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Abstract

The human immune system is intrinsically variable and remarkably
diverse across a population. The immune response to antigens is driven
by a complex interplay of time-dependent interdependencies across com-
ponents of the immune system. After repeated vaccination, the humoral
and cellular arms of the immune response display highly heterogeneous
dynamics, further complicating the attribution of a phenotypic out-
come to specific immune system components. We employ a random
forest (RF) approach to classify informative differences in immuno-
genicity between older people living with HIV (PLWH) on ART and
an age-matched control group who received up to five SARS-CoV-2
vaccinations over 104 weeks. RFs identify immunological variables of
importance, interpreted as evidence for Th1 imprinting, and suggest
novel distinguishing immune features, such as saliva-based antibody
screening, as promising diagnostic features towards classifying responses
(whereas serum IgG is not). Additionally, we implement supervised
and unsupervised Machine Learning methods to produce physiologically
accurate synthetic datasets that conform to the statistical distribution
of the original immunological data, thus enabling further data-driven
hypothesis testing and model validation. Our results highlight the effec-
tiveness of RFs in utilizing informative immune feature interdependencies
for classification tasks and suggests broad impacts of ML applications
for personalized vaccination strategies among high-risk populations.

Keywords: SARS-CoV-2 vaccination; HIV; Antiretroviral therapy (ART);
Machine Learning (ML); Random forests (RFs); Synthetic data; Immunology;
Vaccinology; Adaptive immunity; Th1 imprinting; Personalized vaccination
strategies; Biomarker classification; Immune dysregulation

1 Introduction

HIV remains a global health burden with approximately 40 million cur-
rent infections (People living with HIV, PLWH) and over 40 million deaths
to date [1]. Given the current global trends in new infections, millions
of new infections are expected by 2050 [2]. Antiretroviral therapy (ART)
has significantly improved life expectancy and overall health outcomes for
PLWH [3, 4]. However, effective HIV viral load suppression may not lead to
full recovery [5–8].

Vaccines are the premier prophylactic public health intervention to
reduce infectious disease severity and morbidity. Longitudinal vaccine-induced
immunogenicity against vaccine-preventable infections has been studied in
the context of immunodeficiencies in ART-suppressed PLWH for different
pathogens and vaccine types [9, 10]. Vaccine-elicited responses in ART-
suppressed PLWH have often been found to be inferior to HIV-negative control
groups, although the gap is often diminished following a multidose vaccina-
tion regimen [11]. Studies of variations in the humoral and cellular immune
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responses from repeated vaccination in PLWH and non-infected age-matched
controls may shed light on the effects of persistent immune activation due
to ART-suppressed HIV infection on the adaptive immune response dynam-
ics. This knowledge could inform customized vaccination strategies [12], aid
in the development of adjuvant therapies [13], and reduce the risk of severe
outcomes [14] in the PLWH immunologically vulnerable group.

Induction of the adaptive immune response to vaccines and pathogens
requires the activation and proliferation of CD4+ T-helper cells that subse-
quently activate and generate cellular and humoral immunity [15, 16]. The
cellular and humoral components of the human immune system can be highly
variable across a population, and they can exhibit complex time-sensitive inter-
dependent immune responses to antigenic perturbations [17]. Among PLWH
on ART, ART adherence and immune status (CD4 immune responder (IR)
versus immune non-responder (INR)) may have an influence on the durabil-
ity of humoral and cellular responses to SARS-CoV-2 vaccinations [18]. For
example, humoral outcomes among PLWH with undetectable plasma HIV viral
loads and high CD4 counts have been found to be similar to HIV-negative con-
trols for the ChAdOx1 nCoV-19 vaccine [19], heterogeneous multidose vaccine
regimens [7, 20], and mRNA-based vaccines [21, 22], however, PLWH clas-
sified as INR display CD8 and CD4 responses that significantly differ from
controls [7, 18]. Given enough data, machine learning (ML) algorithms can
capture and learn the immune signatures of PLWH versus a control group,
and furthermore, may identify which variables are particularly informative or
non-informative in distinguishing each individual’s immune class. An advan-
tage of ML approaches is that they can reveal complex nonlinear relationships
between cellular and humoral immune responses without requiring explicit
assumptions about the nature of the immunological feature relationships [23].

The motivation for employing machine learning approaches is to create an
advanced tool capable of processing complex datasets at the individual level.
We aim to leverage machine learning to classify individuals with a defined
probability while offering clear, data-driven explanations for each classifica-
tion decision based on their personal data. With a successfully trained ML
tool, consistently misclassified PLWH may represent individuals with atypical
immune responses to HIV. These responses could include unusually effec-
tive viral suppression, the presence of unique genetic factors such as in elite
controllers, or intriguing immunological variations in treatment responses.
Conversely, age-matched HIV-negative individuals consistently misclassified
as HIV-positive exhibit vaccine-elicited immune profiles resembling those of
HIV-positive individuals. Such profiles could arise due to other previously
unknown comorbidities, including chronic inflammation, autoimmune diseases,
or concurrent infections. Machine learning offers a powerful framework for per-
sonalized vaccination strategies in immunology by enabling the classification
of individuals based on complex immune signatures while providing inter-
pretable insights into atypical responses. By identifying misclassified cases,
we can uncover novel immunological variations, including unique host factors
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in PLWH and previously unrecognized comorbidities in HIV-negative individ-
uals, ultimately refining precision medicine approaches for vaccine response
assessment.

In the following, we investigate heterogeneity in the immune response from
SARS-CoV-2 vaccine-elicited immunological outcomes among ART-suppressed
PLWH who received up to five doses of the SARS-CoV-2 vaccines over 104
weeks. The HIV-specific responses are classified against an age-matched con-
trol group, thereby controlling for known age-related immunological variations
and dysregulations [24]. The dataset that we study is an extended dataset
from Matveev et al. [7]. We find that Random Forest, which is capable of
learning complex nonlinear interdependencies between immunological features
that traditional statistical and mechanistic models may have missed or are
incapable of learning [25], is able to distinguish between the PLWH and
the age-matched control immune responses with near-perfect accuracy, given
particular biomarkers. Our findings reveal that there are informative and non-
informative immunogenic features implicated in the adaptive immune response
of PLWH; informative features are determined by the random forest to be very
important in classifying immune responses, while non-informative immune fea-
tures provide little information towards classifying the immune responses. For
instance, while saliva and serum IgG were non-informative, saliva IgA emerged
as a critical indicator in identifying HIV-modulated immunogenic responses;
further, cytokine and saliva IgA features in combination are found to form an
optimally stratified feature subset leading to equivalent performance metrics
as the full dataset.

Finally, we extend our study to generate synthethic datasets that repro-
duce the local and global characteristics of the human-based dataset. We
employ both supervised and unsupervised synthetic data generation meth-
ods such as multivariate normal, Gaussian mixture models, synthetic minority
oversampling technique, and K-nearest neighbors. We demonstrate that the
preservation of local or global data characteristics depends on the synthetic
data generation method. Finally, we assess how well each synthetic dataset
performs with RF classification and discuss future considerations.

Results

To characterize the immunogenic responses elicited by repeated SARS-CoV-2
vaccinations in ART-treated individuals with HIV (PLWH) versus an age-
matched control group, we employed a combination of unsupervised and
supervised ML methods. Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) were utilized to explore data clustering and
class separability, respectively. A Random Forest (RF) classifier was then
implemented to identify complex, nonlinear immunogenic signatures that
differentiate the groups, while feature importance analyses indicated key
immunological contributors to these differences. t-SNE-based correlation net-
work visualization was then employed to enhance our understanding of the
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feature interrelationships. These approaches collectively provided a compre-
hensive framework for uncovering meaningful immunological patterns and for
classifying responses with high accuracy. Finally, we utilized various super-
vised and unsupervised ML methods to accurately capture the local and global
data characteristics, and demonstrate that synthetic data can reproduce the
clustering and RF classification behaviour as the original dataset.

Study data timeline, participants

Our data is an extended dataset from our previous study [7] to include doses
4 and 5 of COVID-19 vaccination. In total, 91 participants were recruited into
the study – 23 HIV-negative individuals and 68 PLWH on ART. The timeline
of the clinical study is shown in Figure 1A. Study participants were given 5
vaccine doses, and biomarker measurements are made in each study interval,
see Methods and [7] for details. The full dataset used in this work is comprised
of 63 immune features, consisting of serum and saliva IgG, saliva IgA, IFNg
and IL2-producing T cells, and dual-responding IL2/IFNg cells, CD4/CD8
ratio, virus neutralization, and ACE2 displacement, drawn from individuals
throughout the course of their multivaccine regimen across the study timeline
(Figure 1A). Figure 1B plots the raw IgG RBD data.

SARS-CoV-2 vaccine responses of PLWH and control
can be classified with near-perfect performance

PCA is an unsupervised method that can be used to reduce the dimensionality
of high-dimensional data by identifying the directions (principal components)
that capture the most variance in the dataset. PCA can thus be used to learn
whether vaccine-ellicited immune responses among PLWH versus the age-
matched control differentiate the classes effectively. The PCA results do not
show clear separation between the groups (Figure 1C). However, we observe
that HIV- individuals subcluster within the HIV+ cluster (Figure 1C). Addi-
tionally, we find that PLWH exhibit a broader spread along both principal
components 1 and 2 (PC1 and PC2, respectively), evidenced by the 95% con-
fidence ellipses. We include labels for outlier study participant IDs 49, 70,
and 72; we interpret outliers as individuals who may have distinctive immune
responses.

In order to maximize class separation and check for separability, Linear
Discriminant Analysis (LDA), a supervised and linear dimensionality reduc-
tion technique that focuses on maximizing the separation between predefined
classes, was employed. The LDA results using the first linear discriminant
(LD1) are shown in Figure 1D and present a clear separation between the HIV-
and HIV+ groups. We thus conclude that the immunological features included
in our study can be used to discriminate between the HIV- and HIV+ classes.

While PCA and LDA provide an intuitive visualization of data to explore
class separability, these methods are not able to capture the complex inter-
dependencies between features. However, the class separability pointed to
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by LDA suggests that a more advanced algorithm may be able to learn
unique immunological signatures that capture the PLWH immune response
that distinguishes it from the control population. We therefore used a ran-
dom forest (RF) classifier to characterize the complex nonlinear signatures
differentiating HIV+ and HIV- immunological responses in order to enhance
predictive accuracy. This can also provide mechanistic insights on the underly-
ing immunological trends. The details of the RF implementation can be found
in Methods.

The RF models achieved a perfect median AUC-ROC (area under the
receiver operator curve; measures a model’s ability to distinguish between
classes, evaluating performance across all classification thresholds) of 1.0
(Figure 1E). AUC-ROC reflects the model’s ability to distinguish between the
HIV positive and negative classes across all possible classification thresholds.
The AUC-ROC median value of 1.0 suggests that the RF classifier has excellent
overall classification performance on our immunological dataset.

The RF model’s median F1 score (the harmonic mean of precision and
recall, balancing false positives and false negatives) was found to be 0.94
(Figure 1E). This reveals a trade-off between precision (the proportion of
correctly identified positive instances) and recall (the proportion of actual pos-
itives correctly identified) and suggests that there may be a moderate number
of false positives (affecting precision) or false negatives (affecting recall) in the
predictions. We report median values of 1.0 for sensitivity, precision, and speci-
ficity (Figure 1E), which all suggest that the model often achieves near-perfect
performance, but considerable variance around these median values implies
that this performance is not consistent across all data folds.

AUC-ROC and F1 Score performance measures from RF trained on indi-
viduals with randomized labels are all found to be ∼ 0.5 on median (Figure
S1). To further explore RF classification heterogeneity for each individual, as
well as the likelihood of HIV+ classification across all models, we provide all
probability distributions among all IDs in Figure S2A,B.

We conclude that our implementation of RF is generally effective at classify-
ing vaccine-elicited immunogenic responses among PLWH vs the age-matched
control group. Further exploration of the RF results and the significance of
the outliers is discussed below.

RF reveals T-cell responses to be most important features
in distinguishing the vaccine-elicited immune response
between PLWH and the age-matched HIV- control group

Successfully mounting, and maintaining, vaccine-elicited immunity involves a
myriad of immunological components (for a good review see ref. [15]). Immun-
odeficient states, such as those that can be found in ART-suppressed PLWH,
can have complex dysregulated immune signatures – where particular com-
ponents of the immune response can be dysregulated more than others. In
our feature space, we are therefore interested in using the RF algorithm
to suggest which immune components are informative in distinguishing the
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PLWH SARS-CoV-2 vaccine-ellicited responses from the age-matched controls.
Such insights may be useful towards forming mechanistic hypotheses for how
ART-suppressed HIV infection affects adaptive immune system dynamics.

