
qi, jE j(τ) (4)

where the initial condition for Ei(τ) is the probability that the focal edge is unsampled (since
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we are not forced to sample all the lineages or any percentage of the lineages at the present
day): Ei(0) = 1.

Step 2: Root state probabilities
Using the initial value problem (IVP) above to solve for De,i(τ) up the whole tree to the

root, we can calculate the probability that the root is in state i (D̃R,i(0) = πi):

AR,i(T ) = Pr(YR = i|TR(T ),θ) =
DR,i(T )πi

∑ j DR, j(T )π j

Given these root state probabilities, we can then proceed with the pre-order traversal algorithm
down the tree to calculate D̃e,i(t).

Step 3: Pre-order traversal
To derive an IVP for the probability D̃e,i(t), we use a similar approach as above by con-

sidering the change in this probability over a small interval of time ∆t. In words, we consider
the probability that an edge e is in state i at time t +∆t given the state of its immediate an-
cestor at time t. Unlike above, however, the probability D̃e,i(t) is conditioned on the observed
ancestral complement tree TC

e (T − t). Hence along an edge e the only events that we should
include are those that reflect a change of state (e.g., a state change or a cladogenic state change
where one descendant is unobserved), not those that reflect a change of topology (since we are
conditioning on the topology). In consequence, we do not include terms for birth or extinction;
conditioning on the observed tree, we know that these have not occurred. This is a substantial
contrast to the post-traversal step in which we computed De,i(τ), the likelihood of Te given that
edge e is in state i at time τ .

d
dt

D̃e,i(t) =−

∑
j,i,k

2λi, j,kD̃e,i(t)Ek(T − t)︸                              ︷︷                              ︸
cladogenic change i → j

+ ∑
j,i

qi, jD̃e,i(t)︸           ︷︷           ︸
state transition i → j



+

∑
j,i,k

2λ j,i,kD̃e, j(t)Ek(T − t)︸                               ︷︷                               ︸
cladogenic change j → i

+ ∑
j,i

q j,iD̃e, j(t)︸            ︷︷            ︸
state transition j → i


(5)

Note that the probabilities must sum to one (∑i D̃e,i(t) = 1) and hence this equation can be
considered in terms of probability flux from one class (e.g., i) to another (e.g., j) and vice
versa. If we consider only anagenic state change (i.e. a change of state without an accompanying
speciation event), then we can further simplify the equation d

dt D̃e,i(t) by only considering the
state transition events:

d
dt

D̃e,i(t) =− ∑
j,i

qi, jD̃e,i(t)︸           ︷︷           ︸
state transition i → j

+ ∑
j,i

q j,iD̃e, j(t)︸            ︷︷            ︸
state transition j → i

(6)

Note that this still allows for a rapid transition from one state to another immediately after a
speciation event, but does not include speciation events that cause state changes. The method
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can readily accommodate these if the relevant λ rates are known. For initial conditions, note
that the edge e can originate (forward in time at time te,0) at either the root or at a speciation
event. At the root, the ancestral complement TC

e consists solely of the root itself and hence its
probability is simply the prior on the root state, D̃e,i(0) = πR. At a speciation event, the state of
the focal edge e at time t+ (i.e., immediately following the speciation event) depends on (1) the
state of the parent lineage, edge e−, immediately prior to the speciation event at time t−, (2) the
type of speciation event to occur as given by the probability λ j,i,k

λ̄
, and (3) the state of the sister

edge e′ of the focal edge immediately following the speciation event. Specifically,

D̃e,i(te,0) =

πi e → root. t = 0
∑ j,k 2λ j,i,kD̃e, j(t−e,0)De′,k(T−te,0)

∑ j,l,k λ j,l,kD̃e, j(t−e,0)De′,k(T−te,0)
internal node

(7)

We therefore solve Eq. (5) along each edge, forward in time. Upon reaching an internal
node N of the phylogeny, we use Eq. (7) to initialize the ODE on the two edges (say e1 and
e2) descending from n. At this point, note that the ancestral complement tree, on which we are
conditioning, changes from TC

e to TC
e1

or TC
e2

. Both of these include node N.

