|
Hélène Carabin Person1 #679793 Canada Research Chair and Full Professor, Epidemiology and One Health, Université de Montréal | |
+Citations (3) - CitationsAjouter une citationList by: CiterankMapLink[2] Modeling vaccination and control strategies for outbreaks of monkeypox at gatherings
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Julien Arino, Jane Heffernan, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 25 November 2022 Publication info: Front. Public Health, 25 November 2022 Cité par: David Price 2:18 PM 18 November 2023 GMT
Citerank: (9) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.3389/fpubh.2022.1026489
| Extrait - [Frontiers in Public Health, 25 November 2022]
Background: The monkeypox outbreak in non-endemic countries in recent months has led the World Health Organization (WHO) to declare a public health emergency of international concern (PHEIC). It is thought that festivals, parties, and other gatherings may have contributed to the outbreak.
Methods: We considered a hypothetical metropolitan city and modeled the transmission of the monkeypox virus in humans in a high-risk group (HRG) and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered (SEIR) model and incorporated gathering events. Model simulations assessed how the vaccination strategies combined with other public health measures can contribute to mitigating or halting outbreaks from mass gathering events.
Results: The risk of a monkeypox outbreak was high when mass gathering events occurred in the absence of public health control measures. However, the outbreaks were controlled by isolating cases and vaccinating their close contacts. Furthermore, contact tracing, vaccinating, and isolating close contacts, if they can be implemented, were more effective for the containment of monkeypox transmission during summer gatherings than a broad vaccination campaign among HRG, when accounting for the low vaccination coverage in the overall population, and the time needed for the development of the immune responses. Reducing the number of attendees and effective contacts during the gathering could also prevent a burgeoning outbreak, as could restricting attendance through vaccination requirements.
Conclusion: Monkeypox outbreaks following mass gatherings can be made less likely with some restrictions on either the number and density of attendees in the gathering or vaccination requirements. The ring vaccination strategy inoculating close contacts of confirmed cases may not be enough to prevent potential outbreaks; however, mass gatherings can be rendered less risky if that strategy is combined with public health measures, including identifying and isolating cases and contact tracing. Compliance with the community and promotion of awareness are also indispensable to containing the outbreak. |
Link[3] Assessing transmission risks and control strategy for monkeypox as an emerging zoonosis in a metropolitan area
En citant: Pei Yuan, Yi Tan, Liu Yang, Nicholas H. Ogden, Jacques Bélair, Jane Heffernan, Julien Arino, James Watmough, Hélène Carabin, Huaiping Zhu Publication date: 11 September 2022 Publication info: Journal of Medical Virology, Volume 95, Issue 1 e28137 Cité par: David Price 2:28 PM 18 November 2023 GMT
Citerank: (9) 679797Huaiping ZhuProfessor of mathematics at the Department of Mathematics and Statistics at York University, a York Research Chair (YRC Tier I) in Applied Mathematics, the Director of the Laboratory of Mathematical Parallel Systems at the York University (LAMPS), the Director of the Canadian Centre for Diseases Modelling (CCDM) and the Director of the One Health Modelling Network for Emerging Infections (OMNI-RÉUNIS). 10019D3ABAB, 679803Jacques BélairProfessor, Department of Mathematics and Statistics, Université de Montréal10019D3ABAB, 679805James WatmoughProfessor in the Department of Mathematics and Statistics at the University of New Brunswick.10019D3ABAB, 679806Jane HeffernanJane Heffernan is a professor of infectious disease modelling in the Mathematics & Statistics Department at York University. She is a co-director of the Canadian Centre for Disease Modelling, and she leads national and international networks in mathematical immunology and the modelling of waning and boosting immunity.10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH – Publications144B5ACA0, 701222OMNI – Publications144B5ACA0, 715329Nick OgdenNicholas Ogden is a senior research scientist and Director of the Public Health Risk Sciences Division within the National Microbiology Laboratory at the Public Health Agency of Canada.10019D3ABAB, 715667mpox859FDEF6 URL: DOI: https://doi.org/10.1002/jmv.28137
| Extrait - [Journal of Medical Virology, 11 September 2022]
To model the spread of monkeypox (MPX) in a metropolitan area for assessing the risk of possible outbreaks, and identifying essential public health measures to contain the virus spread. The animal reservoir is the key element in the modeling of zoonotic disease. Using a One Health approach, we model the spread of the MPX virus in humans considering potential animal hosts such as rodents (e.g., rats, mice, squirrels, chipmunks, etc.) and emphasize their role and transmission of the virus in a high-risk group, including gay and bisexual men-who-have-sex-with-men (gbMSM). From model and sensitivity analysis, we identify key public health factors and present scenarios under different transmission assumptions. We find that the MPX virus may spill over from gbMSM high-risk groups to broader populations if the efficiency of transmission increases in the higher-risk group. However, the risk of outbreak can be greatly reduced if at least 65% of symptomatic cases can be isolated and their contacts traced and quarantined. In addition, infections in an animal reservoir will exacerbate MPX transmission risk in the human population. Regions or communities with a higher proportion of gbMSM individuals need greater public health attention. Tracing and quarantine (or “effective quarantine” by postexposure vaccination) of contacts with MPX cases in high-risk groups would have a significant effect on controlling the spreading. Also, monitoring for animal infections would be prudent. |
|
|