To assess how each feature contributes to RF model accuracy we com-
puted the feature importance (see Method for details). We plot the importance
estimates in Figure 1F for all 63 immune features. Features with higher impor-
tance scores have a more significant impact on improving model predictions
in decision tree splits that underlie the random forest, suggesting they cap-
ture significant information that can differentiate the classes. Our analysis
indicates that the frequencies of SARS-CoV-2 spike-specific T cells measured
by cytokine production are generally the most important features, with the
three interleukin-2 (IL2) features (Visit 8,9, and IL2 production rate) having
the highest importance over all other features. Conversely, the serum-based
humoral features all rank as least important, suggesting information contained
within these immune features is redundant towards classification. Below, the
importance rankings (Figure 1F) will be used in forward and reverse abla-
tion analyses to determine if there exists a minimally stratified combination
of features that leads to optimal RF performance.

tSNE reveals that important features tend to form
clusters

We use t-stochastic neighbour embedding (t-SNE) to visualize the structure
of our feature dataset. Figure 2A presents the correlation network of the
dataset using all 63 biomarkers where circle size represents the correspond-
ing biomarker RF importance. Here, we learn that IgA, cytokines, and IgG
biomarkers tend to cluster together, but the cluster densities may increase if
there are more important biomarkers within that class. We also learn that
biomarkers that are determined to be important (e.g., IL2 and IFNs) tend to
form distinct groupings, suggesting correlated expression patterns, while fea-
tures that are determined unimportant (e.g. spike and RBD IgG) disperse,
suggesting weaker correlations among these features. Figure 2 panels B and
C display the same t-SNE layout as panel A, however, only significant edges
connecting to a cytokine feature are displayed, where colour is now used to
illustrate the clear and opposing RF feature weight trends found for HIV-
(panel B) and HIV+ (panel C) individuals, respectively. From this we can
see that there are clearly opposing RF-weights assigned to the cytokines,
depending on whether the individuals are PLWH or the age-matched control.

The t-SNE layout reveals that the most important features identified by
the RF algorithm form distinct clusters, suggesting that these features not
only drive the predictive power of the RF model but also represent well-defined
biologically meaningful patterns in the data (Figure 2 A), with the RF oppo-
sitely weighting key features to distinguish the classes (Figure 2B,C). We next
plot the full distributions for all feature weights across all folds to visualize
the distributions of RF weights. The feature weight distributions from all folds
from all (n = 23) control individuals and from all (n = 68) PLWH are shown
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in Figure 2D, and Figure 2E, respectively. We see more clearly that classifica-
tion of the control class is highly dependent on the cytokine measures, which
have negative weights on median. There is very little weight placed on any
of the other features except V8B IgA RBD saliva, whose weight distributions
deviate below 0 on median. Conversely, for PLWH we find that cytokine fea-
tures are positively weighted (Figure 2E, yellow features). We also find the
V8B IgA RBD saliva values to be positively weighted, opposite that of the
control. While the median weights for all other features are ∼0, we observe
significantly more dispersion in median values for the PLWH compared to the
control (Figure 2E, all non-yellow features).

Figure 2D shows that the control class is relatively homogeneous (most fea-
ture weights are close to 0) and that only cytokines are needed to distinguish
HIV- individuals from the HIV+ class. Figure 2E shows significant RF fea-
ture weight variance for the HIV+ class for serum and saliva IgG biomarkers
in addition to heavily weighted cytokine features, suggesting that many more
features are needed, potentially in combination, for correct classification. The
significant dispersion found in 2E suggests heterogeneity in disease pathology
and immune responses across PLWH, indicating that, due to the high variabil-
ity and complexity of the HIV+ immune response, a diverse set of trees in the
forest are required to accurately classify instances of the HIV+ class, where
each tree may rely on different combinations of features. Therefore, we next
study the RF performance under various ablation procedures to determine a
minimum stratified set of features for optimal classification. We also explore
sensitivity to RF performance with various combinations of features by their
clinical type.
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Fig. 1 Dataset overview and RF performance metrics. A) Timeline of study and
data acquisition. B) IgG RBD features for the HIV- and HIV+ classes for doses 1 through
5. C) PCA with the first two largest components shows that significant source of variation
in the data is not driven by the HIV+ group. D) The first largest component (LD1) of LDA
reveals the existence of HIV-specific signatures that are not distinguishable through the
unsupervised PCA. E) The performance metrics—AUC-ROC, F1 Score, sensitivity, speci-
ficity, and precision—demonstrate the strong predictive power of the RF model. F) The
Measure of importance, as assessed by the the RF algorithm is shown for all 63 features.
Features are grouped by immunological type and colour coded.
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Fig. 2 Correlation network and feature weight distributions. A) A correlation
network of the 63 immunological features is visualized using t-SNE applied to the adjacency
matrix to calculate the layout. Features are coloured by type, and node sizes scale relative
to the importance measures from Figure 1F. For visualization, each feature is represented
as a node. An edge is shown between a pair of nodes when their correlation is statistically
significant (p-values < 0.05). B,C) The subset of network connections with statistically
significant correlations, that further depend on the cytokine features, is shown. Here, the
colour scale corresponds to the mean feature weights for HIV- (panel B) and HIV+ (panel
C) individuals. D,E) the distributions of RF feature weights computed across all models is
shown for the individuals who are correctly classified more than 95% of the time. Median
cytokine feature weights (yellow) clearly form opposite trends when comparing HIV- (panel
D) and HIV+ (panel E) RF results.
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Ablation analysis reveals optimally-stratified feature
subset for classification

Ablation analysis identifies which features are essential for classification and
which are redundant or irrelevant. Identifying a minimally stratified dataset
reveals the key immunological markers (e.g., specific cytokines or antibodies)
that distinguish HIV+ from HIV- individuals and thus, can enhance under-
standing of the biological mechanisms driving the immune response in HIV
infection. Further, the immunological dataset may include noisy features. Iden-
tifying and removing these features can improve model clarity and reduce
overfitting.

To identify the minimal set, we perform both forward and reverse ablation
(see Methods). Results are displayed in Figure 3A. Forward ablation (blue hol-
low squares) reveals that just the top two features (V8 and V9 IL2 measures)
can be used to produce a median AUC-ROC just below 1.0. Conversely, reverse
ablation results in a monotonic decrease in median AUC-ROC (yellow hollow
triangles) down to a minimum median of ∼0.65. The final two features iden-
tified via reverse ablation are the visit 11 blood IgG spike and visit 11 blood
IgG RBD features.