Step 4: Ancestral State Probabilities
Once D̃e,i(t) is computed during the pre-traversal step the ancestral state probabilities can

be computed via the product outlined above:

Ae,i(τ) =
D̃e,i(T − τ)De,i(τ)

∑ j D̃e, j(T − τ)De, j(τ)
∀e , R (8)

At each internal node N we then define the “reconstructed state” as the state with the highest
probabilities at those nodes:

ÂN = argmax
i

Ae,i. (9)

2.2. Parameter estimation
Since SAASI requires the users to know the speciation, extinction, sampling and transition

rates as their inputs, these rates need to be estimated. We estimate the speciation and extinc-
tion rates using the maximum likelihood method proposed by [40], where we assume that the
sampling rate is known. To estimate the transition rates in the simulations, we use ‘ER’ model
implemented in ace. The ‘ER’ model assumes that all the transition rates are equal. We note
that in principle we could estimate input rates with BiSSE, but there is no readily available
implementation allowing for non-ultrametric trees, and [41] reported some limits to BiSSE
estimation for larger phylogenies.

We compared the ER model’s transition rates to the truth using simulated trees (see below),
and found that ace infers the transition rates accurately if there is little to no sampling differ-
ence between states. However, if state i is far less sampled than state j, ace overestimates the
transition rates from other states j to state i (q ji) and underestimates transition rates from state
i to other states j (qi j). The error depends on the sampling ratios. Therefore, we also test how
transition rate adjustments affect our inferences, scaling qi j and q ji according to our simulated
findings.
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Notation Description

λi jk

The rate at which an parent of type i speciates giving rise
to a left-hand descendant lineage of type j and right-hand
descendant lineage of type k, which defines the 3D array Λ.

µi Extinction rate of type i, which defines the vector µ⃗ .
ψi Sampling rate of type i, which defines the vector Ψ⃗.

qi j
Transition rate from type i to type j, which defines the
matrix Q.

q̂i j,c Adjusting transition rate of state i by a factor of c.
πi Prior probability that root is in state i.
T Tree topology.
T Tree height.
τ Time from the present day to the root (backward in time).
t Time from the root to the present day (forward in time).
T(τ) The subtree descending from the edge e at time τ .
Tc

e(τ) ‘Ancestral complement’ of the edge e at time τ .

N
A node in the observed tree consisting of either a sampled
tip (a terminal node) or a speciation event (internal node).

ANTrue The true simulated state at node N.
Eabsolute The absolute accuracy.
Eprobability The probability accuracy.
Quantity Description Equation

De,i(τ)
The probability that an edge e that is in state i at time τ

before the present day gives rise to the observed
descendants.

Eq. 3

Ei(τ)
The probability that an edge that is in state i at time τ has
no observed descendants.

Eq. 4

D̃e,i(t)
The probability that an edge e is in state i at time t given
the state of its immediate ancestor (and the rest of the
ancestral complement tree) at time t.

Eq. 5

Ae,i(τ) The probability that an edge e is in state i at time τ . Eq. 8
ÂN The “reconstructed state” of the node N. Eq. 9

Table 1: List of notation, derived quantities and corresponding equations. Throughout,
time τ is measured backwards in time from the present day (τ = 0) to the root (τ = T ) of the
tree. Note that the tree T includes information on the states at the tips of the tree. Similarly, Te
includes the tip states of the descendants of edge e and the ancestral complement TC

e includes
information on the states at all the tips in the tree except those that descend from edge e.
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For state i, we simultaneously adjust q̂i j,c and q̂ ji,c: q̂i j,c = cqace
i j and q̂ ji,c =

1
c qace

ji , where c is
the multiplicative factor that adjusts the transition rates and qace

i j is the transition rate estimated
from ‘ace’. We refer to this transition rate adjustment as “adjusting state i by a factor of c”.

2.3. Simulation tests
A. Single demonstration tree We first use an illustrative example in which we compare

ancestral state inference using the SAASI versus ace on a simulated tree with binary states.
Specifically, we consider a case in which the states differ only in their sampling rates, with
State 1 is sampled at one-tenth the rate of State 2. All other diversification rates are identical
between the states (λ1 = λ2 = 1, µ1 = µ2 = 0.045, q12 = q21 = 0.05 per unit time). We assume
that the root is in State 1, reflecting, for example, a scenario where the place of origin of an
outbreak has a lower sampling rate than other locations. The resulting tree has 87 tips, of which
only 9 (10.3%) are in State 1 (Figure 1, A). We perform SAASI using the true parameters as
inputs and ace using the equal rate (‘ER’) model. We further examine how our accuracy would
change if the sampling rates are mis-specified, by varying the sampling rates ψ1 and ψ2 (see
Figure S2). We consider different sampling ratios ψ1

ψ2
, where the ratio ranges from 0.1 (the true

sampling rates) to 2.0 (State 2 is incorrectly assumed to be sampled at one-half the rate of State
1).

B. 100 Simulated trees (SAASI with equal rates) To explore the general performance of
SAASI beyond the illustrative simulated example, we simulated 100 trees with binary states
using the parameters described above. We perform ancestral state inference for each tree using
SAASI (true parameters as inputs), SAASI (estimated parameters as inputs), ace and simmap.
We assume equal rates for ace and simmap methods. The parameters are the same as listed in
A.

C. 100 simulated trees (SAASI with adjusted rates) We also simulated 100 trees with
unequal sampling rates and equal transition rates. We then estimated the transition rates using
ace, and used the adjusted transition rates to perform SAASI.

2.4. Accuracy comparison
We test the performance by comparing the SAASI reconstruction against the two standard

methods: maximum likelihood (ace) and stochastic character mapping (simmap). We use simu-
lated phylogenetic trees for which the true ancestral states are known. These trees are simulated
under the birth-death-sampling model, a modification of the framework in [12]. We consider
two measures of accuracy: “absolute accuracy” Eabsolute and “probability accuracy” Eprobability.
Absolute accuracy is the fraction of internal states that are inferred correctly, when each node’s
inferred state is its highest-probability state (i for which Ae,i(τ) in Eq. (8) is maximized). In
contrast, probability accuracy weights each node by the inferred probabilities of the true an-
cestral state: ∑N ANtrue

|N| , where ANtrue is the inferred probability of the true state at node N and we
sum over internal nodes. For example, if a tree had only one internal node and its true state was
‘state 1’, and Eq. (8) gave state 1 a probability of 0.51, the absolute accuracy for that tree would
be 1, and the probability accuracy would be 0.51.

2.5. Application to avian influenza H5N1
We apply SAASI to a timed phylogeny from the highly pathogenic outbreak of avian in-

fluenza A (H5N1; hemagglutinin (HA) segment) in US dairy cattle [2]. The sample collection
dates ranged from April 2023 to April 2024, with 104 sequences. We use this phylogeny to
illustrate how accounting for sampling differences between wild birds and other species can
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affect inferences about the initial spillover event and the subsequent transmissions among host
species. Since the influenza virus spread both geographically and across multiple host species,
we use SAASI to compare reconstructions of host movements and geographical movements
under several plausible sampling adjustments.

This particular phylogeny (Figure S2 in [2]; mcc-gtrg-ucld-gmrf-colored.
pruned.tre) is a portion of a Bayesian time-calibrated phylogeny. It contains sequences
from 6 taxonomic groups (cattle, (wild) mammal, domestic mammal, poultry, human, and wild
bird) and 12 sampling locations (California, Indiana, Kansas, Maryland, Michigan, Minnesota,
Montana, New Mexico, North Carolina, Ohio, Oklahoma, Texas and Wisconsin). We excluded
the single human sample from our analysis. We also combined mammal and domestic mammal
samples into one group.

In their study [2], the authors inferred that the H5N1 cattle outbreak was likely due to a
single spillover event from wild birds to cattle, followed by transmission within the cattle and
subsequent transmission between species. They estimated that the first spillover event occurred
on December 9, 2023, with 95% highest posterior density (HPD) between October 12, 2023
and January 26, 2024. Their spatial and host phylogeographic analysis was conducted using
BEAST using BSSVS [5, 26].

We estimate the time of the first spillover event from the wild bird population to cattle and
determine how robust the time estimate is to the relative sampling. We note that in our context,
“sampling” refers to the fraction of infections that are represented in the data (as opposed to the
fraction of the population that is sampled, or the number of samples). Accordingly, wild bird
infections (wild birds being the normal host population for avian influenza viruses) may have a
much lower sampling rate than, for example, infections in domestic cattle.

H5N1 host analysis We consider three scenarios to capture different levels of sampling
bias. First, we assume no significant difference in sampling between wild birds and other
species. Although this scenario is unlikely, it serves as a natural baseline and reflects the as-
sumption commonly made in phylogeographic methods such as ace or simmap. In the second
scenario, we introduce a moderate sampling bias, modelling wild bird infections as being sam-
pled ten times less frequently than H5N1 infections in other species. Finally, the third scenario
reflects a severe sampling bias, in which wild bird infections are sampled one hundred times
less frequently than infections in other species. Wild bird populations are challenging to sam-
ple, and the probability of sampling any given H5N1 infection (compared to that in cattle) is
not known. This motivates our wide range of sampling differences.

We then explore the inferred ancestral state of the clade of interest and the reconstructed
inter-species transmission events under the different sampling rates.

We adapted the estimated transition rates from [42]. The mean transition rate between non-
wild bird species was 2 transitions per year, while the transition rate from wild birds to other
species was higher, with a mean of 4 transitions per year. We further assume that the transi-
tion from the wild bird to the other species is two times higher (than this mean) and that the
transition from other species to the wild bird is two times lower than this mean, informed by
our simulation results for how sampling affects estimated transition rates. Hence, we obtain the
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following transition rate matrix:

Cattle Mammal Poultry Wild bird
Cattle − 2 2 1

Mammal 2 − 2 1
Poultry 2 2 − 1

Wild bird 4 4 4 −

These transition rates are similar to those estimated using the ace symmetric transition rate,
which has a mean of 3.68 per year. We assume that the speciation and extinction rates for all
species are the same, with estimated rates of 21.1 and 6.8 per year, respectively.

H5N1 geographic analysis We use geographic locations to explore the impact of different
geographic sampling rates on inferences about the likely geographic origin of the outbreak, fo-
cusing on the geographic location of the transmission event(s) from wild birds to cattle. Given
that most of the samples were collected in Texas, we consider two alternative sampling models
in the phylogeographic analysis. In the first, baseline model, we assume no significant differ-
ence in sampling effort between Texas and other states; that is, all states are modeled as having
the same sampling rate. In the second model, we account for sampling bias by assuming that
Texas was sampled five times more frequently than other states. Although we do not know
the true relative sampling differences between the locations, this analysis will illustrate how
sensitive the inferred geographic location of the spillover event is to sampling differences.

In this analysis, because the transition rates are unknown and difficult to estimate, we model
that the transition rates are equal between states, and estimate them with ‘ace using the ‘ER’
model.

2.6. Data and Materials
The data and code used in this study can be found in:
https://github.com/yexuansong/Sampling-Aware-Ancestral-State-Inference.git. SAASI is
available as an R package at https://github.com/MAGPIE-SFU/saasi. Given the difficulty of
specifying a full λi jk matrix, the current implementation is as in Equation (6) (λi jk = 0 if
i , j,k).

3. Results

3.1. Simulation study
If the sampling rate is known (State 1 is sampled at one-tenth the rate of State 2), SAASI

correctly infers most of the internal nodes in the simulated trees with Eabsolute = 0.98 and a
probability accuracy of Eprobability = 0.97 . Figure 1 shows the single demonstration tree (simu-
lation test A) and the comparison between SAASI and ace. We find that ace infers many internal
nodes incorrectly, with Eabsolute ≈ 0.5 and Eprobability = 0.5. Furthermore, ace infers that the root
state is in State 2, while the true root state is State 1. In this example simulation, if there is no
sampling difference between the two states (Figure S1 middle panel), SAASI’s reconstruction
is very similar to that of ace and simmap.

Figure 2 shows accuracy comparisons for 100 simulated trees (simulation test B). We find
that SAASI reliably has higher absolute and probability accuracies than both ace and simmap
where sampling differences exist. The median absolute and probability accuracies using SAASI
(with known rates) and SAASI with estimated rates are over 0.9 compared to 0.55 using ace
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and simmap. We explored the effect of mis-specifying the sampling ratio in SAASI, and found
that SAASI’s both absolute and probability accuracy decreases as the sampling ratio deviates
from the true sampling ratio ψ1

ψ2
= 0.1 to ψ1

ψ2
= 2 (Figure S2). If the sampling ratios are close

to the true sampling ratio (ψ1
ψ2

= 0.1 to ψ1
ψ2

= 0.5), both Eprobability and Eprobability are greater
than 0.75. However, as the sampling ratio is mis-specified (ψ1

ψ2
> 1), both Eabsolute ≈ 0.5 and

Eprobability = 0.5, comparable to that of reconstructions using ace.
Figure S3 shows the results of simulation test C, with transition rate adjustments. We find

that SAASI has higher accuracies than ace across a range of transition rate adjustments (using
estimated transition rates from ace; adjusted transition rates of state 1 by a factor of 2,3,5,10).
The accuracy of our method is not sensitive to the adjustments on transition rates.
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A: True Phylogeny B: SAASI − true sampling C: ace

State 1 2

Figure 1: Ancestral state inference using SAASI and ace. A: Simulated tree with known
transmission histories; B: SAASI with true parameter values; C: ace with ‘ER’ transition model.
Pie charts indicate the inferred probabilities of being in particular states. The tree was generated
with the following parameters: λ1 = λ2 = 1, µ1 = µ2 = 0.045, q12 = q21 = 0.05, and ψ1 =
0.05,ψ2 = 0.5.
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Figure 2: Accuracy of ancestral state inference methods (100 simulated trees in simulation
test B) A: Absolute accuracy, defined as the fraction of correctly inferred node states; B: Proba-
bility accuracy, accounting for uncertainty in the node inference. We use ‘ER’ transition model
in ace and simmap. The trees were generated using the following parameters: λ1 = λ2 = 1,
µ1 = µ2 = 0.045, q12 = q21 = 0.05, and ψ1 = 0.05,ψ2 = 0.5.

3.2. Avian influenza
Figure 3 shows the difference between the three assumptions for wild bird sampling. Ad-

justing for lower sampling of wild bird infections, we find more than one transmission from
wild birds to cattle. There are 10 transmissions from wild birds to cattle when wild birds are at
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one-tenth sampling and 12 transmissions when wild birds are at one-one hundredth sampling.
These are inferred to have occurred from late January to early February 2024 (Figure 3) B,C,
red dashed line), slightly later than the previous estimate [2]. In contrast, if we model no sam-
pling difference between species, both ace and SAASI cannot identify the key transmission
events from wild bird to cattle (Figure S4).

We explored the number of movements (or lack of movements) from parent to child pairs
of nodes in the phylogeny, and illustrated these with alluvial plots (see Figure 3 panels D–
F). This allows us to probe not just where a particular node was located, but to ask about the
nature of viral movements between taxonomic groups. We find that cattle are the origin species
for most host species jumps, under all sampling models we explored. We find that adjusting
for under-sampling of wild bird infections leads inferring that more nodes of the phylogeny
are in wild birds, compared to scenarios with more even sampling. This, in turn, means fewer
inferred transitions from other populations into wild birds (see Figure 3 D compared to E and
F). In particular, without accounting for sampling, standard methods infer transitions from both
other mammals and poultry into wild birds (as well as cattle). With sampling adjustment, only
cattle infections were re-introduced to wild birds.

We also find more transitions from wild birds into other host species when we account
for lower sampling in wild birds, particularly more transitions from wild birds to cattle. These
results is also robust to the specific transition rate adjustment (see Figure S5): the key transmis-
sion event from wild bird to cattle is estimated to have occurred between late January and early
February 2024 (Figure S5 B, C), red dashed line) even with equal assumed transition rates.

Figure 4 shows the results of our H5N1 geographic analysis in which we examined the
inferred geographic origin of the clade predominantly in cattle. If we model that there is no
sampling difference between jurisdictions (left) compared to modelling a factor of 5 sampling
difference between Texas and other states (right) in Figure 4, both models suggest that the first
spillover event from the wild bird population to cattle occurred in Texas. If we model that there
is no sampling difference between states, SAASI would infer that it is highly likely that a wild
bird moved from Texas to New Mexico, leading to the emergence of a predominantly New
Mexico clade in March 2024. In contrast, if we model that infections in Texas were sampled
at a rate 5 times higher than other states, SAASI would suggest that there was a wild bird
movement from New Mexico to Texas between November 2023 and January 2024 (red dashed
line). In either case, our analyses show that the virus rapidly spread from Texas to other states
in March 2024, including Ohio, Kansas, Michigan, and New Mexico. Overall, the geographic
reconstructions are robust to a five times sampling difference between Texas and other states.
Phylogeographic analysis in [2] also inferred significant interstate movement, with confirmed
transitions from Texas to Kansas, New Mexico, and Michigan. Epidemiological records also
documented the movements of infected cattle from a Texas herd to North Carolina and Idaho
[43].
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Figure 3: Ancestral state inference of the H5N1 HA segment tree using SAASI under
different species-level sampling models. WB: wild birds. A: Inferred species hosts under
equal sampling rates; B: wild birds at one-tenth sampling; C: wild birds at one-one hundredth
sampling; D: Inferred viral transitions between host species in A; E: Inferred viral transitions
between host species in B; F: Inferred viral transitions between host species in C. Pie charts
indicate the inferred probabilities of being in particular states. Transition rates of the wild bird
population are adjusted by a factor of 2 (c = 2). The dashed red line indicates the key transition
event from wild bird to cattle. WB refers to the wild bird population.
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Figure 4: Phylogeographic ancestral state inference using SAASI under different sam-
pling models for Texas and other US states. A: Inferred geographic locations under equal
sampling; B: Texas at five times sampling. C: Inferred viral transitions between geographic
locations in A; D: Inferred viral transitions between geographic locations in B. Pie charts in-
dicate the inferred probabilities of being in ancestral states. The transition rates between states
are modelled as equal and estimated using ace. The dashed red line indicates the estimated time
it takes for the virus to move to Texas.
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3.3. Scalability to larger trees
SAASI is scalable for trees that contain more than 100,000 tips. We estimate that the relation

between the tree size and the running time (in seconds) is linear. For trees with 100,000 tips,
SAASI completes in approximately 1 hour (3500 seconds; see Figure S6). For a 10,000-tip tree
with two states and a substantial sampling difference (state 1 is sampled 50 times less than state
2), SAASI has absolute accuracy Eabsolute = 0.82, compared to Eabsolute = 0.52using ace. We
expect the running time to increase if there are more states.

4. Discussion

We have introduced and implemented a fast approach for sampling-aware ancestral infer-
ence, SAASI, which is amenable to a range of viral phylogeography applications, including
reconstructing the ancestral host species or geographic locations in relatively large phyloge-
nies. SAASI attains a high accuracy, correctly accounting for sampling bias in simulated data,
in contrast to standard methods, which are negatively impacted by sampling differences among
the states. We applied SAASI to the recent outbreak of avian influenza H5N1, using 104 se-
quences from six host species in 12 geographic locations [2]. While their approach inferred host
species transition events using Bayesian discrete trait analysis, our inference method provides
a complementary framework that accounts for sampling biases. We find that SAASI is able
to identify the time of transition from wild birds to cattle (from late January to early Feburary
2024 ), and that the root node for the clade that was predominantly in cattle was in wild birds. In
contrast, without accounting for sampling differences, the date of movement out of wild birds
would be uncertain. Accounting for sampling differences also impacts the inferred numbers of
host species jumps, particularly from and to wild birds, but also among other species. Overall,
our H5N1 results highlight the importance of obtaining information about the rate of sampling,
and of incorporating sampling differences into ancestral state reconstructions.

SAASI has important limitations. First, the sampling difference under consideration is mod-
elled as known (if it is not known, then SAASI offers an approach to sensitivity analysis). If
attempts were made to estimate sampling bias (particularly alongside transition rates, state-
dependent branching and death rates, and states of internal nodes), it is likely that these would
collectively not be identifiable [44]. For example, having fewer taxa with a trait (and fewer
branching events with an apparent lower rate) could be a result of either a lower branching rate
or lower sampling intensity. There are other natural trade-offs that would affect the simultane-
ous estimation of the complete set of parameters. Furthermore, SAASI does not (yet) estimate
other relevant parameters; in our application these were estimated separately based on either
birth-death models or ace’s estimates with appropriate adjustments. These could in principle be
estimated in a first pass using one of the BiSSE [12] family of models without ancestral state
reconstruction, but at present these require ultrametric trees and so are not suited for longitudi-
nally sampled pathogen datasets.

We have focused on sampling differences, since the fraction of infections that are sampled
is likely to vary by location and host species, and this is a recognized challenge for phylo-
geographic reconstructions [29]. We note that evolutionary parameters, such as the molecular
clock, substitution model, as well as the branching and extinction rate, are likely to change from
host to host, and rapid adaptation with selection may occur immediately following a host jump.
These phenomena are challenging to include in phylogenetic inference. We used a fixed, timed
phylogenetic tree because our aim is to account for sampling differences in phylogeographic
reconstructions at large scales.
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In recent work, Vaughan and Stadler [44] also use the previous work of Freyman and Hohna
[21], in their case to develop Bayesian inference of multi-type population trajectories. Their al-
gorithms jointly infer the phylogenetic tree, multi-type birth-death model parameters (our state-
dependent branching, death and sampling rates), ancestral node states and type-specific popula-
tion trajectories. Potentially unidentifiable combinations can be managed in Bayesian analyses
(through priors, and through sampling a posterior, which may have some correlations or struc-
ture but in any case reflects the estimated uncertainty and is the posterior from which samples
are desired). The sampling is done with a combination of particle filtering and Markov Chain
Monte Carlo (MCMC) sampling. In contrast to Bayesian phylogenetic approaches, SAASI is
intended to operate at very large scales and to provide rapid estimates of the ancestral node
states in a way that accounts for known or suspected sampling differences. This focus is moti-
vated in part by the emergence of large-scale genomic surveillance efforts and phylogeographic
analyses, in particular for SARS-CoV-2 [33, 34]but also for a wide range of pathogens and or-
ganisms including influenza viruses [33, 45, 46] and other pathogens [47, 48] In simulations,
SAASI obtains a high accuracy, and will be broadly relevant, as testing and sequencing policies
vary from one jurisdiction to another. Despite advances in Bayesian methods, the current state
of the art in phylogeography at large scales is to down-sample the data to approximately obtain
representative sampling, and re-run analyses using tools like ace [34, 49, 50]. Repeat analyses
may be time-consuming, give variable results, and necessitate discarding data in each analysis.
This approach also makes strong assumptions, in particular that the traits (here, host species
or locations) do not affect the branching, sampling or death rates. SAASI is less restrictive. It
offers quick, robust and principled phylogeographic reconstructions that account for sampling
bias.
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S1. Supplementary Material

S1.1. Derivation of the main decomposition
For clarity, we provide an explicit derivation of our central equation for the Ae,i,

Ae,i(τ) = Pr(Ye(τ) = i|T,θ) = Pr(Ye(τ) = i|TC
e (τ),θ)Pr(Te(τ)|Ye(τ) = i,θ)

∑ j Pr(Ye(τ) = j|TC
e (τ),θ)Pr(Te(τ)|Ye(τ) = j,θ)

. (S1)

In this derivation, we will suppress τ and θ to simplify notation. For example, we write Pr(T) =
Pr(Te,T

C
e ), and Ae,i = Pr(Ye = i|T).

By Bayes’ theorem, we have

Pr(Ye = i|T) = Pr(T|Ye = i)Pr(Ye = i)
Pr(T)

.

Since Te and TC
e are conditionally independent given i (which means, given that edge e is in

state i at time τ), the above is

Pr(Ye = i|T) = Pr(Te|Ye = i)Pr(TC
e |Ye = i)Pr(Ye = i))

Pr(T)
. (S2)

Using Bayes’ theorem again, we write

Pr(TC
e |Ye = i) = Pr(Ye = i|TC

e )Pr(TC
e )/Pr(Ye = i)

and
Pr(T) = Pr(Te,T

C
e ) = Pr(Te|TC

e )Pr(TC
e ).

Substituting these into Eq. S2, we have

Pr(Ye = i|T) = Pr(Te|Ye = i)Pr(Ye = i|TC
e )

Pr(Te|TC
e )

. (S3)

It remains to show that the denominator has the form given in (1) of the main text. Since the
state of edge e must be one and only one of the possible ancestral states, we have

Pr(Te|TC
e ) = ∑

j
Pr(Te,Ye = j|TC

e )

= ∑
j

Pr(Te|TC
e ,Ye = j)Pr(Ye = j|TC

e )

= ∑
j

Pr(Te|Ye = j)Pr(Ye = j|TC
e )

(S4)

where the second line is a conditional probability, and the last line is due to the conditional
independence of Te and TC

e given the state of edge e.
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S1.2. Supplementary Figures

Figure S1 gives an example illustrating that SAASI’s result is very similar to ace’s if we assume
equal sampling rates. In other words, while SAASI’s underlying mathematical model is quite
different from that of ace, the results are very similar if the same assumption is made about
sampling. The natural comparison for this figure is Figure 1 in the main text.

