Extrait - As an explanation for time asymmetry, however, cosmologists increasingly consider it a bit of a cheat, for reasons that Roger Penrose of the University of Oxford and others have emphasized. For the process to work as desired, the ultradense dark energy had to begin in a very specific configuration. In fact, its entropy had to be fantastically smaller than the entropy of the hot, dense gas into which it decayed. That implies inflation has not really solved anything: it “explains” a state of unusually low entropy (a hot, dense, uniform gas) by invoking a prior state of even lower entropy (a smooth patch of space dominated by ultradense dark energy). It simply pushes the puzzle back a step: Why did inflation ever happen?"
One of the reasons many cosmologists invoke inflation as an explanation of time asymmetry is that the initial configuration of dark energy does not seem all that unlikely. At the time of inflation, our observable universe was less than a centimeter across. Intuitively, such a tiny region does not have many microstates, so it is not so improbable for the universe to stumble by accident into the microstate corresponding to inflation.
Unfortunately, this intuition is misleading. The early universe, even if it is only a centimeter across, has exactly the same number of microstates as the entire observable universe does today. According the rules of quantum mechanics, the total number of microstates in a system never changes. (Entropy increases not because the number of microstates does but because the system naturally winds up in the most generic possible macrostate.) In fact, the early universe is the same physical system as the late universe. One evolves into the other, after all.
Among all the different ways the microstates of the universe can arrange themselves, only an incredibly tiny fraction correspond to a smooth configuration of ultradense dark energy packed into a tiny volume. The conditions necessary for inflation to begin are extremely specialized and therefore describe a very low entropy configuration. If you were to choose configurations of the universe randomly, you would be highly unlikely to hit on the right conditions to start inflation. Inflation does not, by itself, explain why the early universe has a low entropy; it simply assumes it from the start. |