Note that the forward ablation F1-score follows a non-monotonic relation-
ship as a function of forward ablation index (blue filled squares). The top two
features produce an F1 Score of ∼ 0.8 (Forward ablation index 1, first blue
square in Figure 3A), but the F1 Score decreases to a minimum of ∼ 0.76 by
forward ablation index 6 before increasing up to a plateau of ∼0.9 as addi-
tional features are added. As a function of reverse-ablation index, the F1 Scores
(yellow-filled triangles) decrease, as expected, to a minimum of ∼0.3. Thus,
the least two important features lead to F1 Scores of 0.3 and and AUC-ROC
of 0.7 (Figure 3A solid and hollow yellow triangles, respectively).

Fig 3B demonstrates the quality of the identified minimal set – a Wilcoxon
test is used to compare the AUC-ROC and F1 Score distributions from the for-
ward ablation algorithm to the full 63 feature distributions (shown in Fig 1E).
Considering a p-value of 0.05 to be the significance threshold, we find the top
9 feature performance to be statistically similar to the complete 63 feature
dataset, with both the AUC-ROC and F1 scores used for comparison. Thus,
these 9 features may constitute an optimally-stratified feature set for classify-
ing SARS-CoV-2 vaccine immune responses between HIV+ and HIV- immune
statuses. Note that following the ninth forward ablation index, the AUC-ROC
remains under the 0.05 significance line (Figure 3B, yellow triangles), while the
F1 Score-associated p-value increases to above significance and does not settle
to below significance until the 34th feature is added (Figure 3B, blue squares).
Therefore, the addition of more features beyond the optimally stratified set of
features adds redundant information and can lead to a tendency to misclas-
sify some individuals. In decreasing order of importance, the 9 features in the
optimal set are: Visit 9 IL2, Visit 8 IL2, the IL2 production rate, Visit 9 Dual
responding cells, the IFNg production rate, Visit 9 IFNg, Visit 8b Saliva IgA
RBD, the CD4/CD8 ratio, and visit 5 saliva IgA RBD. For clarity, the IL2 and
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IFNg production rates refer to the rate of change of the increasing frequencies
of cytokine-producing T cells, as a measure of spike-specific T-cells, during the
course of the booster series, calculated in our previous work [7]. Thus, seven of
the top nine features are cytokine-based while two are saliva IgA RBD-based
features.

Saliva humoral responses are good predictors of PLWH
SARS-CoV-2 vaccine immunogenecity

Figure 3D shows the AUC-ROC distributions of RF performance for RF mod-
els trained according to the characteristics of their clinical type, ie, serum
IgG, saliva IgG, saliva IgA, cytokines and neutralization / ACE2 displacement.
Figure 3E displays the mean ROC curves with 95% confidence intervals for
cytokines (best performing feature family) and serum IgG (worst performing
feature family). In Fig S5 we provide the accompanying mean PR plot for the
cytokine and serum data. These results show that the RF model trained on
cytokine features provides a near-perfect classifer. The IgA and IgG saliva fea-
tures then take second and third place, in terms of AUC-ROC performance,
with median AUC-ROC values of 0.98 and 0.95, respectively. Classification
performance then drops when using ACE2 displacement/Neutralization and
IgG serum features to median values of 0.83 and 0.75, respectively. The IgG
serum features thus provide a near-baseline classifier. There is large dispersion
(standard deviation) in AUC’s found for the last two clinical feature classes
of 0.14 and 0.16, respectively. The significant biological ramifications of this
result, specifically that mucosal IgG and IgA appear to be highly informative
while serum IgG is not, are highlighted in the discussion in the context of
known HIV-related mucosal immune dysregulatory mechanisms.

Misclassified individuals suggest atypical vaccine immune
responses

The identification of individuals whose immunological responses lead to clas-
sification errors may suggest closer follow up by clinicians. For example,
consistently misclassified PLWH may represent atypical immune responses
to HIV, such as unusually effective viral suppression, unique genetic factors
(e.g., elite controllers), or interesting immunological variations in treatment
responses. Conversely, age-matched HIV- individuals consistently misclassified
as HIV+ might have immune profiles resembling those of HIV-positive indi-
viduals due to other comorbidities, such as chronic inflammation, autoimmune
diseases, or infections. To further investigate the non-monotonic F1 Scores, we
identify which individuals are contributing to the initial decline in F1 Score
shown in Figure 3A. Fig 3C provides the average probability of HIV+ classifi-
cation for all individuals as a function of forward ablation index. We highlight
a number of trajectories that by index 9 (the equivalent performance index)
cross the classification threshold towards the correct region, and note that
after index 9 all individual predictions, on average, remain in their respective
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classification region. The visualization provided in Fig 3C provides a deeper
intuition of the model performance metrics displayed in Fig 3A,B. IDs 39 and
72, two PLWH, are the only IDs to remain in the incorrect region beyond for-
ward ablation index 9, and remain so when all features are present. IDs 39 and
72 are misclassified in 95% and 85% of the iterations, respectively, while there
are seven individuals misclassified 10-50% of the time. The remaining 82 indi-
viduals are classified correctly in nearly 100% of the tests. Figure S2 provides
an additional visualization displaying the probabilities of HIV classification for
all individuals in the study, as well as ID 39’s unique immunological weight
signature which appears similar to the HIV- control signature.

Figure S2B displays the HIV+ classification probabilities for all 91 indi-
viduals. In Figure S2C we include the individual feature weight distributions,
across all RF models, for ID39 who is an HIV+ individual misclassified 95%
of the time. ID39’s cytokine feature weight signature matches the HIV- fea-
ture signature shown in Figure 2D. Further, an example of a single training
landscape from a randomly selected RF model is shown in Figure S3, with
two arbitrary study participant ID examples illustrated in Figure S4. Alto-
gether, these results suggest there may be redundant features present that may
mislead the RF algorithm, or there are outlying individuals with unique sig-
natures (e.g. ID39) that result in the RF algorithm placing significant weight
on non-cytokine features.