Figure S2 shows how the absolute and probability accuracy changes if the sampling ratio is
misspecified. The accuracy is sensitive to the sampling rates. Both accuracies remain above
0.75 for sampling ratios ψ1/ψ2 ∈ [0.15,1]. If the sampling rate is strongly mis-specified (with
ψ1/ψ2 > 1 reflecting assuming that state 1 is more highly sampled than state 2, rather than
less), the reconstruction accuracies decrease to a level similar to the accuracy reconstructed
using ace, i.e. just over 0.55.

Figure S3 compares the accuracies obtained using different ASI methods and adjustments to
the transition rates, including mis-specification of the transition rates. SAASI with true rates has
the highest accuracy, and SAASI’s results under various transition rate adjustments are similar
to each other. This demonstrates the robustness of SAASI to transition rate misspecification.

Figure S4 compares ancestral state inference using ace and SAASI under the assumption of
equal sampling in all hosts. Both inferences cannot identify the key transition events from wild
birds to cattle and cannot reliably infer the internal node states before November 2023.

Figure S5 compares ancestral state inference using SAASI under the assumption that wild bird
infections are sampled 100 times less than infections in other host species, with equal transition
rates. The results are similar to the main text, where we adjusted the transition rates to and from
wild birds to other species by a factor of 2.

Figure S6 compares SAASI’s running time for different tree sizes (with two states). The run-
ning time grows linearly in the number of taxa. Increasing the number of states would also
increase the run time.
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A: True Phylogeny B: SAASI − equal sampling C: ace

State 1 2

Figure S1: Ancestral state inference using SAASI under and equal sampling model and
using ace. A: Simulated tree with known transmission histories; B: SAASI with equal sampling
rates (ψ1 = ψ2 = 0.5); C: ace under equal sampling rate model. The tree is generated using
the following parameters: λ1 = λ2 = 1, µ1 = µ2 = 0.045, q12 = q21 = 0.05, and ψ1 = 0.05,
ψ2 = 0.5.
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Figure S2: Accuracies of SAASI under varying sampling ratios on a fixed simulated tree.
A: Absolute accuracy; B: Probability accuracy. The blue point represents accuracy under the
true sampling ratio (ψ2

ψ1
= 0.1). Red points represent accuracy under mis-specified sampling

ratios ranging from ψ1
ψ2

= 0.15 to 2.
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Figure S3: Comparison of absolute accuracies for ancestral state inference using ace and
SAASI under various transition rates adjustments. State 1 is sampled 10 times less than
the other states (three states in total). Simulations use qi j = 0.2,∀i, j. From left to right: ace;
SAASI with true rates; SAASI with estimated transition rates from ‘ace’ (qace

i j ); SAASI with
adjusted transition rates of state 1 by a factor of c, ranging from c = {2,3,5,10}.
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Figure S4: Ancestral state inference of the H5N1 HA segment tree using ace and SAASI,
assuming equal sampling across species. A: ace; B: SAASI, equal sampling. SAASI with ad-
justed transition rates of state 1 by a factor of c= 2. Pie charts indicate the inferred probabilities
of being in particular states.
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Figure S5: Ancestral state inference of the H5N1 HA segment tree using SAASI under dif-
ferent species-level sampling models. A: Inferred species hosts under equal sampling rates;
B: wild birds at one-tenth sampling; C: wild birds at one-one hundredth sampling; D: Inferred
viral transitions between host species in A; E: Inferred viral transitions between host species in
B; F: Inferred viral transitions between host species in C. Pie charts indicate the inferred prob-
abilities of being in particular states. Transition rates are equal between species. The dashed
red line indicates the key transition event from wild bird to cattle. WB refers to the wild bird
population.
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Figure S6: Runtime of SAASI across trees of different sizes. The x-axis represents the num-
ber of nodes, and the y-axis represents the times needed using SAASI. The red line shows the
line of best fit. The small panel on the top left is a zoomed-in view of small tree sizes.
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