|
Nick Ogden Person1 #715329 Nicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada. | - Dr. Nick Ogden is a UK-trained veterinarian (University of Liverpool, 1983). After 10 years of mixed clinical practice, he then completed a doctorate in Lyme disease ecology at the Department of Zoology, University of Oxford.
- During the six years he spent as a professor at the Faculty of Veterinary Science, University of Liverpool, he continued his research into the ecology and epidemiology of tick-borne diseases of public health importance in Europe and those of importance to livestock production in Africa.
- In 2002 he moved to Canada, where he continued research on the ecology of Lyme disease and other zoonoses and climate change as a research scientist at the Public Health Agency of Canada (PHAC). As interim Director of the Environmental Issues Division of PHAC he directed a program on climate change and vector- and water-borne disease risks, and community adaptation to these risks.
- As Director of the Zoonoses Division he directed programs on national coordination, surveillance and prevention of zoonoses including Lyme disease.
- He is now a senior research scientist and Director of Public Health Risk Sciences division within the National Microbiology Laboratory of PHAC focusing on assessing risk by study of the ecology, epidemiology and genetic diversity of vectors and zoonotic and vector-borne micro-organisms (in particular the agent of Lyme disease), assessing impacts of climate change on zoonoses and vector-borne diseases, and developing tools for public health adaptation.
Tags: Nicholas H. Ogden |
+Citations (11) - CitationsAjouter une citationList by: CiterankMapLink[2] Assessing the mechanism of citywide test-trace-isolate Zero-COVID policy and exit strategy of COVID-19 pandemic
En citant: Pei Yuan, Yi Tan, Liu Yang, Elena Aruffo, Nicholas H. Ogden, Guojing Yang, Haixia Lu, Zhigui Lin, Weichuan Lin, Wenjun Ma, Meng Fan, Kaifa Wang, Jianhe Shen, Tianmu Chen, Huaiping Zhu Publication date: 4 October 2022 Publication info: Infectious Diseases of Poverty, Volume 11, Article number: 104 (2022) Cité par: David Price 1:49 PM 18 November 2023 GMT Citerank: (4) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 715294Contact tracing859FDEF6 URL: DOI: https://doi.org/10.1186/s40249-022-01030-7
| Extrait - [Infectious Diseases of Poverty, 4 October 2022]
Background: Countries that aimed for eliminating the cases of COVID-19 with test-trace-isolate policy are found to have lower infections, deaths, and better economic performance, compared with those that opted for other mitigation strategies. However, the continuous evolution of new strains has raised the question of whether COVID-19 eradication is still possible given the limited public health response capacity and fatigue of the epidemic. We aim to investigate the mechanism of the Zero-COVID policy on outbreak containment, and to explore the possibility of eradication of Omicron transmission using the citywide test-trace-isolate (CTTI) strategy.
Methods: We develop a compartmental model incorporating the CTTI Zero-COVID policy to understand how it contributes to the SARS-CoV-2 elimination. We employ our model to mimic the Delta outbreak in Fujian Province, China, from September 10 to October 9, 2021, and the Omicron outbreak in Jilin Province, China for the period from March 1 to April 1, 2022. Projections and sensitivity analyses were conducted using dynamical system and Latin Hypercube Sampling/ Partial Rank Correlation Coefficient (PRCC).
Results: Calibration results of the model estimate the Fujian Delta outbreak can end in 30 (95% confidence interval CI: 28–33) days, after 10 (95% CI: 9–11) rounds of citywide testing. The emerging Jilin Omicron outbreak may achieve zero COVID cases in 50 (95% CI: 41–57) days if supported with sufficient public health resources and population compliance, which shows the effectiveness of the CTTI Zero-COVID policy.
Conclusions: The CTTI policy shows the capacity for the eradication of the Delta outbreaks and also the Omicron outbreaks. Nonetheless, the implementation of radical CTTI is challenging, which requires routine monitoring for early detection, adequate testing capacity, efficient contact tracing, and high isolation compliance, which constrain its benefits in regions with limited resources. Moreover, these challenges become even more acute in the face of more contagious variants with a high proportion of asymptomatic cases. Hence, in regions where CTTI is not possible, personal protection, public health control measures, and vaccination are indispensable for mitigating and exiting the COVID-19 pandemic. |
Link[3] Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Julien Arino, Jane Heffernan, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 25 November 2022 Publication info: Front. Public Health, 25 November 2022 Cité par: David Price 2:18 PM 18 November 2023 GMT
Citerank: (9) 679793Hélène CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, Université de Montréal10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.3389/fpubh.2022.1026489
| Extrait - [Frontiers in Public Health, 25 November 2022]
Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak.
Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events.
Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements.
Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak. |
Link[4] Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Jane Heffernan, Julien Arino, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 11 September 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28137 Cité par: David Price 2:28 PM 18 November 2023 GMT
Citerank: (9) 679793Hélène CarabinCanada Research Chair and Full Professor, Epidemiology and One Health, Université de Montréal10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28137
| Extrait - [Journal of Medical Virology, 11 September 2022]
To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or “effective quarantine” by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent. |
Link[5] Community structured model for vaccine strategies to control COVID19 spread: A mathematical study
En citant: Elena Aruffo, Pei Yuan, Yi Tan, Evgenia Gatov, Effie Gournis, Sarah Collier, Nick Ogden, Jacques Bélair, Huaiping Zhu Publication date: 27 October 2022 Publication info: PLoS ONE 17(10): e0258648 Cité par: David Price 3:09 PM 19 November 2023 GMT Citerank: (6) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 701037MfPH – Publications144B5ACA0, 704041Vaccination859FDEF6, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1 URL: DOI: https://doi.org/10.1371/journal.pone.0258648
| Extrait - [PLoS ONE, 27 October 2022]
Initial efforts to mitigate the COVID-19 pandemic have relied heavily on non-pharmaceutical interventions (NPIs), including physical distancing, hand hygiene, and mask-wearing. However, an effective vaccine is essential to containing the spread of the virus. We developed a compartmental model to examine different vaccine strategies for controlling the spread of COVID-19. Our framework accounts for testing rates, test-turnaround times, and vaccination waning immunity. Using reported case data from the city of Toronto, Canada between Mar-Dec, 2020 we defined epidemic phases of infection using contact rates as well as the probability of transmission upon contact. We investigated the impact of vaccine distribution by comparing different permutations of waning immunity, vaccine coverage and efficacy throughout various stages of NPI’s relaxation in terms of cases and deaths. The basic reproduction number is also studied. We observed that widespread vaccine coverage substantially reduced the number of cases and deaths. Under phases with high transmission, an early or late reopening will result in new resurgence of the infection, even with the highest coverage. On the other hand, under phases with lower transmission, 60% of coverage is enough to prevent new infections. Our analysis of R0 showed that the basic reproduction number is reduced by decreasing the tests turnaround time and transmission in the household. While we found that household transmission can decrease following the introduction of a vaccine, public health efforts to reduce test turnaround times remain important for virus containment. |
Link[6] Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions
En citant: Zachary McCarthy, Yanyu Xiao, Francesca Scarabel, Biao Tang, Nicola Luigi Bragazzi, Kyeongah Nah, Jane M. Heffernan, Ali Asgary, V. Kumar Murty, Nicholas H. Ogden, Jianhong Wu Publication date: 1 December 2020 Publication info: Journal of Mathematics in Industry, Volume 10, Article number: 28 (2020) Cité par: David Price 8:40 PM 27 November 2023 GMT
Citerank: (9) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679893Kumar MurtyProfessor Kumar Murty is in the Department of Mathematics at the University of Toronto. His research fields are Analytic Number Theory, Algebraic Number Theory, Arithmetic Algebraic Geometry and Information Security. He is the founder of the GANITA lab, co-founder of Prata Technologies and PerfectCloud. His interest in mathematics ranges from the pure study of the subject to its applications in data and information security.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6, 715617Schools859FDEF6 URL: DOI: https://doi.org/10.1186/s13362-020-00096-y
| Extrait - [Journal of Mathematics in Industry, 1 December 2020]
