Learning Vector Quantization

In computer science, Learning Vector Quantization (LVQ), is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems.
LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to Self-organizing maps (SOM) and related to Neural gas, and to the k-Nearest Neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.

In computer scienceLearning Vector Quantization (LVQ), is a prototype-based supervised classification algorithm. LVQ is the supervised counterpart of vector quantization systems.

Overview[edit]

LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to Self-organizing maps (SOM) and related to Neural gas, and to the k-Nearest Neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen.[1]

An LVQ system is represented by prototypes W=(w(i),...,w(n)) which are defined in the feature space of observed data. In winner-take-all training algorithms one determines, for each data point, the prototype which is closest to the input according to a given distance measure. The position of this so-called winner prototype is then adapted, i.e. the winner is moved closer if it correctly classifies the data point or moved away if it classifies the data point incorrectly.

An advantage of LVQ is that it creates prototypes that are easy to interpret for experts in the respective application domain. [2] LVQ systems can be applied to multi-class classification problems in a natural way. It is used in a variety of practical applications, see http://liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html for an extensive bibliography.

A key issue in LVQ is the choice of an appropriate measure of distance or similarity for training and classification. Recently, techniques have been developed which adapt a parameterized distance measure in the course of training the system, see e.g. (Schneider, Biehl, and Hammer, 2009) [3] and references therein.

LVQ can be a source of great help in classifying text documents. [4]

References[edit]

  1. Jump up^ T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.
  2. Jump up^ T. Kohonen. Learning vector quantization. In: M.A. Arbib, editor, The Handbook of Brain Theory and Neural Networks., pages 537–540. MIT Press, Cambridge, MA, 1995.
  3. Jump up^ P. Schneider, B. Hammer, and M. Biehl. Adaptive Relevance Matrices in Learning Vector Quantization.Neural Computation 21: 3532–3561, 2009.http://www.mitpressjournals.org/doi/abs/10.1162/neco.2009.10-08-892
  4. Jump up^ Fahad and Sikander. Classification of textual documents using learning vector quantization. Information Technology Journal 6.1 (2007): 154-159. http://198.170.104.138/itj/2007/154-159.pdf

External links[edit]

  • LVQ for WEKA: Implementation of LVQ variants (LVQ1, OLVQ1, LVQ2.1, LVQ3, OLVQ3) for the WEKA Machine Learning Workbench.
  • lvq_pak official release (1996) by Kohonen and his team
  • LVQ for WEKA: Another implementation of LVQ in Java for the WEKA Machine Learning Workbench.
RELATED ARTICLESExplain
Machine Learning Methods & Algorithms
Supervised learning
Learning Vector Quantization
AODE - Averaged one-dependence estimators
Artificial neural network
Bayesian statistics
Case-based reasoning
Conditional Random Field
Decision tree learning
Ensemble learning
Gaussian process regression (Kriging)
Gene expression programming
Group method of data handling
Inductive logic programming
Information Fuzzy Networks (IFN)
Instance-based learning
Large-Scale Supervised Sparse Principal Component Analysis
Lazy learning
Learning automata
Logistic Model Tree
Minimum message length
Minimum redundancy feature selection
Ordinal classification
Probably approximately correct learning
Random Forests
Regression analysis
Ripple-down rules
Statistical classification
Subsymbolic machine learning
Support vector machines
Symbolic machine learning
Graph of this discussion
Enter the title of your article


Enter a short (max 500 characters) summation of your article
Enter the main body of your article
Lock
+Comments (0)
+Citations (1)
+About
Enter comment

Select article text to quote
welcome text

First name   Last name 

Email

Skip