|
06 Infection Control during Mass Gathering Events Project1 #701044 Mass gatherings (MG) have the potential to facilitate global spread of infectious pathogens. Individuals from disease-free areas may acquire the pathogen while at the mass gathering site, which in turn could lead to its translocation in the originally disease-free zones when individuals return home. | - This project aims to develop model platforms, simulations and analyses, using Hajj and Olympics as case studies, for the need of immunization to ensure mass gathering events held with minimal COVID-19 infection risk. This project involve collaboration with Sanofi Pasteur for its expertise in Health Economics, Regional Disease Epidemiology.
Leads: Jianhong Wu (York University, Toronto), Edward Thommes (Sanofi)
Team Members: Julien Arino, Ali Asgary, Lydia Bourouiba, Dongmei Chen, Thomas Hurd, Jude Kong, Felicia Magpantay, Ashleigh Tuite, Xiaoqiang Zhao and Sanofi mass gathering infection modeling team |
+Verweise (1) - VerweiseHinzufĂŒgenList by: CiterankMapLink[1] Estimating social contacts in mass gatherings for disease outbreak prevention and management: case of Hajj pilgrimage
Zitieren: Mohammadali Tofighi, Ali Asgary, Ghassem Tofighi, Mahdi M. Najafabadi, Julien Arino, Amine Amiche, Ashrafur Rahman, Zachary McCarthy, Nicola Luigi Bragazzi, Edward Thommes, Laurent Coudeville, Martin David Grunnill, Lydia Bourouiba, Jianhong Wu Publication date: 1 September 2022 Publication info: Tropical Diseases, Travel Medicine and Vaccines, Volume 8, Article number: 19 (2022) Zitiert von: David Price 3:05 PM 18 November 2023 GMT Citerank: (6) 679750Ali AsgaryAssociate Professor and Associate Director, Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM) in the School of Administrative Studies, and Adjunct Professor in the School of Information Technology, at York University.10019D3ABAB, 679812Jianhong WuProfessor Jianhong Wu is a University Distinguished Research Professor and Senior Canada Research Chair in industrial and applied mathematics at York University. He is also the NSERC Industrial Research Chair in vaccine mathematics, modelling, and manufacturing. 10019D3ABAB, 679817Julien ArinoProfessor and Faculty of Science Research Chair in Fundamental Science with the Department of Mathematics at the University of Manitoba.10019D3ABAB, 701037MfPH â Publications144B5ACA0, 701222OMNI â Publications144B5ACA0, 715419Edward Thommes Edward W. Thommes is an Adjunct Professor of Mathematics at the University of Guelph and at York University. He is a Global Modeling Lead in the Modeling, Epidemiology and Data Science (MEDS) team of Sanofi Vaccines, an Affiliate Researcher in the Waterloo Institute for Complexity and Innovation (WICI), and a member of the Strategic Advisory Committee for the Mathematics for Public Health program at the Fields Institute.10019D3ABAB URL: DOI: https://doi.org/10.1186/s40794-022-00177-3
| Auszug - [Tropical Diseases, Travel Medicine and Vaccines, 1 September 2022]
Background: Most mass gathering events have been suspended due to the SARS-CoV-2 pandemic. However, with vaccination rollout, whether and how to organize some of these mass gathering events arises as part of the pandemic recovery discussions, and this calls for decision support tools. The Hajj, one of the world's largest religious gatherings, was substantively scaled down in 2020 and 2021 and it is still unclear how it will take place in 2022 and subsequent years. Simulating disease transmission dynamics during the Hajj season under different conditions can provide some insights for better decision-making. Most disease risk assessment models require data on the number and nature of possible close contacts between individuals.
Methods: We sought to use integrated agent-based modeling and discrete events simulation techniques to capture risky contacts among the pilgrims and assess different scenarios in one of the Hajj major sites, namely Masjid-Al-Haram.
Results: The simulation results showed that a plethora of risky contacts may occur during the rituals. Also, as the total number of pilgrims increases at each site, the number of risky contacts increases, and physical distancing measures may be challenging to maintain beyond a certain number of pilgrims in the site.
Conclusions: This study presented a simulation tool that can be relevant for the risk assessment of a variety of (respiratory) infectious diseases, in addition to COVID-19 in the Hajj season. This tool can be expanded to include other contributing elements of disease transmission to quantify the risk of the mass gathering events. |
|
|