Linde–Buzo–Gray algorithm

The Linde–Buzo–Gray algorithm (introduced by Yoseph Linde, Andrés Buzo and Robert M. Gray in 1980) is a vector quantization algorithm to derive a good codebook.
It is similar to the k-means method in data clustering.

The Linde–Buzo–Gray algorithm (introduced by Yoseph Linde, Andrés Buzo and Robert M. Gray in 1980) is a vector quantization algorithm to derive a good codebook.

It is similar to the k-means method in data clustering.

The algorithm[edit]

At each iteration, each vector is split into two new vectors.

  • A initial state: centroid of the training sequence;
  • B initial estimation #1: code book of size 2;
  • C final estimation after LGA: Optimal code book with 2 vectors;
  • D initial estimation #2: code book of size 4;
  • E final estimation after LGA: Optimal code book with 4 vectors;

References[edit]

External links[edit]

RELATED ARTICLESExplain
Machine Learning Methods & Algorithms
Unsupervised learning
Vector quantization (VQ)
Linde–Buzo–Gray algorithm
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (0)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip