Manifold Transduction

Manifold-learning-based transduction is still a very young field of research.

Researchers show how the regularizer of Transductive Support Vector Machines (TSVM) can be trained by stochastic gradient descent for linear models and multi-layer architectures. The resulting methods can be trained online, have vastly superior training and testing speed to existing TSVM algorithms, can encode prior knowledge in the network architecture, and obtain competitive error rates. We then go on to propose a natural generalization of the TSVM loss function that takes into account neighborhood and manifold information directly, unifying the two-stage Low Density Separation method into a single criterion, and leading to state-of-the-art results.

RELATED ARTICLESExplain
Machine Learning Methods & Algorithms
Transductive inference
Manifold Transduction
Semi-Supervised Learning
Agglomerative Transduction
Partitioning Transduction
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (0)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip