|
Inductive logic programming Component1 #291943 Inductive logic programming (ILP) is a subfield of machine learning which uses logic programming as a uniform representation for examples, background knowledge and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesised logic program which entails all the positive and none of the negative examples. | Inductive logic programming (ILP) is a subfield of machine learning which uses logic programming as a uniform representation for examples, background knowledge and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesised logic program which entails all the positive and none of the negative examples. Schema: positive examples + negative examples + background knowledge => hypothesis. Inductive logic programming is particularly useful in bioinformatics and natural language processing. The term Inductive Logic Programmingwas first introduced[1] in a paper by Stephen Muggleton in 1991.[2] The term "inductive" here refers to philosophical (i.e. suggesting a theory to explain observed facts) rather than mathematical (i.e. proving a property for all members of a well-ordered set) induction. Contents [hide] - 1 Formal definition
- 2 Example
- 3 Implementations
- 4 See also
- 5 References
- 6 Further reading
Formal definition[edit]The background knowledge is given as a logical proposition , commonly in the form of Horn clauses used in logic programming. Thepositive and negative examples are given as a conjunction and of unnegated and negated ground literals, respectively. A hypothesis is a logical proposition satisfying the following requirements. [3] Necessity: | | | | Sufficiency: | | | | Weak consistency: | | | | Strong consistency: | | | | "Necessity" does not impose a restriction on , but forbids any generation of a hypothesis as long as the positive facts are explainable without it. "Sufficiency" requires any generated hypothesis to explain all positive examples . "Weak consistency" forbids generation of any hypothesis that contradicts the background knowledge . "Strong consistency" also forbids generation of any hypothesis that is inconsistent with the negative examples , given the background knowledge ; it implies "Weak consistency"; if no negative examples are given, both requirements coincide. Džeroski [4] requires only "Sufficiency" (called "Completeness" there) and "Strong consistency". Example[edit]Assumed family relations in section "Example" The following well-known example about learning definitions of family relations uses the abbreviations , , , , , , , , and . It starts from the background knowledge (cf. picture) - ,
the positive examples - ,
and the trivial proposition to denote the absence of negative examples. Plotkin's [5][6] "relative least general generalization (rlgg)" approach to inductive logic programming shall be used to obtain a suggestion about how to formally define the daughter relation . This approach uses the following steps. - Relativize each positive example literal with the complete background knowledge:
- ,
- Convert into clause normal form:
- ,
- Anti-unify each compatible [7] pair [8] of literals:
- from and ,
- from and ,
- from and ,
- from and , similar for all other background-knowledge literals
- from and , and many more negated literals
- Delete all negated literals containing variables that don't occur in a positive literal:
- after deleting all negated literals containing other variables than , only remains, together with all ground literals from the background knowledge
- Convert clauses back to Horn form:
The resulting Horn clause is the hypothesis obtained by the rlgg approach. Ignoring the background knowledge facts, the clause informally reads " is called a daughter of if is the parent of and is female", which is a commonly accepted definition. Concerning the above requirements, "Necessity" was satisfied because the predicate doesn't appear in the background knowledge, which hence cannot imply any property containing this predicate, such as the positive examples are. "Sufficiency" is satisfied by the computed hypothesis , since it, together with from the background knowledge, implies the first positive example , and similarly and from the background knowledge implies the second positive example . "Weak consistency" is satisfied by , since holds in the (finite) Herbrand structure described by the background knowledge; similar for "Strong consistency". The common definition of the grandmother relation, viz. , cannot be learned using the above approach, since the variable occurs in the clause body only; the corresponding literals would have been deleted in the 4th step of the approach. To overcome this flaw, that step has to be modified such that it can be parametrized with different literal post-selection heuristics. Historically, the GOLEM implementation is based on the rlgg approach. Implementations[edit]See also[edit]References[edit] - Jump up^ Luc De Raedt. A Perspective on Inductive Logic Programming. The Workshop on Current and Future Trends in Logic Programming, Shakertown, to appear in Springer LNCS, 1999.CiteSeerX: 10.1.1.56.1790
- Jump up^ Muggleton, S. (1991). "Inductive logic programming". New Generation Computing 8 (4): 295–318. doi:10.1007/BF03037089. edit
- Jump up^ Muggleton, Stephen (1999). "Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic". Artificial Intelligence 114: 283–296.; here: Sect.2.1
- Jump up^ Džeroski, Sašo (1996), "Inductive Logic Programming and Knowledge Discovery in Databases", in Fayyad, U.M.; Piatetsky-Shapiro, G.; Smith, P. et al., Advances in Knowledge Discovery and Data Mining, MIT Press, pp. 117–152 ; here: Sect.5.2.4
- Jump up^ Plotkin, Gordon D. (1970). "A Note on Inductive Generalization". In Meltzer, B.; Michie, D. Machine Intelligence (Edinburgh University Press) 5: 153–163.
- Jump up^ Plotkin, Gordon D. (1971). "A Further Note on Inductive Generalization". In Meltzer, B.; Michie, D. Machine Intelligence (Edinburgh University Press) 6: 101–124.
- Jump up^ i.e. sharing the same predicate symbol and negated/unnegated status
- Jump up^ in general: -tuple when positive example literals are given
Further reading[edit] |
+Citaten (1) - CitatenVoeg citaat toeList by: CiterankMapLink[1] Wikipedia
Citerend uit: Various Geciteerd door: Roger Yau 5:29 PM 19 October 2013 GMT
Citerank: (28) 291862AODE - Averaged one-dependence estimatorsAveraged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.109FDEF6, 291863Artificial neural networkIn computer science and related fields, artificial neural networks are computational models inspired by animal central nervous systems (in particular the brain) that are capable of machine learning and pattern recognition. They are usually presented as systems of interconnected "neurons" that can compute values from inputs by feeding information through the network.109FDEF6, 291936BackpropagationBackpropagation, an abbreviation for "backward propagation of errors", is a common method of training artificial neural networks. From a desired output, the network learns from many inputs, similar to the way a child learns to identify a dog from examples of dogs.109FDEF6, 291937Bayesian statisticsBayesian statistics is a subset of the field of statistics in which the evidence about the true state of the world is expressed in terms of degrees of belief or, more specifically, Bayesian probabilities. Such an interpretation is only one of a number of interpretations of probability and there are other statistical techniques that are not based on "degrees of belief".109FDEF6, 291938Naive Bayes classifierA naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong (naive) independence assumptions. A more descriptive term for the underlying probability model would be "independent feature model". An overview of statistical classifiers is given in the article on Pattern recognition.109FDEF6, 291939Bayesian networkA Bayesian network, Bayes network, belief network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical model (a type of statistical model) that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. 109FDEF6, 291941Case-based reasoningCase-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. So, too, an engineer copying working elements of nature (practicing biomimicry), is treating nature as a database of solutions to problems. Case-based reasoning is a prominent kind of analogy making.109FDEF6, 291942Decision tree learningDecision tree learning uses a decision tree as a predictive model which maps observations about an item to conclusions about the item's target value. It is one of the predictive modelling approaches used in statistics, data mining and machine learning. More descriptive names for such tree models are classification trees or regression trees. In these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels.109FDEF6, 291944Gaussian process regression (Kriging)Kriging is a method to build an approximation of a function from a set of evaluations of the function at a finite set of points. The method originates from the domain of geostatistics and is now widely used in the domain of spatial analysis and computer experiments. The technique is also known as Gaussian process regression, Kolmogorov Wiener prediction, or Best Linear Unbiased Prediction.109FDEF6, 291945Gene expression programmingGene expression programming (GEP) is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism. And like living organisms, the computer programs of GEP are also encoded in simple linear chromosomes of fixed length. Thus, GEP is a genotype-phenotype system.109FDEF6, 291946Group method of data handlingGroup method of data handling (GMDH) is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models.109FDEF6, 291947Learning automataA branch of the theory of adaptive control is devoted to learning automata surveyed by Narendra and Thathachar which were originally described explicitly as finite state automata. Learning automata select their current action based on past experiences from the environment.109FDEF6, 291948Supervised learningSupervised learning is the machine learning task of inferring a function from labeled training data.[1] The training data consist of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. 25CBCBFF, 291950Unsupervised learningIn machine learning, the problem of unsupervised learning is that of trying to find hidden structure in unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning and reinforcement learning.25CBCBFF, 291951Reinforcement learningReinforcement learning is an area of machine learning inspired by behaviorist psychology, concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. The problem, due to its generality, is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, statistics, and genetic algorithms.25CBCBFF, 292450Hierarchical clusteringIn data mining, hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types: Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Divisive: This is a "top down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarch109FDEF6, 292451Association rule learningAssociation rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using different measures of interestingness.109FDEF6, 292454Others25CBCBFF, 292455Learning Vector QuantizationIn computer science, Learning Vector Quantization (LVQ), is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems. LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to Self-organizing maps (SOM) and related to Neural gas, and to the k-Nearest Neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.109FDEF6, 292463Logistic Model TreeLMT is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. Logistic model trees are based on the earlier idea of a model tree: a decision tree that has linear regression models at its leaves to provide a piecewise linear regression model (where ordinary decision trees with constants at their leaves would produce a piecewise constant model).109FDEF6, 292464Minimum message lengthMinimum message length (MML) is a formal information theory restatement of Occam's Razor: even when models are not equal in goodness of fit accuracy to the observed data, the one generating the shortest overall message is more likely to be correct (where the message consists of a statement of the model, followed by a statement of data encoded concisely using that model). MML was invented by Chris Wallace, first appearing in the seminal (Wallace and Boulton, 1968).109FDEF6, 292465Lazy learningIn artificial intelligence, lazy learning is a learning method in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training data before receiving queries.109FDEF6, 292466Instance-based learninginstance-based learning or memory-based learning is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Instance-based learning is a kind of lazy learning.109FDEF6, 292475k-nearest neighbor algorithmIn pattern recognition, the k-nearest neighbor algorithm (k-NN) is a non-parametric method for classifying objects based on closest training examples in the feature space. k-NN is a type of instance-based learning, or lazy learning where the function is only approximated locally and all computation is deferred until classification. 109FDEF6, 292476Analogical modelingAnalogical modeling (hereafter AM) is a formal theory of exemplar-based analogical reasoning, proposed by Royal Skousen, professor of Linguistics and English language at Brigham Young University in Provo, Utah. It is applicable to language modeling and other categorization tasks. Analogical modeling is related to connectionism and nearest neighbor approaches, in that it is data-based rather than abstraction-based.109FDEF6, 292478Probably approximately correct learningIn this framework, the learner receives samples and must select a generalization function (called the hypothesis) from a certain class of possible functions. The goal is that, with high probability (the "probably" part), the selected function will have low generalization error (the "approximately correct" part). The learner must be able to learn the concept given any arbitrary approximation ratio, probability of success, or distribution of the samples.109FDEF6, 292480Ripple-down rulesRipple Down Rules is a way of approaching knowledge acquisition. Knowledge acquisition refers to the transfer of knowledge from human experts to knowledge based systems.109FDEF6, 292481Support vector machinesIn machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. 109FDEF6 URL: |
|
|