Social contact mixing plays a critical role in influencing the transmission routes of infectious diseases. Moreover, quantifying social contact mixing patterns and their variations in a rapidly evolving pandemic intervened by changing public health measures is key for retroactive evaluation and proactive assessment of the effectiveness of different age- and setting-specific interventions. Contact mixing patterns have been used to inform COVID-19 pandemic public health decision-making; but a rigorously justified methodology to identify setting-specific contact mixing patterns and their variations in a rapidly developing pandemic, which can be informed by readily available data, is in great demand and has not yet been established. Here we fill in this critical gap by developing and utilizing a novel methodology, integrating social contact patterns derived from empirical data with a disease transmission model, that enables the usage of age-stratified incidence data to infer age-specific susceptibility, daily contact mixing patterns in workplace, household, school and community settings; and transmission acquired in these settings under different physical distancing measures. We demonstrated the utility of this methodology by performing an analysis of the COVID-19 epidemic in Ontario, Canada. We quantified the age- and setting (household, workplace, community, and school)-specific mixing patterns and their evolution during the escalation of public health interventions in Ontario, Canada. We estimated a reduction in the average individual contact rate from 12.27 to 6.58 contacts per day, with an increase in household contacts, following the implementation of control measures. We also estimated increasing trends by age in both the susceptibility to infection by SARS-CoV-2 and the proportion of symptomatic individuals diagnosed. Inferring the age- and setting-specific social contact mixing and key age-stratified epidemiological parameters, in the presence of evolving control measures, is critical to inform decision- and policy-making for the current COVID-19 pandemic. |
Link[7] The need for linked genomic surveillance of SARS-CoV-2
En citant: Caroline Colijn, David JD Earn, Jonathan Dushoff, Nicholas H Ogden, Michael Li, Natalie Knox, Gary Van Domselaar, Kristyn Franklin, Gordon Jolly, Sarah P Otto Publication date: 6 April 2022 Publication info: Can Commun Dis Rep. 2022 Apr 6; 48(4): 131–139, PMCID: PMC9017802PMID: 35480703 Cité par: David Price 10:34 PM 29 November 2023 GMT
Citerank: (11) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679814Jonathan DushoffProfessor in the Department Of Biology at McMaster University.10019D3ABAB, 679875Sarah OttoProfessor in Zoology. Theoretical biologist, Canada Research Chair in Theoretical and Experimental Evolution, and Killam Professor at the University of British Columbia.10019D3ABAB, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 701023GenomicsWhile virus genomes can describe the global context of introductions and origins of local clusters of cases, CANMOD will focus on building methods for characterizing and modelling local transmission once it is established, and for surveillance for viral determinants of increased fitness and of enhanced risk of spillover, virulence and transmission.859FDEF6, 701037MfPH – Publications144B5ACA0, 704045Covid-19859FDEF6, 707634Gary Van DomselaarDr. Gary Van Domselaar, PhD (University of Alberta, 2003) is the Chief of the Bioinformatics Laboratory at the National Microbiology Laboratory in Winnipeg Canada, and Adjunct Professor in the Department of Medical Microbiology at the University of Manitoba.10019D3ABAB, 708734Genomics859FDEF6, 715277Covid-19Covid-19 » Relevance » Genomics10000FFFACD URL: DOI: https://doi.org/10.14745/ccdr.v48i04a03
| Extrait - [Canada Communicable Disease Report, 6 April 2022]
Genomic surveillance during the coronavirus disease 2019 (COVID-19) pandemic has been key to the timely identification of virus variants with important public health consequences, such as variants that can transmit among and cause severe disease in both vaccinated or recovered individuals. The rapid emergence of the Omicron variant highlighted the speed with which the extent of a threat must be assessed. Rapid sequencing and public health institutions’ openness to sharing sequence data internationally give an unprecedented opportunity to do this; however, assessing the epidemiological and clinical properties of any new variant remains challenging. Here we highlight a “band of four” key data sources that can help to detect viral variants that threaten COVID-19 management: 1) genetic (virus sequence) data; 2) epidemiological and geographic data; 3) clinical and demographic data; and 4) immunization data. We emphasize the benefits that can be achieved by linking data from these sources and by combining data from these sources with virus sequence data. The considerable challenges of making genomic data available and linked with virus and patient attributes must be balanced against major consequences of not doing so, especially if new variants of concern emerge and spread without timely detection and action. |
Link[8] Efficacy of a “stay-at-home” policy on SARS-CoV-2 transmission in Toronto, Canada: a mathematical modelling study
En citant: Pei Yuan, Juan Li, Elena Aruffo, Evgenia Gatov, Qi Li, Tingting Zheng, Nicholas H. Ogden, Beate Sander, Jane Heffernan, Sarah Collier, Yi Tan, Jun Li, Julien Arino, Jacques Bélair, James Watmough, Jude Dzevela Kong, Iain Moyles, Huaiping Zhu Publication date: 19 April 2022 Publication info: cmaj OPEN, April 19, 2022 10 (2) E367-E378 Cité par: David Price 4:18 PM 4 December 2023 GMT
Citerank: (10) 679757Beate SanderCanada Research Chair in Economics of Infectious Diseases and Director, Health Modeling & Health Economics and Population Health Economics Research at THETA (Toronto Health Economics and Technology Assessment Collaborative).10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679815Jude KongDr. Jude Dzevela Kong is an Assistant Professor in the Department of Mathematics and Statistics at York University and the founding Director of the Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC). 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701222OMNI – Publications144B5ACA0, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715328Nonpharmaceutical Interventions (NPIs)859FDEF6 URL: DOI: https://doi.org/10.9778/cmajo.20200242
| Extrait - Background: Globally, nonpharmaceutical interventions for COVID-19, including stay-at-home policies, limitations on gatherings and closure of public spaces, are being lifted. We explored the effect of lifting a stay-at-home policy on virus resurgence under different conditions.
Methods: Using confirmed case data from Toronto, Canada, between Feb. 24 and June 24, 2020, we ran a compartmental model with household structure to simulate the impact of the stay-at-home policy considering different levels of compliance. We estimated threshold values for the maximum number of contacts, probability of transmission and testing rates required for the safe reopening of the community.
Results: After the implementation of the stay-at-home policy, the contact rate outside the household fell by 39% (from 11.58 daily contacts to 7.11). The effective reproductive number decreased from 3.56 (95% confidence interval [CI] 3.02–4.14) on Mar. 12 to 0.84 (95% CI 0.79–0.89) on May 6. Strong adherence to stay-at-home policies appeared to prevent SARS-CoV-2 resurgence, but extending the duration of stay-at-home policies beyond 2 months had little added effect on cumulative cases (25 958 for 65 days of a stay-at-home policy and 23 461 for 95 days, by July 2, 2020) and deaths (1404 for 65 days and 1353 for 95 days). To avoid a resurgence, the average number of contacts per person per day should be kept below 9, with strict nonpharmaceutical interventions in place.
Interpretation: Our study demonstrates that the stay-at-home policy implemented in Toronto in March 2020 had a substantial impact on mitigating the spread of SARS-CoV-2. In the context of the early pandemic, before the emergence of variants of concern, reopening schools and workplaces was possible only with other nonpharmaceutical interventions in place.
Nonpharmaceutical interventions for COVID-19, including stay-at-home policies, isolation of cases and contact tracing, as well as physical distancing, handwashing and use of protective equipment such as face masks, are effective mitigation strategies for preventing virus spread.1–4 Many studies investigating SARS-CoV-2 transmission and nonpharmaceutical interventions point to the importance of within- and between-household transmission. 5–8 Although stay-at-home policies can help curb spread of SARS-CoV-2 in the community by reducing contacts outside the household,8 they can increase contacts among family members, leading to higher risk within the household, 9 with secondary infection rates in households shown to be as high as 30%–52.7%.5,10 Furthermore, prolonged periods of stay-at-home policies may not be practical because of the essential operations of society, and may directly or indirectly harm the economy and the physical and mental health of individuals.11,12 Therefore, it is important to assess the optimal length of policy implementation for preventing virus resurgence.
During the epidemic, stay-at-home policies have been used to mitigate virus spread. The proportion of people staying at home is a paramount factor for evaluating the effectiveness of this policy implementation. For example, symptomatic individuals, those who tested positive for SARS-CoV-2 infection, and traced contacts are more likely to remain in the home through self-isolation or quarantine than uninfected or asymptomatic individuals. 13 Hence, rates of testing, diagnosis, isolation of cases, contact tracing and quarantine of contacts, as well as public compliance with stay-at-home policies, are essential factors for determining virus transmission and the likelihood of epidemic resurgence after the lifting of restrictive closures.1 To allow for this level of complexity, we developed a household-based transmission model to capture differences in policy uptake behaviour using confirmed case data from Toronto, Canada.
Throughout the pandemic, Canadian provinces and territories have implemented restrictive closures of businesses, schools, workplaces and public spaces to reduce the number of contacts in the population and prevent further virus spread, with these restrictions lifted and reinstituted at various times.14 On Mar. 17, 2020, Ontario declared a state of emergency, with directives including stay-at-home policies.15
We aimed to evaluate the effect of the stay-at-home policy issued in March 2020 on the transmission of SARS-CoV-2 in Toronto, accounting for average household size, the degree of adherence to the stay-at-home policy, and the length of policy implementation. Additionally, on the basis of the average family size and local epidemic data, we estimated the basic reproduction number (R0) and effective reproduction number (Rt) and investigated potential thresholds for the number of contacts, testing rates and use of nonpharmaceutical interventions that would be optimal for mitigating the epidemic. Hence, we conducted simulations of dynamic population behaviour under different reopening and adherence scenarios, to compare different public health strategies in hopes of adding those evaluations to the scientific literature. |
Link[9] Projections of the transmission of the Omicron variant for Toronto, Ontario, and Canada using surveillance data following recent changes in testing policies
En citant: Pei Yuan, Elena Aruffo, Yi Tan, Liu Yang, Nicholas H. Ogden, Aamir Fazil, Huaiping Zhu Publication date: 12 April 2022 Publication info: Infectious Disease Modelling, Volume 7, Issue 2, June 2022, Pages 83-93, ISSN 2468-0427 Cité par: David Price 4:20 PM 4 December 2023 GMT Citerank: (6) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 704022Surveillance859FDEF6, 704045Covid-19859FDEF6, 715831Diagnostic testing859FDEF6 URL: DOI: https://doi.org/10.1016/j.idm.2022.03.004
| Extrait - At the end of 2021, with the rapid escalation of COVID19 cases due to the Omicron variant, testing centers in Canada were overwhelmed. To alleviate the pressure on the PCR testing capacity, many provinces implemented new strategies that promote self testing and adjust the eligibility for PCR tests, making the count of new cases underreported. We designed a novel compartmental model which captures the new testing guidelines, social behaviours, booster vaccines campaign and features of the newest variant Omicron. To better describe the testing eligibility, we considered the population divided into high risk and non-high-risk settings. The model is calibrated using data from January 1 to February 9, 2022, on cases and severe outcomes in Canada, the province of Ontario and City of Toronto. We conduct analyses on the impact of PCR testing capacity, self testing, different levels of reopening and vaccination coverage on cases and severe outcomes. Our results show that the total number of cases in Canada, Ontario and Toronto are 2.34 (95%CI: 1.22–3.38), 2.20 (95%CI: 1.15–3.72), and 1.97(95%CI: 1.13–3.41), times larger than reported cases, respectively. The current testing strategy is efficient if partial restrictions, such as limited capacity in public spaces, are implemented. Allowing more people to have access to PCR reduces the daily cases and severe outcomes; however, if PCR test capacity is insufficient, then it is important to promote self testing. Also, we found that reopening to a pre-pandemic level will lead to a resurgence of the infections, peaking in late March or April 2022. Vaccination and adherence to isolation protocols are important supports to the testing policies to mitigate any possible spread of the virus. |
Link[10] School and community reopening during the COVID-19 pandemic: a mathematical modelling study
En citant: Pei Yuan, Elena Aruffo, Evgenia Gatov, Yi Tan, Qi Li, Nick Ogden, Sarah Collier, Bouchra Nasri, Iain Moyles, Huaiping Zhu Publication date: 2 February 2022 Publication info: R. Soc. open sci.9211883211883 Cité par: David Price 4:29 PM 4 December 2023 GMT
Citerank: (9) 679759Bouchra NasriProfessor Nasri is a faculty member of Biostatistics in the Department of Social and Preventive Medicine at the University of Montreal. Prof. Nasri is an FRQS Junior 1 Scholar in Artificial Intelligence in Health and Digital Health. She holds an NSERC Discovery Grant in Statistics for time series dependence modelling for complex data.10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679799Iain MoylesAssistant Professor in the Department of Mathematics and Statistics at York University. 10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada – April 2023 [1] 2794CAE1, 715617Schools859FDEF6, 715617Schools859FDEF6 URL: DOI: https://doi.org/10.1098/rsos.211883
| Extrait - Operating schools safely during the COVID-19 pandemic requires a balance between health risks and the need for in-person learning. Using demographic and epidemiological data between 31 July and 23 November 2020 from Toronto, Canada, we developed a compartmental transmission model with age, household and setting structure to study the impact of schools reopening in September 2020. The model simulates transmission in the home, community and schools, accounting for differences in infectiousness between adults and children, and accounting for work-from-home and virtual learning. While we found a slight increase in infections among adults (2.2%) and children (4.5%) within the first eight weeks of school reopening, transmission in schools was not the key driver of the virus resurgence in autumn 2020. Rather, it was community spread that determined the outbreak trajectory, primarily due to increases in contact rates among adults in the community after school reopening. Analyses of cross-infection among households, communities and schools revealed that home transmission is crucial for epidemic progression and safely operating schools, while the degree of in-person attendance has a larger impact than other control measures in schools. This study suggests that safe school reopening requires the strict maintenance of public health measures in the community. |
Link[11] Exploring the dynamics of the 2022 mpox outbreak in Canada
En citant: Rachael M. Milwid, Michael Li, Aamir Fazil, Mathieu Maheu-Giroux, Carla M. Doyle, Yiqing Xia, Joseph Cox, Daniel Grace, Milada Dvorakova, Steven C. Walker, Sharmistha Mishra, Nicholas H. Ogden Publication date: 6 December 2023 Publication info: Journal of Medical Virology, Volume 95, Issue 12 e29256 Cité par: David Price 8:25 PM 6 December 2023 GMT
Citerank: (9) 679844Mathieu Maheu-GirouxCanada Research Chair (Tier 2) in Population Health Modeling and Associate Professor, McGill University.10019D3ABAB, 679880Sharmistha MishraSharmistha Mishra is an infectious disease physician and mathematical modeler and holds a Tier 2 Canadian Research Chair in Mathematical Modeling and Program Science.10019D3ABAB, 685203McMasterPandemicCompartmental epidemic models for forecasting and analysis of infectious disease pandemics: contributions from Ben Bolker, Jonathan Dushoff, David Earn, Weiguang Guan, Morgan Kain, Michael Li, Irena Papst, Steve Walker (in alphabetical order).122C78CB7, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 701037MfPH – Publications144B5ACA0, 715290Steve WalkerSteve is the CANMOD Director of Data Science and a postdoctoral fellow in the Department of Mathematics and Statistics at McMaster University.10019D3ABAB, 715291macpan2McMasterPandemic was developed to provide forecasts and insights to Canadian public health agencies throughout the COVID-19 pandemic. The goal of this macpan2 project is to re-imagine McMasterPandemic, building it from the ground up with architectural and technological decisions that address the many lessons that we learned from COVID-19 about software.122C78CB7, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.29256
| Extrait - [Journal of Medical Virology, 6 December 2023]
The 2022 mpox outbreak predominantly impacted gay, bisexual, and other men who have sex with men (gbMSM). Two models were developed to support situational awareness and management decisions in Canada. A compartmental model characterized epidemic drivers at national/provincial levels, while an agent-based model (ABM) assessed municipal-level impacts of vaccination. The models were parameterized and calibrated using empirical case and vaccination data between 2022 and 2023. The compartmental model explored: (1) the epidemic trajectory through community transmission, (2) the potential for transmission among non-gbMSM, and (3) impacts of vaccination and the proportion of gbMSM contributing to disease transmission. The ABM incorporated sexual-contact data and modeled: (1) effects of vaccine uptake on disease dynamics, and (2) impacts of case importation on outbreak resurgence. The calibrated, compartmental model followed the trajectory of the epidemic, which peaked in July 2022, and died out in December 2022. Most cases occurred among gbMSM, and epidemic trajectories were not consistent with sustained transmission among non-gbMSM. The ABM suggested that unprioritized vaccination strategies could increase the outbreak size by 47%, and that consistent importation (≥5 cases per 10 000) is necessary for outbreak resurgence. These models can inform time-sensitive situational awareness and policy decisions for similar future outbreaks. |
|
|