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A B S T R A C T

Mathematical models of infectious disease transmission typically neglect within-host dynamics. Yet within-host 
dynamics – including pathogen replication, host immune responses, and interactions with microbiota – are 
crucial not only for determining the progression of disease at the individual level, but also for driving within-host 
evolution and onwards transmission, and therefore shape dynamics at the population level. Various approaches 
have been proposed to model both within- and between-host dynamics, but these typically require considerable 
simplifying assumptions to couple processes at contrasting scales (e.g., the within-host dynamics quickly reach a 
steady state) or are computationally intensive. Here we propose a novel, readily adaptable and broadly appli
cable method for modelling both within- and between-host processes which can fully couple dynamics across 
scales and is both realistic and computationally efficient. By individually tracking the deterministic within-host 
dynamics of infected individuals, and stochastically coupling these to continuous host state variables at the 
population-level, we take advantage of fast numerical methods at both scales while still capturing individual 
transient within-host dynamics and stochasticity in transmission between hosts. Our approach closely agrees 
with full stochastic individual-based simulations and is especially useful when the within-host dynamics do not 
rapidly reach a steady state or over longer timescales to track pathogen evolution. By applying our method to 
different pathogen growth scenarios we show how common simplifying assumptions fundamentally change 
epidemiological and evolutionary dynamics.

1. Introduction

Since their inception nearly a century ago, compartmental models of 
infectious diseases have proved to be incredibly powerful for modelling 
epidemiological dynamics while requiring relatively few parameters 
and assumptions (Anderson and May 1991; Kermack and McKendrick, 
1927). Compartmental models are not only widely used for under
standing and predicting disease transmission, but also provide crucial 
insights into fundamental evolutionary processes in pathogens, 
including selection for virulence (Cressler et al., 2016), immune evasion 
(Saad-Roy, 2021), and anti-microbial resistance (Blanquart, 2019). Such 
models also shed light on pathogen coevolution with their host pop
ulations, including humans (Penman et al., 2013), animals (May and 
Anderson, 1983), plants (Frank, 1992), fungi (Sandhu et al., 2021), and 
bacteria (Koonin and Wolf, 2015). The development of realistic and 
efficient modelling frameworks has therefore been identified as a key 
goal for the modelling community, especially those that link processes 

across scales (Gog, 2015).
For simplicity, compartmental models typically only focus on 

epidemiological dynamics at the between-host level (e.g., transmission) 
and neglect within-host processes (e.g., pathogen growth and immune 
response dynamics). This greatly simplifies the difficulty of modelling 
nonlinear dynamics in large populations as one can classify hosts into 
distinct groups according to their current disease status (e.g., “suscep
tible”, “infected”, or “recovered”) without needing to track individual 
pathogen dynamics within each infected host. Movement between 
disease-status compartments occurs due to processes such as infection 
and recovery that do not depend on individual within-host properties 
such as pathogen load or T-cell count. When fitting to real-world data, 
this means that key disease parameters, such as the basic reproduction 
number or serial interval, may be inferred from population-level data 
without knowledge of the dynamics that occur within hosts.

Although between-host compartmental models give vital insights 
into pathogen epidemiology and evolution, within-host dynamics 
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including pathogen replication and growth, the host immune response, 
pharmacokinetics and pharmacodynamics, and interactions with the 
microbiome and other pathogens are also known to play a critical role 
(Mideo et al., 2008). For example, transmission and virulence are both 
likely to depend on pathogen load. Moreover, theoretical studies have 
shown that within-host dynamics can play a crucial role in pathogen 
evolution, leading to immune escape (Smith and Ashby, 2023) or more 
varied predictions for virulence evolution (Alizon and Lion, 2011). Dy
namics at the within-host level can clearly have important implications 
at the population-level, which can be captured using nested or hybrid 
models that couple dynamics at the intra- and inter-host scales (Mideo 
et al., 2008).

While multiple approaches to nested models have been developed 
(Mideo et al., 2008), these methods are not widely used because tracking 
the within-host dynamics of all infected individuals in a population is 
computationally intensive and analytically intractable. For example, in a 
standard SIR model lacking within-host dynamics, only three equations 
are required to track the population dynamics, whereas a full nested 
model requires at least the same number of equations as infected in
dividuals. Moreover, if the transmission rate depends on pathogen load, 
which varies through time at the individual level, then each infected 
host has a unique time-dependent transmission rate. Many nested 
models therefore assume that within-host processes rapidly reach a 
steady state as this eliminates the need to track transient within-host 
dynamics. However, this separation of timescales does not capture the 
impact of transient within-host dynamics on transmission and virulence 
and fails when the within-host dynamics are slower or do not reach a 
steady state (e.g., acute infections). Stochastic individual-based models 
(IBMs) (Althouse and Hanley, 2015; McKenzie and Bossert, 2005; Ken
nedy and Dwyer, 2018; Lindberg et al., 2018) or integro-differential 
equations (IDEs) (Handel et al., 2013; Gilchrist and Sasaki, 2002; 
Coombs et al., 2007; Azevedo et al., 2018) have been used to fully 
capture transient dynamics, but IBMs are computationally intensive, and 
IDEs can only be used when the within-host dynamics are relatively 
simple. More recently, there has been a larger push towards fully sto
chastic methods to capture the two scales. For example, Yin et al. pro
posed a fully stochastic method which is able to capture individual 
within-host dynamics (Yin et al., 2024). The method uses an event 
driven approach, which has the ability to capture significant detail, but 
at the cost of simulation speed. Another recent study, by Zhang et al., 
proposed a multiscale method for modelling within-host evolution and 
infection on networks (Zhang, 2022). This method uses a Markov-chain 
to determine mutations at the within-host scale, with mixtures of 
different mutants determining fitness at both the within- and between- 
host level. Transmission then occurs on a network. This method has 
many applications for determining when mutations can cause epidemics 
and pandemics, but doesn’t include mechanistic within-host dynamics. 
Generally, methods that fully capture transient and mechanistic within- 
host dynamics and are computationally efficient are currently lacking.

Here, we propose a novel hybrid method for coupling transient 
within- and between-host dynamics that is both computationally effi
cient and realistic. Our method leverages different modelling paradigms 
across scales to track individual-level within-host dynamics for a 
discrete number of infected hosts, which are then stochastically coupled 
to continuous population-level processes. The main novelty of this 
framework is the ability to integrate multiple methods to leverage the 
advantages of fast numerical solvers for ODEs for the within-host dy
namics of each infected individual and for demographic processes at the 
population level, while still capturing stochasticity through the coupling 
process between scales. This allows us to more efficiently capture 
transient within-host dynamics for each infected individual than previ
ous methods. Further, we demonstrate the ability for the method to track 
genetic evolution and construct phylogenetic trees. We illustrate our 
method with contrasting examples of within-host pathogen dynamics, 
showing the critical impact on epidemiological and evolutionary dy
namics at the population level.

2. Methods

We introduce a novel method for coupling infectious disease dy
namics within individual hosts with population-level processes. For 
simplicity, we focus on a single directly transmitted pathogen in a ho
mogeneous, randomly mixing host population, but our approach may be 
readily generalised for multiple co-circulating pathogens or symbionts, 
alternative modes of transmission (e.g., vector-borne or sexually trans
mitted), or for heterogeneous or structured populations. The population 
consists of N(t) individuals at time t. Each host has a given disease state 
(e.g., susceptible, infected, or recovered), with the density of each state 
tracked at the population level (see Host demographic dynamics; HDD), 
and a within-host state (e.g., pathogen load, T-cell count), where 
applicable (see Within-host dynamics; WHD). To couple the different 
scales efficiently, we convert between a discrete number of hosts at the 
WHD level and a continuous density of hosts at the population-level (see 
Coupling and schematic in Fig. 1). Below, we first describe general 
frameworks for modelling the within-host dynamics of an infectious 
disease and the demographic dynamics of the host population, before 
introducing our novel hybrid method for coupling dynamics across these 
two scales.

2.1. Within-host dynamics

The within-host dynamics (WHD) of an infectious disease may 
include replication and growth of the pathogen population from an 
initial infectious dose, the host immune response and its interactions 
with the pathogen, positive or negative interactions with other patho
gens or constituents of the host microbiome, and within-host evolution 
of the pathogen through selection or drift. To model the WHD, we assign 
a unique set of ordinary differential equations (ODEs) to every indi
vidual in the population (although in practice one might limit the 
within-host dynamics only to currently infected or recently recovered 
individuals).

Consider an individual indexed by i who was infected Ti time-units 
ago. At time Ti, their within-host state is given by the function Wi(θW,

Ti), where θW contains all parameters that are required for the evalua
tion of the within-host state. These parameters could include, but are not 
limited to, rates for pathogen replication and the upregulation of an 
immune response. The within-host dynamics are then given by: 

dWi

dTi
= fW(Wi, θW,Ti),Wi(θW, 0) = W̃(θW). (1) 

where fW(Wi, θW,Ti) describes how the within-host states change sub
ject to the initial condition W̃(θW), which could be a function of the 
infecting individual (see Coupling).

2.2. Host demographic dynamics

At the population level, we distinguish host demographic dynamics 
(HDD), such as births and background mortality, from disease-related 
processes such as transmission, recovery and disease-associated mor
tality (virulence), which are captured through the coupling of the two 
scales (see Coupling). In principle, one could include other processes 
such as migration or mating dynamics (for non-sexually transmitted 
pathogens in animal populations) at this scale.

As with the WHD, one can model the HDD stochastically, or deter
ministically using the following general ODEs: 

dD
dt

= fD(D, θD, t),D(θD,0) = D̃(θD), (2) 

Where the host demographic state at time t is given by D(θD, t) with 
parameter set θD and initial condition D̃(θD), and the function fD(D, θD, t)
describes the change in the density of each host state due to non-disease 
related processes (e.g., births and background mortality). Parameters at 
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this scale would include, for example, rates for host birth and death, or 
migration.

2.3. Coupling

We now describe coupling of the within-host (WHD) and host de
mographic (HDD) dynamics, together with the change in host state due 
to disease-related processes (infection, recovery, death) (Fig. 1). Recall 
that hosts are tracked individually for the WHD, but the HDD use pop
ulation densities. We focus on infected individuals, but the same 
approach could be applied to any host state. The density of infected 
hosts at time t, I(t) ∈ R+, is given by I(t) ≈ NI(t)/A, where NI(t) ∈ N is 
the number of infected individuals at time t and A is a positive constant 
representing the area over which individuals interact. Note that 
continuous compartmental models of infectious diseases track popula
tion densities rather than population sizes (Anderson and May 1991). 
We use stochastic updates to determine the number of times each event 
takes place over a small time-interval [t, t + Δ), using the tau-leap 
method (Gillespie, 2001). Throughout, we will set Δ = 0.5 days. The 
HDD state variables and the discrete individuals are then updated 
simultaneously. We focus on infection, recovery, and virulence as 
disease-related processes, but the method could be readily extended to 
other processes (e.g., transitions to or from latency, or between 
asymptomatic and symptomatic disease).

The general transmission function, β(W, θC,T), describes the rate at 
which a host with infection age T and within-host state W transmits the 
pathogen to any individual currently susceptible to the infection, where 
θC denotes any coupling parameters (e.g., defining the relationship be
tween pathogen load and transmission). We use the function β(W, θC,T)
to stochastically calculate the number of new infections arising from 
each infected individual in a short period of time, [T,T + Δ), using the 
τ-leap method (Gillespie, 2001). The number of new infections produced 
by infected individual i during this time interval is drawn from the 
probability distribution 

ni(t) ∼ Poisson(β(Wi, θC,Ti)S(t)Δ ). (3) 

We then update the number of infected individuals, NI(t), and the 
population-level host states, D(t), accordingly by a mass equivalent to 
one individual (1/A) from the susceptible to the infected state: 

S(t+Δ) = S(t) −
1
A
∑NI(t)

i=1
ni(t), (4) 

I(t+Δ) = I(t)+
1
A
∑NI (t)

i=1
ni(t). (5) 

The rate at which an individual with infection age T recovers is given by 
γ(W, θC,T). For example, the recovery rate may depend on the current 
pathogen load and T-cell count, or for simplicity may be treated as a 
constant. To determine if an infected individual i has recovered in this 
time interval, we draw a uniform random number between 0 and 1, ur,i, 
and if ur,i < γ(Wi, θC,Ti)Δ then the individual has recovered and we 
update the population-level and within-host states accordingly and no 
longer track their within-host dynamics. We use a similar process to 
determine if an individual has died from disease during this time in
terval, where the disease-associated mortality rate is α(W, θC,T). We 
update the number of infected individuals NI(t + Δ) accordingly, and 
the population-level states by subtracting 1/A (the density of a single 
individual) from the infected state, I(t), for each recovery or mortality 
event, and adding 1/A per recovery event to the recovered or susceptible 
states depending on the assumptions regarding recovery.

The final stage of the coupling reconciles changes in the HDD with 
the number of individuals tracked for the WHD. For example, infected 
individuals may die due to other causes, or the number of infected in
dividuals may change due to migration. We therefore need to ensure that 
the number of individuals at the WHD level is approximately equivalent 
to the appropriate HDD state variable. For simplicity, we assume that 
only infected individuals are tracked for the WHD and that the HDD may 
result in non-disease-associated mortality, but an analogous approach 
would apply to other scenarios.

Recall that the relationship between the continuous density of 
infected individuals in the HDD, I(t), and the discrete number of infected 
individuals in the WHD, NI(t), is given by I(t) ≈ NI(t)/A. If 
δI(t) = AI(t) − NI(t) > 0 then the number of tracked individuals in the 

Fig. 1. Model schematic for the hybrid method. The within-host dynamics (WHD) track pathogen replication and immune dynamics for each infected host, i at 
infection time Ti, in state vector Wi(Ti) for a discrete number of infected hosts. The WHD have instantaneous rate of change fW(Wi,θW,Ti), where θW is a vector of 
within-host parameters. The host-demographic dynamics (HDD) track continuous densities of population-level disease states and include births, natural mortality and 
migration in state vector D(t), which changes according to instantaneous rate of change fD(D,θD,t), where θD is a vector of host demographic parameters and t is the 
population-level time. The coupling functions link these two scales together stochastically through epidemiological processes (transmission, mortality virulence, and 
recovery) to update the host disease states at the HDD level, and by removing infected individuals at the WHD level due to natural mortality.
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WHD is fewer than the number of individuals according to the HDD. 
Conversely, if δI(t) < 0, then the number of tracked individuals is 
greater than in the HDD. This discrepancy is corrected probabilistically. 
We draw a Poisson random variable κ(t) ∼ Poisson(|δI(t) | ) which de
termines the number of tracked individuals to either add (δI(t) > 0) or 
remove (δI(t) < 0) at random. In our simulations, we cannot have δI(t) >
0 due to the absence of migration. When δI(t) < 0, we choose κ(t)
infected individuals at random to be removed due to non-disease- 
associated mortality.

2.4. Applications

We illustrate possible applications of our novel coupling method for 
two pathogen growth scenarios. In the first case, we assume that 
following infection the pathogen load grows logistically to a steady state 
and is not cleared by an immune response, whereas in the second case 
we assume that the pathogen load grows exponentially for a short period 
before decaying to a lower level due to a build-up of immunity within 
the host. For simplicity of illustration (but not a limitation of the 
framework), we do not explicitly model the immune response, but the 
dynamics of T cells, for example, could readily be incorporated into the 
WHD. The pathogen load dynamics presented below are qualitatively 
similar to models with explicit immunity. We compare the full transient 
dynamics for pathogen load with a steady state approximation, which is 
commonly used in hybrid models of within- and between-host dynamics 
(Mideo et al., 2008; Gilchrist and Sasaki, 2002; Gilchrist and Coombs, 
2006; Almocera and Hernandez-Vargas, 2019; Garira, 2018). We also 
demonstrate how our modelling framework can be used to study path
ogen evolution and construct phylogenetic trees. Neither of these ex
amples are meant to be representations of all diseases, nor should their 
quantitative results be perceived as such. The purpose of these examples 
is to demonstrate the method with different qualitative within-host 
dynamics which are designed to be proxies for a wide range of 
possible infections experienced by hosts across the tree of life.

For our first example, the within-host pathogen load grows logisti
cally with growth rate r and carrying capacity K. This may be a 
reasonable model for infections that are not cleared by the immune 
system, such as certain sexually transmitted pathogens such as Chla
mydia trachomatis and opportunistic pathogens in immunocompromised 
hosts (e.g., Pseudomonas aeruginosa infections in cystic fibrosis patients), 
and for non-pathogenic gut microbiota. We assume that the HDD feature 

a density-dependent birth term and that all individuals have the same 
background mortality rate, regardless of their disease status. We include 
two epidemiological coupling functions: one for transmission (which we 
assume to be proportional to pathogen load); and one for virulence 
(which we assume is proportional to the square of the pathogen load). 
We also assume that there is no recovery from infection. A full 
description of the model is given in the Supplementary material, Section 
S1. Unsurprisingly, both the epidemic growth rate and the size of the 
epidemic is typically much lower when the transient WHD are taken into 
account compared to the steady state approximation, especially when 
the within-host growth rate (r) is slow relative to the average infectious 
period (Fig. 2). This is because the transmission rate increases with 
pathogen load and the steady state approximation therefore over
estimates transmission, whereas the transient WHD accounts for a 
period of relatively low transmission early in the infection.

In our second example, the pathogen load initially grows exponen
tially before peaking and decaying due to an immune response. This is a 
reasonable approximation for many acute infections, including COVID- 
19, influenza, and measles, and for the early stages of many chronic 
infections, such as Syphilis and HIV, where pathogen load peaks soon 
after infection then falls to lower levels for a long period of time before 
eventual resurgence. The WHD for pathogen load are controlled by three 
parameters: r, which scales the overall pathogen load; η, which controls 
the strength of pathogen decay due to an immune response; and P*, 
which is the pathogen load steady state. For comparison with the steady 
state approximation, we assume that the steady state is non-zero. The 
transmission and virulence functions are the same as in the previous 
example, but now we also include a recovery rate, which increases 
exponentially as pathogen load falls. If an individual recovers, they gain 
full immunity and cannot be reinfected, and their pathogen load is set to 
zero. A full description of the model can be found in Supplementary 
Material Section S2.

As in the previous example, modelling the full WHD using our 
coupling method leads to stark differences in epidemic dynamics 
compared to a steady state approximation (Fig. 3). Since the steady state 
is relatively low compared to peak pathogen load, this approximation 
neglects a significantly higher transmission rate during the early stages 
of infection, and therefore underestimates both the size and growth rate 
of the epidemic. Naturally, this effect will be stronger the greater the 
difference between the peak pathogen load and the steady state, and 

Fig. 2. Epidemiological dynamics with logistic pathogen growth. A. Logistic curve fitted to within-host growth of the bacterial pathogen Pasteuria ramosa in water 
fleas (Daphnia dentifera) from (Auld et al., 2014). B. WHD of pathogen load with relatively slow (r = 2.5; black) and fast (r = 5; red) pathogen load growth rates. C. 
Disease prevalence in the host population for relatively slow (r = 2.5; black) and fast (r = 5; red) pathogen load growth rates, with a steady-state approximation 
(dashed) or using the full transient dynamics with our novel coupling method (solid). Other parameters as detailed in the Supplementary Material (section S1.5). 
Units for all parameters are dimensionless and are chosen simply to illustrate the links between within and between-host dynamics for a generic pathogen.
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when most transmission occurs during the early stages of an infection.
Not only is our method more realistic than a steady-state approxi

mation, if is also much more computationally efficient than a full sto
chastic simulation algorithm (SSA). For example, the epidemic 
simulations in Fig. 2 were approximately 3.5 times faster using our 
modelling framework than a classical SSA (see Supplementary Material 
Section S4), and 1.7 times faster for the simulations in Fig. 3.

Our modelling framework can also be applied to understand the ef
fects of WHD on pathogen evolution and patterns that emerge at the 
population level. For example, suppose we consider the evolution of the 
pathogen growth rate, r, in our first example (for a full description of the 
following simulations, see Supplementary Material, Section S1.4). In the 
steady state approximation, the growth rate has no effect on pathogen 
fitness, which only depends on the carrying capacity, K. The pathogen 
therefore only experiences drift rather than selection, resulting in a 
random walk through trait space (Fig. 4A). In contrast, when the tran
sient WHD are modelled using our framework, the pathogen growth rate 
impacts on transmission and virulence, and therefore fitness, leading to 
selection towards an evolutionarily stable relationship between path
ogen load, transmission, and virulence (Fig. 4B).

