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Main points (38/40-word summary) 

Using area-level immunity coverage as a proxy for herd immunity, our study demonstrates 

observational evidence of indirect herd benefits from vaccination and/or prior infection on 

SARS-CoV-2 infections and COVID-19 deaths. Moreover, herd benefits are greater among non-

immune individuals.  
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Abstract [250/250] 

Background: Empirical evidence on the indirect herd benefits of COVID-19 vaccination and/or 

prior infection is limited. We aimed to examine how area-level immunity interacts with individual-

level immunity to affect COVID-19 diagnoses and deaths.  

Methods: Ontario residents aged ≥18 years were followed from August-01-2021 to January-30-

2022. Individual-level immunity was defined as received a primary series of COVID-19 vaccines 

or a positive SARS-CoV-2 test in the past 165 days. Area-level immunity was determined based 

on the proportion of immune individuals in an individual’s residing area. We used logistic 

regression and cause-specific hazard models to examine the relationship between immunity 

and COVID-19 diagnosis, and between immunity and COVID-19 death, respectively. We 

included an interaction term between individual-level and area-level immunity in each model.  

Results: Of 11,122,816 adults, 7,518,015 (67.6%) were immune at baseline. After accounting 

for individual-level demographics, baseline health, and area-level social determinants of health, 

area-level immunity (highest vs. lowest quintiles) was associated with lower odds of COVID-19 

diagnosis; the association was larger among non-immune (odds ratios [95% confidence 

interval]: 0.72 [0.70, 0.75]) than immune individuals (0.93 [0.90, 0.96]). Higher area-level 

immunity (highest vs. lowest quintiles) was also associated with lower hazard of COVID-19 

death among non-immune individuals (hazard ratio: 0.77 [0.60, 1.00]).  

Conclusions: Our study provides observational evidence supporting the herd benefits of 

vaccination or prior infection on SARS-CoV-2 infections and COVID-19 deaths. Findings 

reinforce the need for high vaccination coverage to protect vaccinated and unvaccinated 

populations, while providing insights for interpreting vaccine effectiveness estimates in the 

context of herd immunity. 
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Introduction 

Vaccines can provide direct protection against infection and against morbidity and mortality(1,2). 

These mechanisms are key to the design, implementation, and evaluation of COVID-19 

vaccination programs. COVID-19 vaccines have been shown in clinical trials and observational 

studies to provide direct benefits to those immunized by lowering the risk of acquiring infection 

and reducing disease severity if infected(3). Indirect benefits can arise from a decrease in 

infectiousness among vaccinated persons if they become infected, leading to fewer infections 

among their contacts(4), as evidenced through observational studies that measured secondary 

attack rates in household contacts of vaccinated persons(5,6). Indirect benefits can also arise 

from herd immunity (hereafter referred to as “indirect herd benefits”) because there are fewer 

susceptible persons through vaccination and/or prior infection, thereby reducing the overall 

spread of disease(7,8).  

 

The indirect herd benefits of vaccination and/or prior infection are traditionally quantified using 

mathematical models that simulate the transmission dynamics of a pathogen(9–11). 

Transmission dynamics models are explicitly set up to capture feedback loops between 

prevalent and incident infections, and thus, can be designed to estimate indirect herd 

benefits(9–11). For example, Scutt et al. used a Susceptible-Infected-Recovered model of 

SARS-CoV-2 transmission dynamics and demonstrated that under certain epidemic conditions, 

a larger number of deaths could be prevented from indirect herd benefits of vaccination than 

from direct benefits(10). However, there remains a gap in empirical evidence on the indirect 

herd benefits of COVID-19 vaccination and/or prior infection. 

 

There are some empirical data on the indirect herd benefits of vaccination for other infectious 

diseases(12,13). Chief among them is a cluster randomized trial which showed that high 

vaccination coverage among children and adolescents in Hutterite communities reduced 
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influenza infections among unvaccinated residents of those communities(12). However, 

randomized trials to measure the indirect herd benefits of COVID-19 vaccination would be 

unethical. Alternatives may include leveraging observational data to investigate how area-level 

vaccination coverage influences individual risk of infection and/or disease progression. One 

study from King County, US, compared the risk of pertussis among non-fully vaccinated children 

residing in census tracts with the highest quartile pertussis vaccination coverage with that in the 

lowest quartile vaccination coverage to measure the indirect vaccine benefits(14). Area-level 

measures, which reflect individuals’ social network and contact patterns, have been used in 

other studies to assess the impact of structural and environmental factors on health 

outcomes(15,16). Individuals’ own immunity (acquired from either vaccination or prior infection) 

and the level of immunity of their contact network (captured by the area-level immunity coverage 

of where an individual lives) could interplay to shape individual risk of infection and/or disease 

progression. 

 

Using population-based observational data from adult residents in Ontario, Canada, we aimed 

to examine how area-level immunity coverage interacts with individual-level immunity and their 

associations with COVID-19 diagnoses and deaths.  
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Methods 

Study population and measures 

We used data from a population-based retrospective cohort, which included community-dwelling 

individuals aged 18 years and older residing in Ontario as of August 1, 2021, who were followed 

to January 30, 2022. Individuals were identified using Ontario’s Registered Persons Database, 

including those with provincial health insurance and excluding long-term care home residents. 

Details of the cohort have been described in previous studies(17,18). Our study period captured 

the fourth (Delta dominant) and the majority of the fifth (Omicron B.1.1.529 dominant) waves of 

the regional COVID-19 pandemic, a time when vaccination became prevalent (to allow for a 

proportion of our study population to gain immunity from either vaccination and/or prior 

infection). We followed the ‘RECORD’ reporting guideline (Appendix Text 1).  

 

Our two outcomes of interest were COVID-19 diagnosis (defined as having a positive SARS-

CoV-2 test), and COVID-19 death (defined as death within 30 days following or 7 days prior to a 

positive SARS-CoV-2 test)(17). We ascertained outcomes using records from Ontario’s COVID-

19 surveillance database (Public Health Case and Contact Management Solution), Ontario 

Laboratories Information System, and Ontario’s Registered Persons Database. 

 

Our exposures of interest were individual-level immunity and area-level immunity. Individual-

level immunity was determined based on an individual’s vaccination status and prior COVID-19 

diagnosis as of August 1, 2021, classified as either being immune (received ≥ 1 dose of the 

Johnson-Johnson vaccine or ≥ 2 doses of other approved vaccines or had a positive SARS-

CoV-2 test, in the past 165 days(19,20)) or non-immune. Vaccination status was obtained from 

COVaxON, Ontario’s COVID-19 vaccination registry data. We determined vaccination status 

and diagnosis in the past 165 days to account for potential immune waning(19). Area-level 

immunity was determined based on the immunity coverage of an individual’s residing forward 
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sortation area (FSA) representing an area with a median of 21,722 (interquartile range: 13,082 

to 34,288) residents(21). We defined area-level immunity at the FSA-level to capture a proxy of 

an individual’s contact network. Previous research on contact patterns in Ontario has shown 

that individual mobility within FSAs is more frequent than mobility between FSAs(22). Immunity 

coverage for each FSA was calculated as the proportion of the population who is immune (via 

vaccination or prior diagnosis as defined above) within that FSA. FSAs were then ranked by 

immunity coverage and categorized into quintiles (quintile 1 comprised areas with the lowest 

immunity coverage), with weights adjusted for population size.  

 

We considered the covariates listed in Figure 1 as potential confounders based on prior 

literature, including individual-level demographics and baseline health, geographical residence, 

and area-level social determinants of health(17,18). Details of covariates and their data sources 

are provided in Figure 1, and Table 1, and described in prior studies(17,18). 

 

All data sets were linked using unique encoded identifiers and analyzed at ICES(23). The use of 

the data in this project is authorized under section 45 of Ontario’s Personal Health Information 

Protection Act and does not require review by a Research Ethics Board. 

 

Statistical analyses  

We hypothesized that if vaccination and prior infection provided indirect benefits through herd 

immunity, area-level immunity would be independently associated with COVID-19 diagnosis and 

death, even after adjusting for individual-level immunity and confounders (depicted using a 

directed acyclic graph (Figure 1)). Moreover, we hypothesized that there would be an 

interaction between individual-level and area-level immunity, such that the effect of area-level 

immunity could vary by individual-level immunity, and vice versa. The interaction could be due 
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to immune saturation - where a critical threshold of immunity is reached in the population, 

limiting the impact of additional immunity on disease transmission(8) (Figure 1).  

 

To test our hypotheses, we used logistic regression models to examine the relationship between 

immunity (both individual-level and area-level) and COVID-19 diagnosis, and cause-specific 

hazard models(24) to examine the relationship between immunity and COVID-19 death. We 

included an interaction term between individual-level and area-level immunity in each model and 

tested for its statistical significance. We assessed the unadjusted relationships to show the 

observed patterns and those adjusted for confounders to test our hypotheses.  

 

We conducted several sensitivity analyses. To explore whether geographic scale influences the 

relationship between area-level immunity and COVID-19 outcomes, we repeated our analyses 

using the area-level immunity measured at the level of dissemination area (representing 400-

700 residents, thus smaller than FSA). Immune protection acquired from prior infection might 

differ from vaccination(25). As such, we repeated our analyses considering immunity from 

vaccination only, regardless of prior diagnosis.  
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Results 

Of 11,122,816 adults included in our analyses, 7,518,015 (67.6%) individuals were either 

vaccinated only (64.7%) or had a prior diagnosis only (0.74%) or both (2.1%) in the past 165 

days (hereafter referred to as being immune). At the area level, immunity coverage ranged from 

0-63.1% for quintile 1, 63.1%-66.9% for quintile 2, 66.9%-69.2% for quintile 3, 69.2%-72.2% for 

quintile 4, and 72.3%-100% for quintile 5. Overall, 74.9% of individuals in the highest immunity 

coverage areas (quintile 5) were immune, compared with 59.6% in the lowest immunity 

coverage areas (quintile 1) (Table 1).  

 

Compared to individuals living in areas with the lowest immunity coverage (quintile 1), those in 

areas of the highest immunity coverage (quintile 5) had fewer comorbidities and prior 

hospitalizations, and were less likely to live in rural areas or in neighborhoods characterized by 

lower income, lower educational attainment, a higher proportion of essential workers, and higher 

density housing (Table 1). 

 

Immunity and COVID-19 diagnosis 

 

We found evidence of effect modification between individual-level and area-level immunity on 

COVID-19 diagnosis (p-value<0.001). Higher area-level immunity was consistently associated 

with lower odds of COVID-19 diagnosis (showing a dose-response relationship) among non-

immune individuals (Figure 2A, Appendix Table 1). In contrast, among immune individuals, 

higher area-level immunity was associated with higher odds of COVID-19 diagnosis in the 

unadjusted model; however, the associations were diminished or reversed after adjustment 

(Figure 2A, Appendix Table 1). After adjustment, the magnitude of the association between 

area-level immunity (highest vs. lowest) and COVID-19 diagnosis was larger among non-
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immune individuals (odds ratios [95% confidence interval]: 0.72 [0.70, 0.75]) than among 

immune individuals (0.93 [0.90, 0.96]) (Figure 2A, Appendix Table 1). 

 

Similarly, the associations between individual-level immunity and COVID-19 diagnosis varied by 

area-level immunity. After adjustment, individual-level immunity was associated with lower odds 

of COVID-19 diagnosis (0.96 [0.93, 0.98]) in the lowest immunity coverage areas but with higher 

odds of COVID-19 diagnosis (1.23 [1.12, 1.26]) in the highest immunity coverage areas (Figure 

2B, Appendix Table 2). 

 

Immunity and COVID-19 death 

 

Higher area-level immunity was also associated with a lower hazard of COVID-19 death among 

non-immune individuals. For example, the adjusted hazard ratios for COVID-19 death was 0.77 

[0.60, 1.00] comparing non-immune individuals in the highest vs. lowest immunity coverage 

areas (Figure 2A, Appendix Table 1). In contrast, we did not find a statistically significant 

association between area-level immunity and COVID-19 death among immune individuals 

(Figure 2A, Appendix Table 1). However, the statistical test of the interaction term between 

individual-level and area-level immunity on COVID-19 death was not significant (P-value=0.38), 

due to a small number of COVID-19 deaths (therefore wide confidence intervals in the 

estimates) among immune individuals.  