Springer Nature LATEX template

14

Fig. 3 Ablation analyses and model reduction. A) Mean AUC-ROC and F1 score
are shown as a function of the ablation index for the forward and reverse ablation analyses.
B) P-values from Wilcoxon signed-rank test performed between the full-feature RF model
and each of the performance-measure distributions from the forward ablation procedure are
shown. C) Average probability trajectories for all 91 individuals as a function of number
of features from the forward ablation algorithm. Multiple individuals whose probability of
classification crosses over the threshold at index 9 are shown at the equivalent performance
mark (solid line). D) AUC-ROC distributions of RF performance are shown for RF models
trained on features in isolation by their clinical type. Here, n refers to the number of features
of each type. E) Mean ROC curves generated using predictions from the test set for RF
models trained on cytokine (yellow), and IgG serum (red) data types are shown. Shaded
regions correspond to 95% confidence intervals are highlighted by a dashed line.
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Synthetic data provides physiologically-accurate
representation of immunological data

We implemented Gaussian Mixture Models (GMM), Multivariate Normal dis-
tributions (MVN), synthetic oversampling technique (SMOTE), and K-nearest
neighbours (KNN) methods in order to generate synthetic data. We ensure
that the generated data matches the original dataset in size for all iterations:
64 features total, comprising 23 HIV- individuals, and 68 PLWH. Detailed
descriptions of all ML algorithms performed can be found in Methods.

GMM leads to the lowest mean Kullback leibler divergence (KLD) and
second-lowest KLD variance, followed by the MVN approach (Figure S6). By
KLD metrics, the worst performance is found to be SMOTE, closely followed
by KNN (for all three k values examined). Figure 4A shows each calculated
KLD value for all 63 features for the GMM approach, where a broad distri-
bution of KLD values as a function of feature type is revealed. Figure 4A
prompted further analysis to determine whether some synthetic generating
techniques are better for specific features than others. In Figure S7 we provide
a t-SNE plot, with the same layout as in Figure 2A, where colour corresponds
to the synthetic data generating technique that produced the lowest KLD for
each feature. We find no discernable relationship between synthetic generation
method and feature cluster behaviour.

Figure S6C displays the result of projecting synthetic-feature principal
components onto the feature principal components of the original data. Here,
a synthetic technique that leads to distinct clustering from the original PCA
analysis suggests that the features do not preserve the local structure. We find
that all synthetic datasets produce nearly overlapping ellipses by this PCA
analysis. Individual PCA analyses performed independently on each synthetic
matrix are shown in Figure S8. Comparing the PCA analyses in Figure 1C,
we find the supervised synthetic approaches SMOTE and KNN (with k = 20)
reproduce the PCA subclustering pattern. This presents an interesting juxta-
position between two different methods of evaluating synthetic data: one based
on a quantitative measure (KLD) and another based on a visual/qualitative
assessment (PCA plot comparison). The KLD analysis suggests that GMM is
capturing the overall statistical properties of the data the best (SMOTE being
the worst), while the PCA analyses suggests data generated by SMOTE and
KNN (with k = 20) better captures the cluster structure when the data is
projected onto the first two principal components.

Figure 4B shows the importance measures of all synthetic datasets used
in the RF models, with the RF model training performed similarly as in the
previous sections (see Methods). We find that GMM and MVN lead to over-
emphasized importance for visit 4 saliva RBD IgG, visit 4 serum IgG RBD,
and a visit 1 serum IgG RBD. SMOTE appears to perform overall quite well in
terms of reproducing the importance feature distribution, with all RF feature
importance metrics comparing best to the original data.
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Fig. 4 Synthetic data analysis. A) KLD is shown for each feature for the GMM syn-
thetic data, which provided the lowest mean KLD and second-lowest total KLD variance.
B) Heatmap of the RF importance for all features of original data (reproduced from Fig 1F)
and all synthetic data-generating approaches.
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2 Discussion

Our implementation of random forest (RF) is capable of accurately classi-
fying the SARS-CoV-2 vaccination response of PLWH from an age-matched
HIV-negative group with humoral and cellular immunological data from SARS-
CoV-2 vaccination. Our ablation procedures, based on feature importance,
reveal an optimized subset of features comprising IL2 and IFNg cytokine-
producing T cells, the CD8/CD4 ratio, and saliva IgA RBD, that lead to
equivalent RF model performance as the full 63 feature dataset (Figure 3A-
C). Thus, cytokine-based features in combination with post-booster saliva IgA
features, contain most of the predictive power to differentiate PLWH immuno-
genic responses in our dataset. Adding additional features beyond the optimal
9 appears to have little effect on the AUC, but causes the F1 score distribu-
tion to deviate from the full-feature model F1 Score distribution until the 35th
feature is added. We believe this to be a commonly observed phenomenon in
which additional features beyond the optimal subset confuse the model and
degrade performance [26]. Thus, the ablation procedure finds the 9 optimal fea-
tures contain most of the classification power, with the remaining 54 features
contributing mostly minimal or redundant information. The eventual improve-
ment at 35 features (Figure 3B, blue squares) indicates that additional useful
information is present but only becomes beneficial when enough features are
considered together, suggesting some further interactions or combinations of
immunological responses are relevant.

Analyzing individual classification probabilities reveals there is a select
group of individuals that the RF algorithm has difficulty correctly classify-
ing (IDs 39, 72, 6 from Figure 3C). Consistently misclassified PLWH may
reflect atypical immune responses, such as elite controllers or unique treatment
effects, while misclassified HIV-negative individuals may have immune profiles
resembling HIV-positive cases due to comorbidities like chronic inflammation
or autoimmune conditions; therefore, the RF algorithm can be used to identify
these misclassified individuals for closer clinical follow-up to uncover unique
immune mechanisms, guide personalized care, and address potential comor-
bidities or atypical disease progression. This optimization framework lays the
foundation for immune system monitoring in longitudinal vaccine studies when
balancing comprehensive immunological profiling in resource-limited settings.
The resulting sparse model not only preserves the predictive power of the RF
classifier but also delivers a feasible approach for vaccine response when the
high costs of clinical studies are challenging. As such, identifying key predic-
tive parameters fosters robust immunological surveillance by simultaneously
shrinking model complexity and sampling burden.

We observed that immunological feature types that form distinct clusters
by t-SNE, such as cytokines, saliva IgG, and saliva IgA (Figure 2A) also appear
to produce relatively high AUC-ROC’s when training RF models in isolation
(Figure 3D). In contrast, clinical features that do not form distinct clusters
by t-SNE, such as serum IgG and neutralization/ACE2 displacement, lead to
relatively poor median AUC-ROC performance (Figure 3D). Therefore, there
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may be an underlying relationship between the high dimensional t-SNE fea-
ture clustering and RF predictive power. t-SNE is an unsupervised method
used to visually capture the underlying local and global structure inherent
to a dataset [27]. RF models tend to perform optimally when provided with
informative non-redundant features [28]. t-SNE, by revealing local cluster for-
mation, may be implicitly revealing subsets of features that have low internal
noise and high predictive relevance. Indeed, previous work has successfully
implemented an initial t-SNE screening step to eliminate redundant data from
a large reference dataset prior to RF model training [29]. Supervised and unsu-
pervised clustering may therefore warrant further exploration in immunological
context to reduce redundancy in datasets prior to model training.

T-cell responses play a crucial role in shaping immunity after mRNA
COVID-19 vaccination [30], with spike-specific IFNg and IL2 T-cell responses
emerging as key factors following repeated vaccination [31, 32]. In this work, we
use ELISpot cytokine responses to SARS-CoV-2 spike peptides as a measure of
frequency of spike-specific T cells. We found the most important features to dis-
tinguish PLWH vaccine-specific immunological outcomes in our RF approach
to be the post-primary series and booster IL2 responses and post-booster
IFNg responses appear to carry the strongest classifying power resulting in a
median AUC-ROC of ∼0.97 and F1 Score of ∼0.8 (Figure 3A). Cytokine-based
statistical differences between PLWH and the HIV-negative individuals were
previously documented with this dataset and found to deviate significantly
from the HIV-negative individuals, with the underlying mechanism hypothe-
sized to be Th1 imprinting from pre-existing HIV infection [7]. Clinicians are
more often utilizing ROC curves to make diagnostic judgements [33]. Our ROC
(Figure 3E) and PR (Figure S5) curves computed from RF-training on cytokine
features indeed show the cytokine features to be diagnostically near-perfect
classifiers in the context of vaccine-elicited immunity among PLWH.

Previous work on immunogenic outcomes from SARS-CoV-2 vaccination
reveals that PLWH mounts overall similar serum IgG immunity to vaccina-
tion [7, 19–22], with serum IgG production and decay rates estimated via
mechanistic modelling also found to be similar to HIV-negative individu-
als [7]. Where serum IgG spike and RBD features are the most populated
feature type in our work (28 features in total), all of them are found to
be the least-informative features for RF model classification (Figure 1F),
with no median weights deviating from ∼0 during training (Figure 2D,E).
We therefore find results from the RF approach to be in agreement with
previous literature for serum-based IgG features with PLWH mounting indis-
tinguishable IgG responses from an age-matched HIV-negative group. Serum
IgG is primarily produced by B cells in the bone marrow, spleen, and
lymph nodes [34, 35]. Despite evidence for T-cell dysregulations due to ART-
suppressed HIV viremia, there is likely effective restoration of the systemic
immunity of these central immune organs associated with mounting serum
IgG responses to a degree where vaccine-elicited serum IgG responses are
non-informative via a RF approach.
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Gut-associated lymphoid tissue contains a distinct repertoire of lympho-
cytes that regulate mucosal humoral immunity [36], further, plasmablasts
responsible for IgA secretion are believed to migrate between bone marrow,
blood, and mucus [37]. IgA is the first line of defense against SARS-CoV-2
infection [38, 39]. During the initial stages of HIV-1 infection, CD4+ T cell in
the mucusal immune system have been shown to be more significantly impacted
than systemic CD4+ T cells [40], further, IgA production and maintenance is
known to be dysregulated by HIV-1 [41]. The extent to which mucosal immu-
nity is restored, or further dysregulated, among PLWH on ART is not fully
known [42, 43]. In the context of live-attenuated influenza vaccines in healthy
young adults, mucosal and systemic humoral responses were found to be reg-
ulated by separate and distinct mechanisms [44]. We were therefore interested
in determining if a RF approach reveals a unique saliva-based immunogonenic
signature among HIV+ ART-suppressed individuals who received repeated
SARS-CoV-2 vaccinations. In the dataset used in this work, the overall ampli-
tude of saliva IgA responses both pre and post primary series remained
relatively unchanged and was not determined to be a strong statistical dif-
ferentiator between PLWH and the control group, whereas some significant
statistical differences for a subset of IgG visits were reported [7]. However, our
ablation analysis revealed saliva IgA measures to contribute to the minimally
stratified combination of features, suggesting saliva IgA are highly informative
towards differentiating PLWH vaccine immunologic response from the HIV-
negative control. This result may be partially explained by previous clinical
literature. For example, PLWH exhibit chronic antigenic stimulation leading to
B-cell dysregulation and reduced IgA-producing plasmablasts [45], where the
proposed mechanism effecting IgA production is HIV nef protein penetrating B
cells and blocking cytokine signalling [46]. Thus, our findings that saliva-based
IgA is a key biomarker to distinguish a PLWH immunogenicity highlights the
utility of RF to detect subtle dysregulations in mucosal immune profiles not
previously found by statistical and mechanistic modelling approaches [7].

ML-generated synthetic data have incredible promise to increase diversity
and robustness in medical and healthcare datasets, as well as make repro-
ducibility of results more achievable through datasets that can be shared while
preserving the privacy of protected health information [47, 48]. The human
immune system is incredibly complex, and the degree to which its myriad of
components are functionally related is not well known [49]. ML techniques that
can capture these underlying relationships are valuable for overcoming data
limitations for training, model validation, and reducing ethical constraints on
data sharing. Furthermore, mechanistic modelling of the relationship between
clinical outcomes and underlying immunological processes is often limited due
to practical identifiability from data scarcity [50], particularly in longitudinal
vaccine studies where frequent sampling and comprehensive immune profil-
ing may not be feasible [32, 51–56]. Therefore, synthetic data that preserves
the local and global characteristics of the original dataset’s structure would
enable in silico testing of immunological hypotheses through computational
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approaches. We explore synthetic data generation using unsupervised meth-
ods such as GMM, MVN, and KNN, as well as supervised methods such as
SMOTE. Surprisingly, we find that SMOTE produces the least favorable out-
come as quantified by KLD divergence, but the most favorable outcome by
qualitative PCA comparison to the original data (Figure S8C versus Figure
1C) as well as quantitative comparison of feature importance behaviour from
RF model outcomes (Figure 4B). GMM achieves the lowest KLD (Figure S8A),
however, it fails to preserve the data structure from PCA analyses (Figure S6A)
and leads to inflated feature importance scores (Figure 4B). Our results under-
score how different approaches may capture various aspects of the global and
local structure within the data and further show that different synthetic data
generation approaches capture distinct aspects of the immunological response.
A hybrid approach -combining the strength of GMM in modeling global
distributions with SMOTE’s ability to preserve local feature relationships -
might better recapitulate the complex immune signatures observed in vac-
cine responses. Future work will explore such hybrid methodologies alongside
advanced deep learning approaches, such as variational autoencoders (VAEs),
generative adversarial networks (GANs), diffusion and energy-based models,
to further enhance generative capabilities and improve model robustness.

In this paper, we demonstrate RFs are able to identify key immuno-
genic differences between PLWH and an age-matched HIV-negative group. ML
techniques have great potential to pinpoint critical biomarkers through classifi-
cation and clustering approaches, furthering the depth of our understanding of
immunogenic longitudinal outcomes. ML approaches hold significant promise
in the field of immunology due to their ability to uncover complex pat-
terns in large, high-dimensional datasets that may not be readily apparent
through mechanistic modelling approaches [57–60]. As novel vaccine therapeu-
tics are optimized and innovated [61], ML approaches can be utilized to better
understand vaccine-elicited immune responses.

3 Methods

3.0.1 Study Approval

Vaccinations were not provided as a part of this study. All study participants
provided informed written consent. The study protocol and consent form were
approved by the University of Toronto Research Ethics Board (RIS #40713)
and Sinai Health REB (21-0223-E).The study was conducted in accordance
with the protocol, applicable regulations, and guidelines for Good Clinical
Practice (GCP), Health Canada’s regulations, and the Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans (TCPS 2.0).

3.1 Clinical data acquisition and description

This study uses SARS-CoV-2 vaccination data for three doses of vaccine pre-
viously published in ref. [7]. Primary booster series data, corresponding to
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Visits 1 through 9 were acquired for this work through a data sharing agree-
ment between authors JMH and MO. Visit acquisition times can be found in
the timeline schematic in Figure 1A. Briefly, visits 1-9 occur over 48 weeks
post dose 1 vaccination, and consist of individuals who received 3 doses of
SARS-CoV-2 vaccination. These data comprise 91 individuals: 23 HIV- and
63 HIV+. Individuals are predominantly male, recruited from a clinic with
a large MSM population. Visits 10-11 IgG spike and RBD serum data cor-
responding to post-SARS-CoV-2 vaccinations 4 and 5, respectively, were also
used in this work. These data were collected by the A.C.G. lab in a follow up
study to ref. [7] (see acknowledgements) and are unpublished primary data.
The timeline of study protocol can be found in Figure 1B.

3.1.1 Antibody detection in serum

Antibody detection in serum for visits 10-11 were carried out as described
in ref. [7]. An automated ELISA assay was employed to measure total IgG
antibody levels against the full-length spike trimer, RBD, and nucleocapsid,
as described previously [62, 63] In summary, 384-well microplates were pre-
coated with spike (SmT1), RBD, or nucleocapsid antigens provided by the
National Research Council of Canada (NRC). Key steps included blocking
with Blocker BLOTTO (ThermoFisher Scientific), incubation with serum dilu-
tions of 1:160 or 1:2,560, followed by incubation with HRP-conjugated human
anti-IgG (IgG#5, supplied by NRC). Detection was carried out using ELISA
Pico Chemiluminescent Substrate (ThermoFisher Scientific), and chemilu-
minescence was measured with an EnVision 2105 Multimode Plate Reader
(Perkin Elmer). Raw chemiluminescence values were normalized using a syn-
thetic standard included on each plate (VHH72-Fc from NRC for spike/RBD
or anti-N IgG from Genscript, #A02039). These values were further converted
to BAU/mL using the WHO International Standard 20/136 as a calibrator [62].
Seropositivity thresholds for the 1:160 dilution were established based on 3
standard deviations (3SD) above the mean of control samples [62].

3.2 Missing data imputation

Clinical features with missing entries are common when dealing with immuno-
logical clinical data [64] with the imputation necessary to carry out basic ML
algorithms [65]. We impute missing data using the R library missForest [66]
(version 1.5) to each class (HIV- and HIV+) separately. missForest works by
iteratively training a Random Forest model on the observed data to predict
and replace missing values for each feature, cycling through all features until
convergence. Imputation of clinical data using missForest has been widely
implemented and shown to handle mix-type data well [67–69]. In this work,
all 63 of our clinical features are continuous variables. Normalized root mean
squared error (NRMSE) was computed to assess imputation accuracy. The
NRMSE for the HIV- and HIV+ imputed values were calculated to be 0.38
and 0.36, respectively. The most commonly imputed feature types were the
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saliva antibody features. In order to determine the accuracy of imputed val-
ues, in the supplementary material we assess the influence of low frequency of
mutual missing values on imputed results through randomly removing observed
values from all feature compartments and impute them using missForest to
measure the model accuracy. The NRMSE falls within a reasonable range for
missForest’s performance as a function of increasing percentage of missingness
(Fig S9), and the mean and variance of all biomarkers remain stable across
increasing levels of missingness (Fig S10 and S11, respectively) .

3.3 Correlation network visualization

We visualize the correlation network structure of the clinical features, with
each features represented as a node, and with the network layout calculated
using the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm [27]
applied to the adjacency matrix. It is recommended t-SNE perplexity satisfy
3 ∗perplexity < feature count− 1 [70], we therefore set the perplexity to (63−
1)/3 where 63 is the number of features. The network node size is proportional
to RF feature importance. Vertex colour-code varies and is described in the
respective figure caption. For visualization purposes, we only plot an edge
between a pair of features if the correlation is statistically significant (p-values
< 0.05). The t-SNE layout is implemented using the Rtsne function from the
Rtsne library in R.

3.4 Model development and model performance metrics

Principal component analysis (PCA) is an unsupervised dimensionality reduc-
tion technique that transforms high-dimensional data into orthogonal compo-
nents that preserves as much variance as possible. We perform PCA on the
full dataset to validate whether an unsupervised clustering technique leads
to separate clusters composed of our data classes (HIV+ and HIV-). PCA is
implemented using the R function prcomp in the stats library, with confi-
dence ellipses of levels of one standard deviation drawn using the dataEllipse
function in the car library. Linear discriminant analysis (LDA) is used to pro-
vide initial insights into class separability. LDA is implemented using the lda
function in the MASS library in R.

