|
Gary Van Domselaar Person1 #707634 Dr. Gary Van Domselaar, PhD (University of Alberta, 2003) is the Chief of the Bioinformatics Laboratory at the National Microbiology Laboratory in Winnipeg Canada, and Adjunct Professor in the Department of Medical Microbiology at the University of Manitoba. | - Dr. Van Domselaarâs lab combines novel analytical systems and advanced visualization systems to research and control disease. His work incorporates metagenomics, infectious disease genomic epidemiology, genome annotation, bacterial population structure analysis, and genome wide association studies to understand and respond to infectious disease threats.
- His lab leads or co-leads several large scale national and international genomics and bioinformatics collaborations, including the Bioinformatics Workgroup of the Canadian Genomics Research and Development Initiative Interdepartmental Project on Antimicrobial Resistance, and the Genome Canada Integrated Rapid Infectious Disease Analysis (IRIDA) project to develop an integrated computational platform for infectious disease outbreak investigations.
- Dr. Van Domselaar serves on a number of national and international scientific advisory groups including the Office of Infectious Diseases, US Centers for Disease Control, the Global Coalition for Science and Regulatory Research, the GenEpiO International Consortium, and the Canadian Public Health Laboratory Network.
|
+Citations (2) - CitationsAjouter une citationList by: CiterankMapLink[2] The need for linked genomic surveillance of SARS-CoV-2
En citant: Caroline Colijn, David JD Earn, Jonathan Dushoff, Nicholas H Ogden, Michael Li, Natalie Knox, Gary Van Domselaar, Kristyn Franklin, Gordon Jolly, Sarah P Otto Publication date: 6 April 2022 Publication info: Can Commun Dis Rep. 2022 Apr 6; 48(4): 131â139, PMCID: PMC9017802PMID: 35480703 CitĂ© par: David Price 10:36 PM 29 November 2023 GMT
Citerank: (11) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679814Jonathan DushoffProfessor in the Department Of Biology at McMaster University.10019D3ABAB, 679875Sarah OttoProfessor in Zoology. Theoretical biologist, Canada Research Chair in Theoretical and Experimental Evolution, and Killam Professor at the University of British Columbia.10019D3ABAB, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701023GenomicsWhile virus genomes can describe the global context of introductions and origins of local clusters of cases, CANMOD will focus on building methods for characterizing and modelling local transmission once it is established, and for surveillance for viral determinants of increased fitness and of enhanced risk of spillover, virulence and transmission.859FDEF6, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 708734Genomics859FDEF6, 715277Covid-19Covid-19 » Relevance » Genomics10000FFFACD, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.14745/ccdr.v48i04a03
| Extrait - [Canada Communicable Disease Report, 6 April 2022]
Genomic surveillance during the coronavirus disease 2019 (COVID-19) pandemic has been key to the timely identification of virus variants with important public health consequences, such as variants that can transmit among and cause severe disease in both vaccinated or recovered individuals. The rapid emergence of the Omicron variant highlighted the speed with which the extent of a threat must be assessed. Rapid sequencing and public health institutionsâ openness to sharing sequence data internationally give an unprecedented opportunity to do this; however, assessing the epidemiological and clinical properties of any new variant remains challenging. Here we highlight a âband of fourâ key data sources that can help to detect viral variants that threaten COVID-19 management: 1) genetic (virus sequence) data; 2) epidemiological and geographic data; 3) clinical and demographic data; and 4) immunization data. We emphasize the benefits that can be achieved by linking data from these sources and by combining data from these sources with virus sequence data. The considerable challenges of making genomic data available and linked with virus and patient attributes must be balanced against major consequences of not doing so, especially if new variants of concern emerge and spread without timely detection and action. |
|
|