Localized Epidemiological Agent-Based Simulation (ABS)

This ABS provides information about risk and the effects of both pharmacological and non-pharmacological interventions, as well as detailed control over the rapidly evolving epidemiological characteristics of COVID-19. [1]

  • Epidemiological modeling is used, under certain assumptions, to represent the spread of a disease within a population. Information generated by these models can then be applied to inform public health practices and mitigate risk. To provide useful and actionable preparedness information to administrators and policy makers, epidemiological models must be formulated to model highly localized environments such as office buildings, campuses, or long-term care facilities. In this paper, a highly configurable agent-based simulation (ABS) framework designed for localized environments is proposed.
  • This ABS provides information about risk and the effects of both pharmacological and non-pharmacological interventions, as well as detailed control over the rapidly evolving epidemiological characteristics of COVID-19. Simulation results can inform decisions made by facility administrators and be used as inputs for a complementary decision support system. The application of our ABS to our research lab environment as a proof of concept demonstrates the configurability and insights achievable with this form of modeling, with future work focused on extensibility and integration with decision support.
RELATED ARTICLESExplain
EIDM 
Software
Software programs
Localized Epidemiological Agent-Based Simulation (ABS)
Svetlana Yanushkevich
Agent-based
Covid-19
Environment
Simulation
Agent-based models
Age-Patch Mobility Mixing
AlgebraicJulia
Bayesian Evolutionary Analysis by Sampling Trees (BEAST)
CCODWG
Covasim
COVID Hospital Surge
COVID JupyterHub
COVID Prevalence Estimate
COVID-19 Re - Generation Time
covidseir
CovidSim
covid-topic-modeling
Dempster-Shafer Bayesian Network inference package
diseasemapping
Efficacy of quarantine
epi base package for SyncroSim
EpiEstim
epigrowthfit
EpiILM
EpiILMCT
Estimating the infection fatality rate of Covid-19
geostatsp
Hexagonalfan
localEM
macpan2
Mathematical epidemiology in a data-rich world
McMasterPandemic
MultiBD
Ontario pandemic mobility
Open Data Model
pathogen.jl
Pathosim
plASgraph2
pmcmc_dynamic_modeling
Prediction Codes
PyCoMod
python Population Modeller
SamPy
Stochastic simulations of classroom-level COVID-19 outbreaks
SyncroSim
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (2)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip