3b Feedback theory Method1 #714700
|
|
+Citations (1)
- CitationsAdd new citationList by: CiterankMapLink[1] Effective pandemic policy design through feedback does not need accurate predictions
Author: Klaske van Heusden, Greg E. Stewart, Sarah P. Otto, Guy A. Dumont Publication date: 3 February 2023 Publication info: PLOS Glob Public Health 3(2): e0000955 Cited by: David Price 11:15 AM 6 November 2023 GMT URL: DOI: https://doi.org/10.1371/journal.pgph.0000955
|
Excerpt / Summary [PLOS Global Public Health, 3 February 2023]
The COVID-19 pandemic has had an enormous toll on human health and well-being and led to major social and economic disruptions. Public health interventions in response to burgeoning case numbers and hospitalizations have repeatedly bent down the epidemic curve, effectively creating a feedback control system. Worst case scenarios have been avoided in many places through this responsive feedback. We aim to formalize and illustrate how to incorporate principles of feedback control into pandemic projections and decision-making, and ultimately shift the focus from prediction to the design of interventions. Starting with an epidemiological model for COVID-19, we illustrate how feedback control can be incorporated into pandemic management using a simple design that couples recent changes in case numbers or hospital occupancy with explicit policy restrictions. We demonstrate robust ability to control a pandemic using a design that responds to hospital cases, despite simulating large uncertainty in reproduction number R0 (range: 1.04-5.18) and average time to hospital admission (range: 4-28 days). We show that shorter delays, responding to case counts versus hospital measured infections, reduce both the cumulative case count and the average level of interventions. Finally, we show that feedback is robust to changing compliance to public health directives and to systemic changes associated with variants of concern and with the introduction of a vaccination program. The negative impact of a pandemic on human health and societal disruption can be reduced by coupling models of disease propagation with models of the decision-making process. In contrast to highly varying open-loop projections, incorporating feedback explicitly in the decision-making process is more reflective of the real-world challenge facing public health decision makers. Using feedback principles, effective control strategies can be designed even if the pandemic characteristics are highly uncertain, encouraging earlier and smaller actions that reduce both case counts and the extent of interventions. |