As our method tracks infected individuals, along with who infects 
whom, it can also be readily used to construct true phylogenetic or 
transmission trees from epidemic simulations with perfect data on 
infection histories (Fig. 5; Supplementary Material section S2.4). This not 
only has potential uses for efficiently simulating realistic epidemics for 
testing novel transmission tree reconstruction methods (Didelot et al., 
2017), but could also provide new insights into how evolution driven by 
within-host dynamics impacts the relationship between transmission 
trees and phylogenetic trees at the population level.

3. Discussion

Understanding how within-host processes impact on the epidemio
logical and evolutionary dynamics of infectious diseases is a key 
objective for the infectious disease community. Yet fully capturing 
transient within-host dynamics in nested models is a major challenge 
due to the computational burden of tracking individual infection pro
cesses, and so many studies assume a separation of timescales so that the 
within-host dynamics rapidly reach steady state. We have developed a 

novel hybrid method for efficiently and realistically modelling infec
tious disease dynamics across scales, capturing both population-level 
processes (e.g., births and deaths) and individual disease-related pro
cesses (e.g., pathogen growth and immune responses). By leveraging fast 
deterministic models at the population level and for each infected host, 
and stochastically coupling these scales to enable changes in host states 
(e.g., susceptible to infected), we make significant speed improvements 
in even the simplest of models while still fully capturing transient 
within-host dynamics. We illustrated the power of our framework with 
two examples of within-host pathogen growth, showing how it can be 
readily used to model both epidemiological and evolutionary dynamics, 
often leading to contrasting outcomes compared to widely used steady- 
state approximations.

A critical feature of our framework is that hosts are tracked as 
discrete entities for the within-host dynamics, but host states are tracked 
continuously for the population level dynamics. At the within-host level, 
each infected individual has their own unique set of ODEs to describe 
changes in internal states such as pathogen load and T-cell count, but at 
the population-level host states are tracked continuously using a 
density-based approximation with a single set of ODEs. This approach 
allows us to leverage fast ODE-solvers at both scales, which are then 
coupled using a stochastic tau-leaping method to keep the discrete and 
continuous levels closely aligned. However, the modular nature of our 
method means that it can be readily adapted to incorporate different 
types of models. For example, each of these different scales could be 
modelled using partial or stochastic differential equations, or with sto
chastic simulation algorithms. The only requirement is that the coupling 
correctly aligns the number of individuals tracked for the within-host 
dynamics with the density of the corresponding host states at the pop
ulation level. Thus, when an individual is infected, for example, the 
number of individuals tracked at the within-host level is increased by 
one, and one unit of host “mass” is moved from the susceptible to 
infected state at the population-level. Naturally, this means that there 
will usually be slight discrepancies between the two scales (as illustrated 
in Fig. 1C), but the density of infected hosts never differs by more than 
one unit of host mass.

Our method was inspired by hybrid methods for modelling particle 
diffusion and interaction across a spatial domain with large disparities in 
particle number. Such spatial hybrid methods (Smith and Yates, 2018) 

Fig. 3. Epidemiological dynamics when pathogen load peaks and decays. A. Pathogen load (equation (S4); black) fitted to the within-host viral load of averaged 
influenza A cases (blue) from (Baccam et al., 2006). B. WHD of pathogen load with relatively low (P* = 109; black) and high (P* = 1010; red) long-term pathogen 
loads. C. Disease prevalence in the host population for small (P* = 109; black) and large (P* = 1010; red) long-term pathogen loads at the within-host level, with a 
steady-state approximation (dashed) or using the full transient dynamics with our novel coupling method (solid). Other parameters as detailed in the Supplementary 
Material (section S2.5). Units for all parameters are dimensionless and are chosen simply to illustrate the links between within and between-host dynamics for a 
generic pathogen.
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employ different modelling paradigms across the spatial domain, with 
regions containing large numbers of particles using coarser continuum 
approaches (e.g., PDEs), while low copy number regions use stochastic 
methods (e.g., agent-based) where continuum limits are invalid. While 
the two approaches are related in terms of how they handle contrasting 
scales, our hybrid epidemiological framework uses distinct modelling 
paradigms for different processes, as opposed to modelling the same 
phenomena using disparate modelling paradigms.

We demonstrated our method for two contrasting scenarios for 
within-host pathogen dynamics – logistic growth and exponential 
growth followed by decay. The former is a reasonable approximation for 
certain chronic infections or opportunistic pathogens in immunocom
promised hosts where the pathogen is not cleared (e.g., P. aeruginosa 
infections in cystic fibrosis patients), whereas the latter is a good 
approximation for many acute infections that are cleared due to the 
host’s immune response (e.g., influenza, measles), or for chronic in
fections where the pathogen load peaks before falling to lower levels (e. 

g., HIV, syphilis). In both cases, we show that the transient within-host 
dynamics lead to substantial shifts in epidemic dynamics at the 
population-level compared to steady-state approximations. In the case of 
logistic growth, the steady-state approximation for within-host path
ogen load always overestimates the transmission rate, which leads to a 
much faster growth rate and higher endemic prevalence. With expo
nential growth and decay in pathogen load, the steady-state approxi
mation can lead to a slower growth rate and lower endemic prevalence. 
The latter scenario especially highlights issues with using a steady-state 
approximation, as the steady state for acute infections is a pathogen load 
of zero, which would clearly prevent any transmission. To facilitate 
comparisons with the steady state approximation we assumed a non- 
zero pathogen load, but this is not a limitation of our model (one 
could set the steady state pathogen load to zero but maintain the path
ogen in the population due to the transient dynamics). Our framework 
therefore allows for acute infections with full pathogen clearance 
whereas the steady-state approximation does not. A steady state 

Fig. 4. Evolutionary simulations with logistic pathogen growth. A. Evolutionary simulation using the steady-state approximation for the WHD. B. Evolutionary 
simulation using transient WHD. The red line denotes the evolutionarily stable level of virulence. All simulations conducted using 500 individuals, with density- 
dependent term q = 9.9× 10− 4. Other parameters as detailed in the Supplementary Material (section S1.5).
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approximation also only allows for unidirectional feedback from within- 
host to between-host processes (termed “inessential” couplings in 12) 
and does not allow for a full (“essential”) feedback loop with between- 
host processes impacting on the within-host dynamics. However, the 
full feedback loop can readily be captured using our framework, for 
example by setting the initial inoculum to be a function of the trans
mission rate. Very few studies incorporate this full feedback loop 
(Coombs et al., 2007; Alizon and Van Baalen, 2008; Feng et al., 2015), 
likely due to the predominance of the steady-state approximation, but 
we expect that our framework will offer new opportunities for exploring 
the effects of the full within- and between-host feedback loop on 
epidemic dynamics and pathogen evolution.

We further illustrated how our method can be applied to study 
pathogen evolution, both phenotypically (e.g., evolution of virulence) 
and genetically (e.g., for simulating true phylogenetic trees). As with the 
fundamental shifts observed in epidemiological dynamics, we showed 
how a steady-state approximation for within-host pathogen dynamics 
can lead to a random walk through trait space, but there is directional 
selection towards an evolutionarily stable level of virulence when the 
transient dynamics are fully captured. This occurs because selection acts 
on the growth rate of the pathogen, rather than the steady state, which is 
fixed. Previous theory using IDEs in a few specific scenarios has shown 
that virulence evolution can be greatly affected by within-host dy
namics, which are difficult to capture using conventional methods. 
These include the order and timing of co-infecting pathogens (Alizon 

and Van Baalen, 2008), contrasting selection pressures at the within- 
and between-host levels (Gilchrist and Coombs, 2006) and the strength 
of the host immune response (Pugliese, 2011). As our modelling 
framework does not rely on IDEs, which greatly limit the complexity of 
within-host dynamics, our method will significantly expand the scope 
for studying pathogen evolution across scales.

In addition to the phenotypic evolution of key disease traits such as 
virulence, we have also shown how our framework can be used to effi
ciently simulate the molecular evolution of pathogens. A major strength 
of our approach is that infections and transmission dynamics are tracked 
at the individual level, allowing for the construction of true phylogenetic 
and transmission trees. This not only offers a novel method to aid in the 
development of tree reconstruction methods, but would allow, for 
example, one to explore how different processes at the within-host level 
impact on phylogenetic patterns that are observed at the population 
level, or vice versa. While several methods currently exist for simulating 
phylogenetic and transmission trees using standard epidemiological 
models (Didelot et al., 2017; Hall et al., 2015), a unique advantage of 
our approach is that the modular nature of our framework allows one to 
readily adapt the within-host, population-level, and coupling functions 
to any feasible scenario. For example, the within-host dynamics could be 
adapted to account for coinfections of multiple pathogens, pharmaco
dynamics and antimicrobial resistance, interactions with the micro
biome, or innate and adaptive responses, and the population-level 
dynamics could be modified to include migration, vaccination, or non- 
pharmaceutical interventions. Our framework is therefore likely to 
provide valuable insights across a wide range of scenarios. Furthermore, 
while we have focused on host-pathogen interactions our method could 
readily be applied to model other constituents of the host microbiome, 
including horizontally or vertically transmitted symbionts (Smith and 
Ashby, 2023; Ashby and King, 2017) or hyperparasites (Wood and 
Ashby, 2023).

Our method is highly adaptable and can in principle include any 
within-host dynamics (e.g. interactions with the immune system or 
microbiome, complex life-cycles, etc) and any transmission- or 
population-level features that may be relevant to a particular system (e. 
g. migration, spatial/contact structure, seasonal effects, etc). For 
example, seasonal effects on transmission may be included in the trans
mission function, so that it becomes a function of the within-host pathogen 
load, the infection age and the time (as well as any parameters). A simple 
version of this might be 

β(Pi, θC,Ti, t) = β̂Pig(t),

where g(t) is a periodic function denoting seasonality. Such modifications can 
also be made in the right-hand side of any of the ODE functions, so that 
growth rates are able to be changed seasonally. We efficiently capture full 
transient dynamics that are often missed by other methods (e.g. steady- 
state approximations) or which may be more intensive to simulate. 
However, as our method is simulation-based, other approaches such as 
integro-differential equations may be able to provide more analytically 
tractable results (Handel et al., 2013; Gilchrist and Sasaki, 2002; 
Coombs et al., 2007; Azevedo et al., 2018). Deriving key quantities such 
as the basic reproductive number or fitness functions analytically is also 
particularly difficult in multiscale models and requires development of 
novel methods to address these challenges. While we have demonstrated 
that our hybrid method is efficient in comparison to the full tau-leap 
method (see Supplementary material section S4), for larger populations 
a time adaptive method, which will require future development, may be 
more efficient. Finally, as with any within-host model, parameterisation 
remains challenging compared to population-level models which are 
typically simpler and have parameters that are easier to measure. 
Addressing this challenge will require more detailed longitudinal data of 
pathogen load and immune responses. However, hybrid models are also 
useful to understand theoretically how different types of within-host 
processes (e.g. interactions with the immune system and microbiome) 

Fig. 5. Example phylogenetic tree for an evolving pathogen arising from our 
simulation framework. We have initialised a short length genome (150b in 
length) and have allowed it to mutate neutrally throughout a population of size 
5000. This is the true phylogenetic tree, meaning that all mutation events 
occurred at the times indicated, rather than a tree reconstruction. Branch length 
is proportional to time (arbitrary units).
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lead to variation in population-level patterns (e.g. phylodynamics, 
strength of selection), and hence our framework can also provide sup
port for the development of fundamental theory.Capturing the full 
complexity of real populations, including all processes at the within-host 
level, is neither attainable nor desirable. Yet capturing key aspects of 
within-host pathogen and immune dynamics is crucial for a better un
derstanding of pathogen epidemiology and evolution. While steady- 
state approximations offer some insights into the impact of within- 
host processes on population-level dynamics, fully capturing transient 
interactions between pathogens, host immune responses, and the 
microbiome is a major challenge that will shed light on pathogen ecol
ogy and evolution across scales. Our framework provides a novel, 
readily adaptable approach for coupling a wide range of within-host and 
population-level dynamics that is both efficient and realistic.
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