 

Individual-level immunity was consistently associated with a lower hazard of COVID-19 death 

across different area-level immunity coverage quintiles (Figure 2B, Appendix Table 2). Overall, 

the adjusted hazard ratio for COVID-19 death was 0.03 [0.02, 0.03] comparing immune vs. non-

immune individuals.  
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Sensitivity analysis 

In the sensitivity analyses where area-level immunity was measured at the dissemination area 

level, the results for COVID-19 diagnosis were very similar to those from the primary analyses. 

However, for COVID-19 death, the association appeared smaller in magnitude and did not 

persist after adjustment (Appendix Figure 1). Sensitivity analyses using a definition of immunity 

as only vaccination-acquired yielded similar results as the primary analyses for both outcomes 

(Appendix Figure 2).  
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Discussion  

Using area-level immunity coverage as a proxy measure of herd immunity, our study provides 

quantitative observational evidence of indirect herd benefits from vaccination and/or prior 

infection on SARS-CoV-2 infections and COVID-19 deaths, in a setting with a high overall 

immunity coverage (67.6%). We found that individuals living in areas with higher area-level 

immunity experienced a lower risk of COVID-19 diagnosis and death, after accounting for 

individual-level demographics, baseline health, individual-level immunity, and area-level social 

determinants of health. We also identified interactions between area-level and individual-level 

immunity. The protective benefit of area-level immunity was greater among non-immune 

individuals than immune individuals. Similarly, the protective benefit of individual-level immunity 

was more pronounced among individuals living in lower immunity coverage areas than those in 

higher immunity coverage areas.  

 

The mechanism by which herd immunity leads to indirect protective benefits is well established 

(8) and has been demonstrated with simulation models of transmission dynamics of various 

infectious diseases, including COVID-19(9,10), influenza(11), and pertussis(26). However, 

empirical/observational evidence on a vaccine’s indirect herd benefits remains limited. Existing 

studies have primarily focused on household transmission, demonstrating the indirect benefits 

of vaccines via reduced infectiousness of vaccinated and of infected individuals, which lowers 

the risk of transmission to their household contacts(5,6,27–30). The largest of such studies was 

a retrospective cohort study of more than 155,000 households in Israel, which found that in 

households with two vaccinated parents, there was a 72% and a 58% decreased risk of SARS-

CoV-2 infections among vaccine-ineligible children during the Alpha-dominant and Delta-

dominant periods, respectively(27).  
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A few observational studies have provided some community-level empirical evidence for the 

indirect herd benefits of vaccines(12,14,31), including one focused on COVID-19 vaccines(31). 

The study examined COVID-19 vaccination coverage and testing data across 177 regions in 

Israel and found that for every 20% absolute increase in vaccination coverage, the positive test 

fraction of the unvaccinated population in the community decreased by approximately half(31). 

However, given the ecological study design, this study was not able to account for individual-

level heterogeneity across communities that could partially explain variations in positive test 

fractions. Our study builds on the existing evidence by demonstrating the independent effect of 

herd immunity after accounting for both individual-level and area-level heterogeneity.  

 

Our findings on a less pronounced herd immunity benefit among immune persons than non-

immune persons support our hypothesis around immune saturation(8). Once a person gains 

immunity from vaccination or prior infection, the benefits from herd immunity exhibit diminishing 

returns. However, it is important to note that there was still an indirect herd benefit of 

vaccination among immune individuals, particularly in areas with the highest immunity coverage 

(72.3-100%). Our findings reinforce the importance of achieving high vaccination coverage to 

protect the unvaccinated, including vulnerable populations who may not be able to get 

vaccinated due to either access barriers, and/or medical mistrust(32), and to provide additional 

protection to those already vaccinated, including those who experience disproportionate risks 

despite vaccination.  

 

Our findings showing greater individual-level vaccine effectiveness in areas with lower immunity 

coverage suggest that herd immunity may act as an effect modifier in observational studies of 

vaccine effectiveness. A key assumption in vaccine effectiveness studies is “non-interference”, 

meaning that vaccination of one individual does not affect the risk of infection of others(33). 

However, this assumption is violated in the presence of herd immunity(2). Herd immunity 
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modifies an individual’s exposure risk by reducing the number of susceptible individuals in one’s 

contact network, thereby reducing the overall transmission of the virus within the network. For 

example, in areas with higher vaccination coverage, the number of potential persons 

“susceptible” to the virus is reduced, lowering the probability that a person who is infectious will 

come into contact with a person who is “susceptible”, and vice versa. As a result, the ‘effective’ 

exposure risks are lowered for both vaccinated and unvaccinated individuals, which could lead 

to a lower estimated magnitude of vaccine effectiveness in populations with high herd immunity. 

The influence of herd immunity on vaccine effectiveness estimates is often overlooked, or only 

discussed as a limitation in observational studies of vaccine effectiveness(33). Our study 

advances this discussion by explicitly considering and treating herd immunity as a potential 

effect modifier, allowing us to quantify its influence on vaccine effectiveness estimates. Thus, 

our findings highlight the importance of considering herd immunity when making inferences 

about vaccine effectiveness estimates from observational studies.  

 

Our study is subject to some limitations. We used immunity coverage of an individual’s residing 

forward sortation area as a proxy measure for herd immunity. However, an individual’s social 

interactions and exposures may extend beyond their residing area (e.g., having contacts outside 

their local area, e.g., employment-related contacts if their workplace is outside the residing area) 

and change over time (i.e., dynamic rather than static). Future studies can leverage dynamic 

network models to compare and inform measures of herd immunity. We could not capture all 

SARS-CoV-2 infections because not all infected individuals were tested. Testing patterns may 

differ by vaccination status, such that vaccinated individuals may be more likely to be tested for 

SARS-CoV-2(34), due to unmeasured confounders such as healthcare engagement (Figure 1). 

Residual confounding related to differential testing by vaccination status might explain the 

‘negative vaccine effectiveness’ measures observed in areas with higher herd immunity – a bias 

that has been extensively discussed in the literature(35,36). We limited our focus to effect 
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modification by area-level immunity when examining individual-level immunity, but there are 

emerging statistical methods and conceptualizations to capture partial interference, which could 

comprise future work(33). We also limited our focus to effect modification by individual-level 

immunity when examining area-level immunity, but there are other factors (both individual-level 

and network-level) that could modify the area-level herd immunity effects(37). Our study was 

conducted in a setting during a time when the overall immunity coverage was high (67.6%). 

Cautions should be exercised when generalizing our findings to low immunity coverage settings. 

While our findings revealed a dose-response relationship between herd immunity quintiles and 

COVID-19 outcomes, we suggest this relationship is non-linear. Future studies aimed at 

estimating the herd immunity threshold could further complement the interpretation of our 

results.  

 

In conclusion, our study provides quantitative empirical evidence supporting the indirect herd 

benefits of vaccination or prior infection on SARS-CoV-2 infections and COVID-19 deaths in the 

community. Our findings reinforce the need for high vaccination coverage to protect both 

unvaccinated populations and those already vaccinated, while also providing insights for 

interpreting vaccine effectiveness estimates in observational studies in the context of herd 

immunity. 
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Table 1. Characteristics of community-dwelling adults in Ontario stratified by area-level immunity quintiles (N=11,122,816). 
 Characteristics Area-level immunity quintiles (Q1=Lowest immunity coverage)a 
 Q1 Q2 Q3 Q4 Q5 
 N=2,225,133 N=2,225,569 N=2,232,600   N=2,225,377   N=2,214,137  
Individual-level immunityb 1325624 (59.6%) 1449724 (65.1%) 1515352 (67.9%) 1569822 (70.5%) 1657493 (74.9%) 
COVID-19 diagnosisc 42272 (1.9%) 42212 (1.9%) 45163 (2.0%) 43896 (2.0%) 41050 (1.9%) 
COVID-19 deathd 311 (0.014%) 220 (0.010%) 203 (0.009%) 165 (0.007%) 144 (0.007%) 
Age category      

 18-34  653794 (29.4%) 636720 (28.6%) 642311 (28.8%) 630890 (28.3%) 580677 (26.2%) 
35-49 549243 (24.7%) 550461 (24.7%) 564574 (25.3%) 563478 (25.3%) 556971 (25.2%) 
50-64 581876 (26.2%) 583173 (26.2%) 573872 (25.7%) 579204 (26.0%) 592122 (26.7%) 
65-74  265911 (12.0%) 275819 (12.4%) 269541 (12.1%) 266213 (12.0%) 290791 (13.1%) 
75-84 131007 (5.9%) 135296 (6.1%) 136382 (6.1%) 137122 (6.2%) 143274 (6.5%) 

85+ 43302 (1.9%) 44100 (2.0%) 45920 (2.1%) 48470 (2.2%) 50302 (2.3%) 
Male 1103712 (49.6%) 1084963 (48.8%) 1089670 (48.8%) 1075216 (48.3%) 1062443 (48.0%) 
Residing in a rural areae 327026 (14.7%) 351578 (15.8%) 212066 (9.5%) 94160 (4.2%) 139830 (6.3%) 
Immigration statusf      

  Long-term resident 1831403 (82.3%) 1699972 (76.4%) 1747586 (78.3%) 1660665 (74.6%) 1725831 (77.9%) 
  Long-term immigrant 319159 (14.3%) 430585 (19.3%) 402686 (18.0%) 467365 (21.0%) 415603 (18.8%) 

  Recent (within 5 years) immigrant 74571 (3.4%) 95012 (4.3%) 82328 (3.7%) 97347 (4.4%) 72703 (3.3%) 
Aggregated Diagnosis Groupsg      

0 241051 (10.8%) 230520 (10.4%) 227003 (10.2%) 237730 (10.7%) 229005 (10.3%) 
1-2 456605 (20.5%) 442298 (19.9%) 444126 (19.9%) 447762 (20.1%) 454755 (20.5%) 
3-4 489602 (22.0%) 496271 (22.3%) 499120 (22.4%) 499363 (22.4%) 510868 (23.1%) 
5-6 411900 (18.5%) 423166 (19.0%) 425390 (19.1%) 421576 (18.9%) 423934 (19.1%) 
7+ 625975 (28.1%) 633314 (28.5%) 636961 (28.5%) 618946 (27.8%) 595575 (26.9%) 

Hospital admission, past 3 years       
0 times 1907494 (85.7%) 1932269 (86.8%) 1942539 (87.0%) 1963211 (88.2%) 1959022 (88.5%) 

Once 223159 (10.0%) 210964 (9.5%) 207871 (9.3%) 190494 (8.6%) 187703 (8.5%) 
Twice 58404 (2.6%) 52176 (2.3%) 51695 (2.3%) 45543 (2.0%) 43713 (2.0%) 

Three times or more 36076 (1.6%) 30160 (1.4%) 30495 (1.4%) 26129 (1.2%) 23699 (1.1%) 
Outpatient physician visits, past year      

0-1 times 759635 (34.1%) 718609 (32.3%) 707815 (31.7%) 692813 (31.1%) 691973 (31.3%) 
2-4 times 607667 (27.3%) 611525 (27.5%) 618851 (27.7%) 621109 (27.9%) 637830 (28.8%) 
5-8 times 438606 (19.7%) 455363 (20.5%) 462476 (20.7%) 465864 (20.9%) 462472 (20.9%) 

9-14 times 264210 (11.9%) 277967 (12.5%) 280343 (12.6%) 281448 (12.6%) 270520 (12.2%) 
15 times or more 155015 (7.0%) 162105 (7.3%) 163115 (7.3%) 164143 (7.4%) 151342 (6.8%) 

Median household income quintile (1=Lowest)h,i      
1 722563 (32.5%) 491310 (22.1%) 411982 (18.5%) 314751 (14.1%) 221990 (10.0%) 
2 553473 (24.9%) 508813 (22.9%) 435126 (19.5%) 361882 (16.3%) 343926 (15.5%) 
3 430064 (19.3%) 542222 (24.4%) 447658 (20.1%) 448664 (20.2%) 387613 (17.5%) 
4 324937 (14.6%) 375147 (16.9%) 473033 (21.2%) 569284 (25.6%) 505876 (22.8%) 
5 194096 (8.7%) 308077 (13.8%) 464801 (20.8%) 530796 (23.9%) 754732 (34.1%) 

Educational attainment quintile (1=Lowest)h,j      
1 814073 (36.6%) 427192 (19.2%) 324313 (14.5%) 123729 (5.6%) 177253 (8.0%) 
2 608115 (27.3%) 543776 (24.4%) 496175 (22.2%) 269136 (12.1%) 240075 (10.8%) 
3 420459 (18.9%) 603428 (27.1%) 514243 (23.0%) 449370 (20.2%) 359173 (16.2%) 
4 259118 (11.6%) 391395 (17.6%) 506933 (22.7%) 674096 (30.3%) 581677 (26.3%) 
5 123368 (5.5%) 259778 (11.7%) 390936 (17.5%) 709046 (31.9%) 855959 (38.7%) 

Proportion essential workers quintile (1=Lowest)h,k      
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1 95588 (4.3%) 217397 (9.8%) 354133 (15.9%) 708455 (31.8%) 990481 (44.7%) 
2 226777 (10.2%) 417354 (18.8%) 521738 (23.4%) 703878 (31.6%) 617998 (27.9%) 
3 387849 (17.4%) 573110 (25.8%) 513608 (23.0%) 440846 (19.8%) 303681 (13.7%) 
4 607710 (27.3%) 581660 (26.1%) 483044 (21.6%) 260624 (11.7%) 193197 (8.7%) 
5 907209 (40.8%) 436048 (19.6%) 360077 (16.1%) 111574 (5.0%) 108780 (4.9%) 

Proportion racially-minoritised quintile(1=Lowest)h,l      
1 465900 (20.9%) 437049 (19.6%) 365272 (16.4%) 218566 (9.8%) 238061 (10.8%) 
2 481109 (21.6%) 360126 (16.2%) 402410 (18.0%) 287738 (12.9%) 320092 (14.5%) 
3 475130 (21.4%) 307035 (13.8%) 368554 (16.5%) 342091 (15.4%) 498650 (22.5%) 
4 349907 (15.7%) 419378 (18.8%) 479096 (21.5%) 625527 (28.1%) 562588 (25.4%) 
5 453087 (20.4%) 701981 (31.5%) 617268 (27.6%) 751455 (33.8%) 594746 (26.9%) 

Proportion apartment buildings (1=Lowest)h,m      
1 1130789 (50.8%) 1275169 (57.3%) 1319081 (59.1%) 1291902 (58.1%) 1347709 (60.9%) 
2 513746 (23.1%) 416796 (18.7%) 379913 (17.0%) 326888 (14.7%) 384867 (17.4%) 
3 580598 (26.1%) 533604 (24.0%) 533606 (23.9%) 606587 (27.3%) 481561 (21.7%) 

Average household size quintile (1=Lowest)h,n      
1 454383 (20.4%) 356908 (16.0%) 444304 (19.9%) 460500 (20.7%) 380385 (17.2%) 
2 523338 (23.5%) 417053 (18.7%) 379194 (17.0%) 308817 (13.9%) 322522 (14.6%) 
3 330625 (14.9%) 337454 (15.2%) 302145 (13.5%) 248358 (11.2%) 296640 (13.4%) 
4 504351 (22.7%) 573747 (25.8%) 485935 (21.8%) 532468 (23.9%) 538397 (24.3%) 
5 412436 (18.5%) 540407 (24.3%) 621022 (27.8%) 675234 (30.3%) 676193 (30.5%) 

Proportion high-density housing (1=Lowest)h,o      
1 688118 (30.9%) 684768 (30.8%) 768697 (34.4%) 788875 (35.4%) 930634 (42.0%) 
2 522638 (23.5%) 428015 (19.2%) 517300 (23.2%) 482203 (21.7%) 519078 (23.4%) 
3 450648 (20.3%) 455391 (20.5%) 433925 (19.4%) 462266 (20.8%) 403339 (18.2%) 
4 563729 (25.3%) 657395 (29.5%) 512678 (23.0%) 492033 (22.1%) 361086 (16.3%) 

aDefined by immunity coverage of an individual’s residing forward sortation area, calculated as the proportion of immune(via vaccination or prior diagnosis) individuals within each 
forward sortation area. Forward soration areas were then ranked by immunization coverage and categorized into quintiles (quintile 1 comprised areas of the lowest immunization 
coverage), with weights adjusted for population size.  
bDefined as received ≥ 1 dose of the Johnson-Johnson vaccine or ≥ 2 doses of other vaccines or had a positive SARS-CoV-2 test in the past 165 days by August 1, 2021. 
cA lab-confirmed positive SARS-CoV-2 test between August 1, 2021, and December 31, 2021.  
dDeath within 30 days following or 7 days prior to a lab-confirmed positive SARS-CoV-2 test between August 1, 2021, and December 31, 2021.  
eRural defined as being located outside the commuting zone of a city with a population greater than 10000. 
fIndividual-level data from the Immigration, Refugees and Citizenship Canada (IRCC)’s Permanent Resident Database. 
gComposite comorbidity measure using the ACG® System Aggregated Diagnosis Groups generated using the Johns Hopkins ACG® System Version 10 with 2-year look-back; 
databases used: Discharge Abstract Database, National Ambulatory Care Reporting System, Ontario Health Insurance Plan billings, Ontario Drug Benefits Plan, Continuing Care 
Reporting System, Canadian Organ Replacement Registry,  Ontario Cancer Registry. 
hMeasured at the level of dissemination area. 
iDissemination areas were ranked within each city by their median household income to create quintiles; we ranked within city instead of within the entire province to take the cost of 
living into account; a disseminaton area being in quintile 1 means it is among the lowest 20% of dissenmination areas in its city by median household income.  
j1st quintile represents areas with 17.1-94.3% of people aged 25–64 years without a diploma; 2nd, 11.4-17.1%; 3rd, 7.5%–11.4%; 4th, 4.1-7.5%; and 5th, 0-4.1%.  
k1st quintile represents 0%–32.5% of working people in the area who self-identified as working in an essential job, including sales, trades, manufacturing, and agriculture; 2nd quintile, 
32.5%–42.3% of people; 3rd quintile, 42.3%–49.8% of people; 4th quintile, 50.0%–57.5% of people; and 5th quintile, 57.5%–114.3% of people.  
l1st quintile represents 0%–2.2% of people in the area who self-identified as part of a racially-minoritised group(s); 2nd quintile, 2.2%–7.5% of people; 3rd quintile: 7.5%–18.7% of 
people; 4th quintile, 18.7%–43.5% of people; and 5th quintile, 43.5%–100% of people; racially-minoritised groups defined as people who self-identify as non-White and non-Indigenous;  
m1st category, 0%–7.3% of buildings in the area are apartment buildings; 2nd category, 7.4%–37.7% are apartment buildings; and 3rd category, 37.7%–100% are apartment buildings; 
the high frequency of zeros permitted the creation of only 3 categories (i.e., the lower 3 quintiles combined, and the fourth and fifth quintiles). 
n1st quintile represents 0–2.1 people/dwelling; 2nd, 2.2–2.4 people/dwelling; 3rd, 2.5–2.6 people/dwelling; 4th, 2.7–3 people/dwelling; and 5th, 3.1–5.7 people/dwelling. 
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o1st category represents 0–2.6% of households are considered high-density housing; 2nd y, 2.7-5.2%; 3rd, 5.3-8.7%; 4th , >8.7%; the high frequency of zeros permitted the creation of 
only 4 categories (the lower 2 quintiles combined); ‘housing density’ refers to whether a private household is living in suitable accommodations according to the National Occupancy 
Standard; that is, whether the dwelling has enough bedrooms for the size and composition of the household. 
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Figure 1. Directed acyclic graphs representing the effects of individual-level immunity and area-
level immunity on COVID-19 diagnosis and death, and their effect modification on each other. 
Individual-level confounders include demographics (age, sex, immigration status), baseline 
health (comorbidity, past health service use). Area-level confounders include geography (rural 
vs. urban, public health unit), and area-level social determinants of health (income, education, 
essential worker measures, proportion racially minoritized, housing condition). Unmeasured 
confounders may include access and uptake of vaccination, testing, and/or treatment shaped in 
part by healthcare engagement and variability in recommendations; mobility and contact 
patterns which affect herd immunity threshold; individual-level social determinants of health that 
shape the risk of infection and healthcare engagement, which are not fully captured by area-
level measures. 
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(A)
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Figure 2. (A) Patterns of area-level immunity in COVID-19 diagnosis and death overall and stratified by 
individual-level immunity. (B) Patterns of individual-level immunity in COVID-19 diagnosis and death 
overall and stratified by area-level immunity. Stratified estimates were obtained from models of the entire 
cohort with interaction terms between individual-level and area-level immunity. Individual-level immunity 
defined as vaccinated or had prior a positive SARS-CoV-2 test in the past 165 days. Area-level immunity 
measured by aggregating individual-level immunity at the level of forward sortation area. Adjusted for 
demographics, baseline health, geography, and area-level social determinants of health. 
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