We employed the RF algorithm [71]; a nonlinear ensemble-based method,
to quantify the complex nonlinear relationships between HIV+ and HIV-
immunological responses. All training sets are randomly downsampled to bal-
anced population sizes of 20:20 for HIV-:HIV+ individuals. The number of
trees was initially increased until the ORR error stabilized and was then fixed
throughout this work to a value of 200. Random holdouts of population pro-
portions of 3:12 (HIV-:HIV+) were excluded from training and used to assess
model performance. 1000 stochastically generated instances of the RF algo-
rithm (each with randomly selected training and testing sets) was considered
to assess RF model performance. Majority tree visualization was explored to
‘look under the hood’ of every given RF-training and RF-testing landscapes to
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assess how features were being weighted for each randomly sampled training
and and holdout (test) set. To do this, we construct a model explanation func-
tion using the lime and explain functions from the lime library in R. Feature
weights from every RF model were then stored and visualized (see supplemen-
tary for individual model examples). For all RF models, a threshold of 0.5 is
used. The repercussion of a 0.5 threshold on individual prediction accuracy
with a 0.5 threshold are explored in the supplementary material.

An underlying assumption of the RF algorithm is the statistical indepen-
dence of all observations. In this study, while the patients are independent,
the samples collected from various vaccines for the same patient are not. To
address this, we ensure that samples from the same patient taken during mul-
tiple vaccine trials remain within the same fold to prevent them from being
dispersed across both training and test datasets. Furthermore, we implemented
a two-layer cross-validation procedure designed to optimize model hyperpa-
rameters while ensuring that predictions are made exclusively on samples not
seen during the training process to guarantee complete independence from
intra-patient correlations.

3.5 Feature importance

Gini Impurity measures the likelihood of incorrect classification of a randomly
chosen element if it were labeled according to the class distribution in a dataset.
RF splits the dataset at each node using a feature that minimizes Gini Impu-
rity. At each split, the Gini Impurity before and after the split is calculated,
and the reduction in Gini Impurity due to that split is recorded. Feature impor-
tance in RF is derived by summing the total reduction in Gini Impurity across
all trees in the forest, weighted by the number of samples passing through each
node. This was implemented using the varImp function in R. The cumulative
average from each importance calculation was then calculated across all RF
models.

3.6 Ablation analysis

To assess sensitivity of RF performance on our features, and further, to iden-
tify and select the most important features that contribute the most to the
model accuracy and performance, we implemented two types of ablation anal-
ysis. Reverse ablation, whereby features are removed as a function of most
importance until the two least important features remain, was conducted to
determine the minimal accuracy of our 2 least important features. Forward
ablation, which begins with the two most important features then iteratively
adds in features as a function of their importance, was conducted to determine
the subset of features that lead to equivalent model performance.

For every ablation index, the RF model is employed as described above with
1000 stochastically generated instances of training and test sets. Equivalent
model performance was assessed by computing a Wilcoxon Test between the
resulting distributions of the AUC-ROC and F1 Scores and their respective ‘full
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dataset’ counter parts for the forward ablation algorithm. P-values below 0.05
thus indicate non-equivalent model performance, where p-values above 0.05
indicate equivalent model performance to the full 63 feature dataset. Where
p-values cross from below to above 0.05 therefore suggests the minimal subset
of features to achieve equivalent model performance when using the full 63
feature dataset.

3.7 Simulated data

A major motivation for this study was to develop a robust framework for gen-
erating synthetic immunological data that assimilates the complex patterns
observed in our original vaccine response dataset. We implemented 6 synthetic
data generating techniques: Multivariate Normal (MVN), Gaussian Mixture
Model (GMM), Synthetic Minority Oversampling Technique (SMOTE), and
K-nearest neighbours (KNN) with k = 3, k = 10 (determined as the optimal k
value), and k = 20 (2x optimal). For unsupervised techniques, HIV- and HIV+
data were generated separately from one another. All synthetic datasets are
generated equal to our original dataset’s class balance and feature size: each are
implemented to uniquely generate 91 individuals (23 HIV- and 68 HIV+) as
well as 63 corresponding immunological features. SMOTE is a supervised tech-
nique typically used to generate synthetic data to achieve a balanced dataset.
Here, we apply SMOTE to generate synthetic samples for both the minority
and majority classes. MVN, GMM, SMOTE, and KNN are all implemented
in R using the MASS, mclust, smotefamily, and FNN libraries, respectively.

3.8 Evaluation of simulated data approaches

We use Kullback–Leibler divergence (KLD) to evaluate and rank the synthetic
data methods by measuring how much the original data is different from the
synthetic dataset that we have generated via the various methods described
above. The KLD is calculated using the KLD function in the LaplacesDemon
library in R. We calculate the KLD between all 63 synthetic and original
features. The mean KLD is then computed by taking the mean of all the
KLD for each synthetic approach, similarly, we also compute the total variance
across all KLD for each synthetic approach. Synthetic approaches are then
ranked by their mean and total variance KLDs: a low mean KLD, computed
across all features, suggests that the synthetic data approach is close to the
original distribution of features, while a low total KLD variance means that the
KLD values across features being synthetically produced contain a consistent
level of similarity to the original data. Low total KLD variance also suggests
that there are fewer subsets of features deviating significantly from the original
data. Finally, for the best-ranked synthetic method we compute variance in
KLD as a function of feature type to assess if certain synthetic features are
closer to the original data than others.

We also utilize PCA to assess how similar synthetic data features are to
the original data. To do this, we perform PCA on the original data and then
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project each synthetic dataset onto the PCA space of the original dataset.
Ellipses drawn to the first standard deviations of the resulting first two prin-
cipal components are then used to visually inspect clustering behaviour. If the
ellipses representing the synthetic data generated by one method overlap sig-
nificantly with the ellipses from the original data in the PCA space, it suggests
that the synthetic data closely resembles the distribution and structure of the
original data in the reduced dimensionality space.

4 Data and Code Availability

The data and code used to produce this work will be made publicly available,
please stay tuned to updates to this manuscript for an active link to the public
Github repository. Please email the corresponding author if you want access
as soon as it is available.

5 Supplementary information

Supplementary information and supporting text accompanies this manuscript.
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