Instance-based learning

instance-based learning or memory-based learning is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Instance-based learning is a kind of lazy learning.

In machine learninginstance-based learning or memory-based learning is a family of learning algorithms that, instead of performing explicit generalization, compare new problem instances with instances seen in training, which have been stored in memory. Instance-based learning is a kind of lazy learning.

It is called instance-based because it constructs hypotheses directly from the training instances themselves.[1] This means that the hypothesis complexity can grow with the data:[1] in the worst case, a hypothesis is a list of n training items and the computational complexity of classification a single new instance is O(n). One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Where other methods generally require the entire set of training data to be re-examined when one instance is changed, instance-based learners may simply store a new instance or throw an old instance away.

A simple example of an instance-based learning algorithm is the k-nearest neighbor algorithm. Daelemans and Van den Bosch describe variations of this algorithm for use in natural language processing (NLP), claiming that memory-based learning is both more psychologically realistic than other machine-learning schemes and more effective in practice.[2]

Gagliardi[3] applies this family of classifiers in medical field as second-opinion diagnostic tools and as tools for the knowledge extraction phase in the process of knowledge discovery in databases. One of these classifiers (called Prototype exemplar learning classifier (PEL-C) is able to extract a mixture of abstracted prototypical cases (that are syndromes) and selected atypical clinical cases.

 

References[edit]

  1. Jump up to:a b Stuart Russell and Peter Norvig (2003). Artificial Intelligence: A Modern Approach, second edition, p. 733. Prentice Hall. ISBN 0-13-080302-2
  2. Jump up^ Walter Daelemans and Antal van den Bosch (2005). Memory-Based Language Processing. Cambridge University Press.
  3. Jump up^ Gagliardi, F (2011). "Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction"Artificial Intelligence in Medicine 52 (3): 123–139.doi:10.1016/j.artmed.2011.04.002.

See also[edit]

External links[edit]

RELATED ARTICLESExplain
Machine Learning Methods & Algorithms
Supervised learning
Instance-based learning
Analogical modeling
k-nearest neighbor algorithm
AODE - Averaged one-dependence estimators
Artificial neural network
Bayesian statistics
Case-based reasoning
Conditional Random Field
Decision tree learning
Ensemble learning
Gaussian process regression (Kriging)
Gene expression programming
Group method of data handling
Inductive logic programming
Information Fuzzy Networks (IFN)
Large-Scale Supervised Sparse Principal Component Analysis
Lazy learning
Learning automata
Learning Vector Quantization
Logistic Model Tree
Minimum message length
Minimum redundancy feature selection
Ordinal classification
Probably approximately correct learning
Random Forests
Regression analysis
Ripple-down rules
Statistical classification
Subsymbolic machine learning
Support vector machines
Symbolic machine learning
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (1)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip