Symbolic machine learning

Symbolic machine learning methods induce explicitly represented symbolic models from data. The models can thus be inspected, modified, used and verified by human experts and have the potential to become part of the knowledge in the respective application domain

Symbolic machine learning methods induce explicitly represented symbolic models from data. The models can thus be inspected, modified, used and verified by human experts and have the potential to become part of the knowledge in the respective application domain. Applications of symbolic machine learning methods to ecological modelling problems are numerous and varied, ranging from modelling algal growth in lagoons and lakes (e.g. in the Venice lagoon) to predicting biodegradation rates for chemicals. This paper gives an overview of machine learning applications to ecological modelling, focussing on applications of symbolic machine learning and giving more detailed accounts of several such applications.
RELATED ARTICLESExplain
Machine Learning Methods & Algorithms
Supervised learning
Symbolic machine learning
AODE - Averaged one-dependence estimators
Artificial neural network
Bayesian statistics
Case-based reasoning
Conditional Random Field
Decision tree learning
Ensemble learning
Gaussian process regression (Kriging)
Gene expression programming
Group method of data handling
Inductive logic programming
Information Fuzzy Networks (IFN)
Instance-based learning
Large-Scale Supervised Sparse Principal Component Analysis
Lazy learning
Learning automata
Learning Vector Quantization
Logistic Model Tree
Minimum message length
Minimum redundancy feature selection
Ordinal classification
Probably approximately correct learning
Random Forests
Regression analysis
Ripple-down rules
Statistical classification
Subsymbolic machine learning
Support vector machines
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (1)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip