|
mpox Interest1 #715667
| Tags: Monkey pox, MPX, Monkeypox |
+Citations (13) - CitationsAjouter une citationList by: CiterankMapLink[1] A Twitter dataset for Monkeypox
En citant: Zahra M. Nia, Nicola L. Bragazzi, Jianhong Wu, Jude D. Kong Publication date: 1 June 2023 Publication info: Data in Brief, Volume 48, June 2023, 109118, ISSN 2352-3409, CitĂ© par: David Price 1:03 AM 29 November 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 715666Social networks859FDEF6 URL: DOI: https://doi.org/10.1016/j.dib.2023.109118
| Extrait - [Data in Brief, 6 June 2023]
After struggling with COVID-19 pandemic for two years, the world is finally recovering from this crisis. Nonetheless, another virus, Monkeypox, is quickly spreading throughout the world and in non-endemic regions and continents, threatening the world to a new pandemic. Twitter as a popular social media has successfully been used for predicting and controlling outbreaks. Much research previously has been done for building early warning systems, trend prediction, and misinformation and fake news detection. Since tweets are not accessible to all researchers, in this work, a publicly available dataset containing 2400202 tweets gathered from May first to December twenty-fifth, 2022 is presented. Twitter developers academic researcher API which returns all the tweets matching a given query was used to gather the dataset. To this end, the full archive search and keywords related to Monkeypox and its equivalents in other languages, i.e. Monkeypox or âmonkey poxâ or âviruela dei monoâ or âvariole du singeâ or âvariola do macocoâ were used. The retweets were excluded using the negation operator, and the tweet ids and user ids were extracted and shared with public. Approximately, 1.79 percent (43047 number) of tweets were geotagged. To visualize the geotagged tweets, the longitude and latitude of the bounding box coordinates were averaged. This work will help researchers shed light on the news, patterns, and on-going discussions of Monkeypox on social media, identify hotspots, and help contain the Monkeypox virus. |
Link[2] Integrated epidemiological, clinical, and molecular evidence points to an earlier origin of the current monkeypox outbreak and a complex route of exposure
En citant: Nicola Luigi Bragazzi, Jude D. Kong, Jianhong Wu Publication date: 19 October 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28244 CitĂ© par: David Price 1:16 AM 29 November 2023 GMT Citerank: (3) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0 URL: DOI: https://doi.org/10.1002/jmv.28244
|
Link[3] Is monkeypox a new, emerging sexually transmitted disease? A rapid review of the literature
En citant: Nicola Luigi Bragazzi, Jude Dzevela Kong, Jianhong Wu Publication date: 13 September 2022 Publication info: Journal of Medical Virology, 13 September 2022 Cité par: David Price 1:24 AM 29 November 2023 GMT Citerank: (3) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28145
| Extrait - [Journal of Medical Virology, 13 September 2022]
Monkeypox, a milder disease compared to smallpox, is caused by a virus initially discovered and described in 1958 by the prominent Danish virologist von Magnus, who was investigating an infectious outbreak affecting monkey colonies. Currently, officially starting from May 2022, an outbreak of monkeypox is ongoing, with 51â000 cases being notified as of September 1, 2022â51â408 confirmed, 28 suspected, and 12 fatalities, for a grand total of 51â448 cases. More than 100 countries and territories are affected, from all the six World Health Organization regions. There are some striking features, that make this outbreak rather unusual when compared with previous outbreaks, including a shift on average age and the most affected age group, affected sex/gender, risk factors, clinical course, presentation, and the transmission route. Initially predominantly zoonotic, with an animal-to-human transmission, throughout the last decades, human-to-human transmission has become more and more sustained and effective. In particular, clusters of monkeypox have been described among men having sex with men, some of which have been epidemiologically linked to international travel to nonendemic countries and participation in mass gathering events/festivals, like the âMaspalomas (Gran Canaria) 2022 pride.â This review will specifically focus on the âemergingâ transmission route of the monkeypox virus, that is to say, the sexual transmission route, which, although not confirmed yet, seems highly likely in the diffusion of the infectious agent. |
Link[4] Epidemiological trends and clinical features of the ongoing monkeypox epidemic: a preliminary pooled data analysis and literature review
En citant: Nicola L. Bragazzi, Jude D. Kong, Naim Mahroum, Christina Tsigalou, Rola Khamisy-Farah, Manlio Converti, Jianhong Wu Publication date: 12 June 2022 Publication info: Journal of Medical VirologyVolume 95, Issue 1 e27931 CitĂ© par: David Price 1:40 AM 29 November 2023 GMT Citerank: (3) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0 URL: DOI: https://doi.org/10.1002/jmv.27931
| Extrait - [Journal of Medical Virology, 12 June 2022]
An emerging outbreak of monkeypox infection is quickly spreading worldwide, being currently reported in more than 30 countries, with slightly less than 1000 cases. In the present preliminary report, we collected and synthesized early data concerning epidemiological trends and clinical features of the ongoing outbreak and we compared them with those of previous outbreaks. Data were pooled from six clusters in Italy, Australia, the Czech Republic, Portugal, and the United Kingdom, totaling 124 cases (for 35 of which it was possible to retrieve detailed information). The ongoing epidemic differs from previous outbreaks in terms of age (54.29% of individuals in their thirties), sex/gender (most cases being males), risk factors, and transmission route, with sexual transmission being highly likely. Also, the clinical presentation is atypical and unusual, being characterized by anogenital lesions and rashes that relatively spare the face and extremities. The most prevalent sign/symptom reported was fever (in 54.29% of cases) followed by inguinal lymphadenopathy (45.71%) and exanthema (40.00%). Asthenia, fatigue, and headache were described in 22.86% and 25.71% of the subjects, respectively. Myalgia was present in 17.14% of the cases. Both genital and anal lesions (ulcers and vesicles) were reported in 31.43% of the cases. Finally, cervical lymphadenopathy was described in 11.43% of the sample, while the least commonly reported symptoms were diarrhea and axillary lymphadenopathy (5.71% of the case series for both symptoms). Some preliminary risk factors can be identified (being a young male, having sex with other men, engaging in risky behaviors and activities, including condomless sex, human immunodeficiency virus positivity (54.29% of the sample analyzed), and a story of previous sexually transmitted infections, including syphilis). On the other hand, being fully virally suppressed and undetectable may protect against a more severe infectious course. However, further research in the field is urgently needed. |
Link[5] Knowing the unknown: The underestimation of monkeypox cases. Insights and implications from an integrative review of the literature
En citant: Nicola Luigi Bragazzi, Woldegebriel Assefa Woldegerima, Sarafa Adewale Iyaniwura, Qing Han, Xiaoying Wang, Aminath Shausan, Kingsley Badu, Patrick Okwen, Cheryl Prescod, Michelle Westin, Andrew Omame, Manlio Converti, Bruce Mellado, Jianhong Wu, Jude Dzevela Kong Publication date: 23 September 2022 Publication info: Frontiers in Microbiology, 23 September 2022 CitĂ© par: David Price 1:41 AM 29 November 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 715767Woldegebriel Assefa WoldegerimaDr. Woldegerima, knows as "Assefa", is an Assistant Professor at the Department of Mathematics and Statistics at York University.10019D3ABAB URL: DOI: https://doi.org/10.3389/fmicb.2022.1011049
| Extrait - [Frontiers in Microbiology, 23 September 2022]
Monkeypox is an emerging zoonotic disease caused by the monkeypox virus, which is an infectious agent belonging to the genus Orthopoxvirus. Currently, commencing from the end of April 2022, an outbreak of monkeypox is ongoing, with more than 43,000 cases reported as of 23 August 2022, involving 99 countries and territories across all the six World Health Organization (WHO) regions. On 23 July 2022, the Director-General of the WHO declared monkeypox a global public health emergency of international concern (PHEIC), since the outbreak represents an extraordinary, unusual, and unexpected event that poses a significant risk for international spread, requiring an immediate, coordinated international response. However, the real magnitude of the burden of disease could be masked by failures in ascertainment and under-detection. As such, underestimation affects the efficiency and reliability of surveillance and notification systems and compromises the possibility of making informed and evidence-based policy decisions in terms of the adoption and implementation of ad hoc adequate preventive measures. In this review, synthesizing 53 papers, we summarize the determinants of the underestimation of sexually transmitted diseases, in general, and, in particular, monkeypox, in terms of all their various components and dimensions (under-ascertainment, underreporting, under-detection, under-diagnosis, misdiagnosis/misclassification, and under-notification). |
Link[6] Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Julien Arino, Jane Heffernan, James Watmough, HélÚne Carabin, Huaiping Zhu Publication date: 25 November 2022 Publication info: Front. Public Health, 25 November 2022 Cité par: David Price 1:50 AM 29 November 2023 GMT
Citerank: (9) 679793HĂ©lĂšne CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, UniversitĂ© de MontrĂ©al10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679803Jacques BĂ©lairProfessor, Department of Mathematics and Statistics, UniversitĂ© de MontrĂ©al10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.3389/fpubh.2022.1026489
| Extrait - [Frontiers in Public Health, 25 November 2022]
Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak.
Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events.
Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements.
Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak. |
Link[7] Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Jane Heffernan, Julien Arino, James Watmough, HélÚne Carabin, Huaiping Zhu Publication date: 11 September 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28137 Cité par: David Price 1:50 AM 29 November 2023 GMT
Citerank: (9) 679793HĂ©lĂšne CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, UniversitĂ© de MontrĂ©al10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679803Jacques BĂ©lairProfessor, Department of Mathematics and Statistics, UniversitĂ© de MontrĂ©al10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.1002/jmv.28137
| Extrait - [Journal of Medical Virology, 11 September 2022]
To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or âeffective quarantineâ by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent. |
Link[8] Adaptive changes in sexual behavior in the high-risk population in response to human monkeypox transmission in Canada can help control the outbreak: Insights from a two-group, two-route epidemic model
En citant: Nicola Luigi Bragazzi, Qing Han, Sarafa Adewale Iyaniwura, Andrew Omame, Aminath Shausan, Xiaoying Wang, Woldegebriel Assefa Woldegerima, Jianhong Wu, Jude Dzevela Kong Publication date: 11 February 2023 Publication info: Journal of Medical Virology, Volume 95, Issue 4 e28575 CitĂ© par: David Price 2:00 AM 29 November 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 715767Woldegebriel Assefa WoldegerimaDr. Woldegerima, knows as "Assefa", is an Assistant Professor at the Department of Mathematics and Statistics at York University.10019D3ABAB URL: DOI: https://doi.org/10.1002/jmv.28575
| Extrait - [Journal of Medical Virology, 11 February 2023]
Monkeypox, a zoonotic disease, is emerging as a potential sexually transmitted infection/disease, with underlying transmission mechanisms still unclear. We devised a risk-structured, compartmental model, incorporating sexual behavior dynamics. We compared different strategies targeting the high-risk population: a scenario of control policies geared toward the use of condoms and/or sexual abstinence (robust control strategy) with risk compensation behavior change, and a scenario of control strategies with behavior change in response to the doubling rate (adaptive control strategy). Monkeypox's basic reproduction number is 1.464, 0.0066, and 1.461 in the high-risk, low-risk, and total populations, respectively, with the high-risk group being the major driver of monkeypox spread. Policies imposing condom use or sexual abstinence need to achieve a 35% minimum compliance rate to stop further transmission, while a combination of both can curb the spread with 10% compliance to abstinence and 25% to condom use. With risk compensation, the only option is to impose sexual abstinence by at least 35%. Adaptive control is more effective than robust control where the daily sexual contact number is reduced proportionally and remains constant thereafter, shortening the time to epidemic peak, lowering its size, facilitating disease attenuation, and playing a key role in controlling the current outbreak. |
Link[9] Exploring the dynamics of the 2022 mpox outbreak in Canada
En citant: Rachael M. Milwid, Michael Li, Aamir Fazil, Mathieu Maheu-Giroux, Carla M. Doyle, Yiqing Xia, Joseph Cox, Daniel Grace, Milada Dvorakova, Steven C. Walker, Sharmistha Mishra, Nicholas H. Ogden Publication date: 6 December 2023 Publication info: Journal of Medical Virology, Volume 95, Issue 12 e29256 Cité par: David Price 8:24 PM 6 December 2023 GMT
Citerank: (9) 679844Mathieu Maheu-GirouxCanada Research Chair (Tier 2) in Population Health Modeling and Associate Professor, McGill University.10019D3ABAB, 679880Sharmistha MishraSharmistha Mishra is an infectious disease physician and mathematical modeler and holds a Tier 2 Canadian Research Chair in Mathematical Modeling and Program Science.10019D3ABAB, 685203McMasterPandemicCompartmental epidemic models for forecasting and analysis of infectious disease pandemics: contributions from Ben Bolker, Jonathan Dushoff, David Earn, Weiguang Guan, Morgan Kain, Michael Li, Irena Papst, Steve Walker (in alphabetical order).122C78CB7, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701037MfPH â Publications144B5ACA0, 715290Steve WalkerSteve is the CANMOD Director of Data Science and a postdoctoral fellow in the Department of Mathematics and Statistics at McMaster University.10019D3ABAB, 715291macpan2McMasterPandemic was developed to provide forecasts and insights to Canadian public health agencies throughout the COVID-19 pandemic. The goal of this macpan2 project is to re-imagine McMasterPandemic, building it from the ground up with architectural and technological decisions that address the many lessons that we learned from COVID-19 about software.122C78CB7, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.1002/jmv.29256
| Extrait - [Journal of Medical Virology, 6 December 2023]
The 2022 mpox outbreak predominantly impacted gay, bisexual, and other men who have sex with men (gbMSM). Two models were developed to support situational awareness and management decisions in Canada. A compartmental model characterized epidemic drivers at national/provincial levels, while an agent-based model (ABM) assessed municipal-level impacts of vaccination. The models were parameterized and calibrated using empirical case and vaccination data between 2022 and 2023. The compartmental model explored: (1) the epidemic trajectory through community transmission, (2) the potential for transmission among non-gbMSM, and (3) impacts of vaccination and the proportion of gbMSM contributing to disease transmission. The ABM incorporated sexual-contact data and modeled: (1) effects of vaccine uptake on disease dynamics, and (2) impacts of case importation on outbreak resurgence. The calibrated, compartmental model followed the trajectory of the epidemic, which peaked in July 2022, and died out in December 2022. Most cases occurred among gbMSM, and epidemic trajectories were not consistent with sustained transmission among non-gbMSM. The ABM suggested that unprioritized vaccination strategies could increase the outbreak size by 47%, and that consistent importation (â„5 cases per 10â000) is necessary for outbreak resurgence. These models can inform time-sensitive situational awareness and policy decisions for similar future outbreaks. |
Link[10] Mpox Panic, Infodemic, and Stigmatization of the Two-Spirit, Lesbian, Gay, Bisexual, Transgender, Queer or Questioning, Intersex, Asexual Community: Geospatial Analysis, Topic Modeling, and Sentiment Analysis of a Large, Multilingual Social Media Database
En citant: Zahra Movahedi Nia, Nicola Bragazzi, Ali Asgary, James Orbinski, Jianhong Wu, Jude Kong Publication date: 1 May 2023 Publication info: J Med Internet Res 2023;25:e45108 CitĂ© par: David Price 9:05 PM 6 December 2023 GMT Citerank: (4) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 701037MfPH â Publications144B5ACA0, 715666Social networks859FDEF6 URL: DOI: https://doi.org/10.2196/45108
| Extrait - [Journal of Medical Internet Research, 1 May 2023]
Background: The global Mpox (formerly, Monkeypox) outbreak is disproportionately affecting the gay and bisexual men having sex with men community.
Objective: The aim of this study is to use social media to study country-level variations in topics and sentiments toward Mpox and Two-Spirit, Lesbian, Gay, Bisexual, Transgender, Queer or Questioning, Intersex, Asexual (2SLGBTQIAP+)ârelated topics. Previous infectious outbreaks have shown that stigma intensifies an outbreak. This work helps health officials control fear and stop discrimination.
Methods: In total, 125,424 Twitter and Facebook posts related to Mpox and the 2SLGBTQIAP+ community were extracted from May 1 to December 25, 2022, using Twitter application programming interface academic accounts and Facebook-scraper tools. The tweetsâ main topics were discovered using Latent Dirichlet Allocation in the sklearn library. The pysentimiento package was used to find the sentiments of English and Spanish posts, and the CamemBERT package was used to recognize the sentiments of French posts. The tweetsâ and Facebook postsâ languages were understood using the Twitter application programming interface platform and pycld3 library, respectively. Using ArcGis Online, the hot spots of the geotagged tweets were identified. Mann-Whitney U, ANOVA, and Dunn tests were used to compare the sentiment polarity of different topics and countries.
Results: The number of Mpox posts and the number of posts with Mpox and 2SLGBTQIAP+ keywords were 85% correlated (P<.001). Interestingly, the number of posts with Mpox and 2SLGBTQIAP+ keywords had a higher correlation with the number of Mpox cases (correlation=0.36, P<.001) than the number of posts on Mpox (correlation=0.24, P<.001). Of the 10 topics, 8 were aimed at stigmatizing the 2SLGBTQIAP+ community, 3 of which had a significantly lower sentiment score than other topics (ANOVA P<.001). The Mann-Whitney U test shows that negative sentiments have a lower intensity than neutral and positive sentiments (P<.001) and neutral sentiments have a lower intensity than positive sentiments (P<.001). In addition, English sentiments have a higher negative and lower neutral and positive intensities than Spanish and French sentiments (P<.001), and Spanish sentiments have a higher negative and lower positive intensities than French sentiments (P<.001). The hot spots of the tweets with Mpox and 2SLGBTQIAP+ keywords were recognized as the United States, the United Kingdom, Canada, Spain, Portugal, India, Ireland, and Italy. Canada was identified as having more tweets with negative polarity and a lower sentiment score (P<.04).
Conclusions: The 2SLGBTQIAP+ community is being widely stigmatized for spreading the Mpox virus on social media. This turns the community into a highly vulnerable population, widens the disparities, increases discrimination, and accelerates the spread of the virus. By identifying the hot spots and key topics of the related tweets, this work helps decision makers and health officials inform more targeted policies. |
Link[11] Evaluating undercounts in epidemics: response to Maruotti et al. 2022
En citant: Michael Li, Jonathan Dushoff, David J. D. Earn, Benjamin M. Bolker Publication date: 22 September 2022 Publication info: arXiv:2209.11334 [q-bio.PE] CitĂ© par: David Price 1:35 AM 13 December 2023 GMT Citerank: (6) 679758Benjamin BolkerIâm a professor in the departments of Mathematics & Statistics and of Biology at McMaster University, and currently Director of the School of Computational Science and Engineering and Acting Associate Chair (Graduate) for Mathematics.10019D3ABAB, 679776David EarnProfessor of Mathematics and Faculty of Science Research Chair in Mathematical Epidemiology at McMaster University.10019D3ABAB, 679814Jonathan DushoffProfessor in the Department Of Biology at McMaster University.10019D3ABAB, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701037MfPH â Publications144B5ACA0 URL: DOI: https://doi.org/10.48550/arXiv.2209.11334
| Extrait - [arXiv, 22 September 2022]
Maruotti et al. 2022 used a mark-recapture approach to estimate bounds on the true number of monkeypox infections in various countries. These approaches are fundamentally flawed; it is impossible to estimate undercounting based solely on a single stream of reported cases. Simulations based on a Richards curve for cumulative incidence show that, for reasonable epidemic parameters, the proposed methods estimate bounds on the ascertainment ratio of â0.2â0.5 roughly independently of the true ascertainment ratio. These methods should not be used. |
Link[12] Is monkeypox a new, emerging sexually transmitted disease? A rapid review of the literature
En citant: Nicola Luigi Bragazzi, Jude Dzevela Kong, Jianhong Wu Publication date: 13 September 2022 Publication info: Journal of Medical Virology, 13 September 2022 Cité par: David Price 6:40 PM 14 December 2023 GMT Citerank: (3) 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28145
| Extrait - [Journal of Medical Virology, 13 September 2022]
Monkeypox, a milder disease compared to smallpox, is caused by a virus initially discovered and described in 1958 by the prominent Danish virologist von Magnus, who was investigating an infectious outbreak affecting monkey colonies. Currently, officially starting from May 2022, an outbreak of monkeypox is ongoing, with 51â000 cases being notified as of September 1, 2022â51â408 confirmed, 28 suspected, and 12 fatalities, for a grand total of 51â448 cases. More than 100 countries and territories are affected, from all the six World Health Organization regions. There are some striking features, that make this outbreak rather unusual when compared with previous outbreaks, including a shift on average age and the most affected age group, affected sex/gender, risk factors, clinical course, presentation, and the transmission route. Initially predominantly zoonotic, with an animal-to-human transmission, throughout the last decades, human-to-human transmission has become more and more sustained and effective. In particular, clusters of monkeypox have been described among men having sex with men, some of which have been epidemiologically linked to international travel to nonendemic countries and participation in mass gathering events/festivals, like the âMaspalomas (Gran Canaria) 2022 pride.â This review will specifically focus on the âemergingâ transmission route of the monkeypox virus, that is to say, the sexual transmission route, which, although not confirmed yet, seems highly likely in the diffusion of the infectious agent. |
Link[13] Mathematical modeling of mpox: A scoping review
En citant: Jeta Molla, Idriss Sekkak, Ariel Mundo Ortiz, Iain Moyles, Bouchra Nasri Publication date: 16 June 2023 Publication info: One Health Volume 16, June 2023, 100540 CitĂ© par: David Price 0:56 AM 6 February 2024 GMT Citerank: (3) 679759Bouchra NasriProfessor Nasri is a faculty member of Biostatistics in the Department of Social and Preventive Medicine at the University of Montreal. Prof. Nasri is an FRQS Junior 1 Scholar in Artificial Intelligence in Health and Digital Health. She holds an NSERC Discovery Grant in Statistics for time series dependence modelling for complex data.10019D3ABAB, 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 701222OMNI â Publications144B5ACA0 URL: DOI: https://doi.org/10.1016/j.onehlt.2023.100540
| Extrait - [One Health, June 2023]
Background: Mpox (monkeypox), a disease historically endemic to Africa, has seen its largest outbreak in 2022 by spreading to many regions of the world and has become a public health threat. Informed policies aimed at controlling and managing the spread of this disease necessitate the use of adequate mathematical modeling strategies.
Objective: In this scoping review, we sought to identify the mathematical models that have been used to study mpox transmission in the literature in order to determine what are the model classes most frequently used, their assumptions, and the modelling gaps that need to be addressed in the context of the epidemiological characteristics of the ongoing mpox outbreak.
Methods: This study employed the methodology of the PRISMA guidelines for scoping reviews to identify the mathematical models available to study mpox transmission dynamics. Three databases (PubMed, Web of Science and MathSciNet) were systematically searched to identify relevant studies.
Results: A total of 5827 papers were screened from the database queries. After the screening, 35 studies that met the inclusion criteria were analyzed, and 19 were finally included in the scoping review. Our results show that compartmental, branching process, Monte Carlo (stochastic), agent-based, and network models have been used to study mpox transmission dynamics between humans as well as between humans and animals. Furthermore, compartmental and branching models have been the most commonly used classes.
Conclusions: There is a need to develop modeling strategies for mpox transmission that take into account the conditions of the current outbreak, which has been largely driven by human-to-human transmission in urban settings. In the current scenario, the assumptions and parameters used by most of the studies included in this review (which are largely based on a limited number of studies carried out in Africa in the early 80s) may not be applicable, and therefore, can complicate any public health policies that are derived from their estimates. The current mpox outbreak is also an example of how more research into neglected zoonoses is needed in an era where new and re-emerging diseases have become global public health threats. |
|
|