|
Sarah Otto Person1 #679875 Professor in Zoology. Theoretical biologist, Canada Research Chair in Theoretical and Experimental Evolution, and Killam Professor at the University of British Columbia. | - The motivating aim of my research is to understand how evolutionary processes have generated the wondrous diversity of biological features observed in the natural world. Why is it that some species reproduce asexually, while most reproduce sexually? Why do some organisms have large genomes while closely related species have small ones? Why do some species choose to mate with very similar partners, while others avoid them? These are some of the fundamental questions that my research has aimed to resolve, using a combination of mathematical theory, statistical inference, and evolutionary experiments.
Tags: Sally Otto, Sarah Perin Otto |
+Citations (5) - CitationsAjouter une citationList by: CiterankMapLink[2] The need for linked genomic surveillance of SARS-CoV-2
En citant: Caroline Colijn, David JD Earn, Jonathan Dushoff, Nicholas H Ogden, Michael Li, Natalie Knox, Gary Van Domselaar, Kristyn Franklin, Gordon Jolly, Sarah P Otto Publication date: 6 April 2022 Publication info: Can Commun Dis Rep. 2022 Apr 6; 48(4): 131â139, PMCID: PMC9017802PMID: 35480703 CitĂ© par: David Price 10:35 PM 29 November 2023 GMT
Citerank: (11) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679814Jonathan DushoffProfessor in the Department Of Biology at McMaster University.10019D3ABAB, 685445Michael WZ LiMichael Li is Senior Scientist in the Public Health Risk Science Division (PHRS) of the Public Health Agency of Canada (PHAC) and a Research Associate at the South African Centre for Epidemiological Modelling and Analysis (SACEMA).10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701023GenomicsWhile virus genomes can describe the global context of introductions and origins of local clusters of cases, CANMOD will focus on building methods for characterizing and modelling local transmission once it is established, and for surveillance for viral determinants of increased fitness and of enhanced risk of spillover, virulence and transmission.859FDEF6, 701037MfPH â Publications144B5ACA0, 704045Covid-19859FDEF6, 707634Gary Van DomselaarDr. Gary Van Domselaar, PhD (University of Alberta, 2003) is the Chief of the Bioinformatics Laboratory at the National Microbiology Laboratory in Winnipeg Canada, and Adjunct Professor in the Department of Medical Microbiology at the University of Manitoba.10019D3ABAB, 708734Genomics859FDEF6, 715277Covid-19Covid-19 » Relevance » Genomics10000FFFACD, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB URL: DOI: https://doi.org/10.14745/ccdr.v48i04a03
| Extrait - [Canada Communicable Disease Report, 6 April 2022]
Genomic surveillance during the coronavirus disease 2019 (COVID-19) pandemic has been key to the timely identification of virus variants with important public health consequences, such as variants that can transmit among and cause severe disease in both vaccinated or recovered individuals. The rapid emergence of the Omicron variant highlighted the speed with which the extent of a threat must be assessed. Rapid sequencing and public health institutionsâ openness to sharing sequence data internationally give an unprecedented opportunity to do this; however, assessing the epidemiological and clinical properties of any new variant remains challenging. Here we highlight a âband of fourâ key data sources that can help to detect viral variants that threaten COVID-19 management: 1) genetic (virus sequence) data; 2) epidemiological and geographic data; 3) clinical and demographic data; and 4) immunization data. We emphasize the benefits that can be achieved by linking data from these sources and by combining data from these sources with virus sequence data. The considerable challenges of making genomic data available and linked with virus and patient attributes must be balanced against major consequences of not doing so, especially if new variants of concern emerge and spread without timely detection and action. |
Link[3] Charting a future for emerging infectious disease modelling in Canada
En citant: Mark A. Lewis, Patrick Brown, Caroline Colijn, Laura Cowen, Christopher Cotton, Troy Day, Rob Deardon, David Earn, Deirdre Haskell, Jane Heffernan, Patrick Leighton, Kumar Murty, Sarah Otto, Ellen Rafferty, Carolyn Hughes Tuohy, Jianhong Wu, Huaiping Zhu Publication date: 26 April 2023 Cité par: David Price 10:22 AM 15 December 2023 GMT
Citerank: (22) 679703EIDM?The Emerging Infectious Diseases Modelling Initiative (EIDM) â by the Public Health Agency of Canada and NSERC â aims to establish multi-disciplinary network(s) of specialists across the country in modelling infectious diseases to be applied to public needs associated with emerging infectious diseases and pandemics such as COVID-19. [1]7F1CEB7, 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 679769Christopher CottonChristopher Cotton is a Professor of Economics at Queenâs University where he holds the Jarislowsky-Deutsch Chair in Economic & Financial Policy.10019D3ABAB, 679776David EarnProfessor of Mathematics and Faculty of Science Research Chair in Mathematical Epidemiology at McMaster University.10019D3ABAB, 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RĂUNIS). 10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679826Laura CowenAssociate Professor in the Department of Mathematics and Statistics at the University of Victoria.10019D3ABAB, 679842Mark LewisProfessor Mark Lewis, Kennedy Chair in Mathematical Biology at the University of Victoria and Emeritus Professor at the University of Alberta.10019D3ABAB, 679858Patrick BrownAssociate Professor in the Centre for Global Health Research at St. Michaelâs Hospital, and in the Department of Statistical Sciences at the University of Toronto.10019D3ABAB, 679859Patrick LeightonPatrick Leighton is a Professor of Epidemiology and Public Health at the Faculty of Veterinary Medicine, University of Montreal, and an active member of the Epidemiology of Zoonoses and Public Health Research Group (GREZOSP) and the Centre for Public Health Research (CReSP). 10019D3ABAB, 679869Rob DeardonAssociate Professor in the Department of Production Animal Health in the Faculty of Veterinary Medicine and the Department of Mathematics and Statistics in the Faculty of Science at the University of Calgary.10019D3ABAB, 679890Troy DayTroy Day is a Professor and the Associate Head of the Department of Mathematics and Statistics at Queenâs University. He is an applied mathematician whose research focuses on dynamical systems, optimization, and game theory, applied to models of infectious disease dynamics and evolutionary biology.10019D3ABAB, 679893Kumar MurtyProfessor Kumar Murty is in the Department of Mathematics at the University of Toronto. His research fields are Analytic Number Theory, Algebraic Number Theory, Arithmetic Algebraic Geometry and Information Security. He is the founder of the GANITA lab, co-founder of Prata Technologies and PerfectCloud. His interest in mathematics ranges from the pure study of the subject to its applications in data and information security.10019D3ABAB, 686724Ellen RaffertyDr. Ellen Rafferty has a Master of Public Health and a PhD in epidemiology and health economics from the University of Saskatchewan. Dr. Raffertyâs research focuses on the epidemiologic and economic impact of public health policies, such as estimating the cost-effectiveness of immunization programs. She is interested in the incorporation of economics into immunization decision-making, and to that aim has worked with a variety of provincial and national organizations.10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 701037MfPH â Publications144B5ACA0, 701071OSN â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 704045Covid-19859FDEF6, 714608Charting a FutureCharting a Future for Emerging Infectious Disease Modelling in Canada â April 2023 [1] 2794CAE1, 715387SMMEID â Publications144B5ACA0 URL:
| Extrait - We propose an independent institute of emerging infectious disease modellers and policy experts, with an academic core, capable of renewing itself as needed. This institute will combine science and knowledge translation to inform decision-makers at all levels of government and ensure the highest level of preparedness (and readiness) for the next public health emergency. The Public Health Modelling Institute will provide cost-effective, science-based modelling for public policymakers in an easily visualizable, integrated framework, which can respond in an agile manner to changing needs, questions, and data. To be effective, the Institute must link to modelling groups within government, who are best able to pose questions and convey results for use by public policymakers. |
Link[4] Endemic means change as SARS-CoV-2 evolves
En citant: Sarah P. Otto, Ailene MacPherson, Caroline Colijn Publication date: 29 September 2023 Publication info: medRxiv 2023.09.28.23296264 CitĂ© par: David Price 4:43 PM 15 December 2023 GMT Citerank: (4) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 704045Covid-19859FDEF6, 708734Genomics859FDEF6 URL: DOI: https://doi.org/10.1101/2023.09.28.23296264
| Extrait - [medRxiv, 29 September 2023]
COVID-19 has become endemic, with dynamics that reflect the waning of immunity and re-exposure, by contrast to the epidemic phase driven by exposure in immunologically naĂŻve populations. Endemic does not, however, mean constant. Further evolution of SARS-CoV-2, as well as changes in behaviour and public health policy, continue to play a major role in the endemic load of disease and mortality. In this paper, we analyse evolutionary models to explore the impact that newly arising variants can have on the short-term and longer-term endemic load, characterizing how these impacts depend on the transmission and immunological properties of variants. We describe how evolutionary changes in the virus will increase the endemic load most for persistently immune-escape variants, by an intermediate amount for more transmissible variants, and least for transiently immune-escape variants. Balancing the tendency for evolution to favour variants that increase the endemic load, we explore the impact of vaccination strategies and non-pharmaceutical interventions (NPIs) that can counter these increases in the impact of disease. We end with some open questions about the future of COVID-19 as an endemic disease. |
Link[5] Endemic does not mean constant as SARS-CoV-2 continues to evolve
En citant: Sarah P Otto, Ailene MacPherson, Caroline Colijn Publication date: 9 March 2024 Publication info: Evolution, Volume 78, Issue 6, 1 June 2024, Pages 1092â1108, CitĂ© par: David Price 2:54 PM 30 July 2024 GMT Citerank: (4) 679761Caroline ColijnDr. Caroline Colijn works at the interface of mathematics, evolution, infection and public health, and leads the MAGPIE research group. She joined SFU's Mathematics Department in 2018 as a Canada 150 Research Chair in Mathematics for Infection, Evolution and Public Health. She has broad interests in applications of mathematics to questions in evolution and public health, and was a founding member of Imperial College London's Centre for the Mathematics of Precision Healthcare.10019D3ABAB, 701020CANMOD â PublicationsPublications by CANMOD Members144B5ACA0, 704045Covid-19859FDEF6, 722446Covid-19Covid-19 » Who. » Sarah Otto10000FFFACD URL: DOI: https://doi.org/10.1093/evolut/qpae041
| Extrait - [Evolution, 1 June 2024]
COVID-19 has become endemic, with dynamics that reflect the waning of immunity and re-exposure, by contrast to the epidemic phase driven by exposure in immunologically naĂŻve populations. Endemic does not, however, mean constant. Further evolution of SARS-CoV-2, as well as changes in behavior and public health policy, continue to play a major role in the endemic load of disease and mortality. In this article, we analyze evolutionary models to explore the impact that a newly arising variant can have on the short-term and longer-term endemic load, characterizing how these impacts depend on the transmission and immunological properties of the variants. We describe how evolutionary changes in the virus will increase the endemic load most for a persistently immune-escape variant, by an intermediate amount for a more transmissible variant, and least for a transiently immune-escape variant. Balancing the tendency for evolution to favor variants that increase the endemic load, we explore the impact of vaccination strategies and non-pharmaceutical interventions that can counter these increases in the impact of disease. We end with some open questions about the future of COVID-19 as an endemic disease. |
|
|