|
Add to map
|
Post message
|
Move element
|
Cross-relate
|
Cite
|
New map
|
|
|
Marc Brisson Person1 #679839 Dr. Marc Brisson is full professor at Laval University where he leads the Research Group in Mathematical Modeling and Health Economics of Infectious Diseases. | 
- His research aims at developing mathematical models that predict the effectiveness and cost-effectiveness of interventions against infectious diseases to help policy decision-making.
- His current research mainly focuses on cervical cancers and COVID-19. Dr. Brisson has produced over 110 peer reviewed journal articles (including high impact journals such as The Lancet and The Lancet Family, JNCI, BMJ, and Annals of Internal Medicine), and made over 115 presentations at conferences, external seminars and workshops (over 60 as invited speaker).
- He has consulted for the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), the Canadian Partnership Against Cancer (CPAC), the Public Health Agency of Canada (PHAC) and the Canadian Immunization Committee (CIC).
- He has a BSc in Actuarial Science (1992-1996), a certificate in Statistics (1996) and an MSc in Epidemiology (1996-2001) from Laval University in Quebec City, and a PhD in Health Economics (1999-2004) from City University in London, England.
| Edit details | | Page view | Show >>Citations6Comments0HistoryInfo<< Hide |
CitationsAdd new citationList by: CiterankMap Link[2] Potential benefit of extended dose schedules of human papillomavirus vaccination in the context of scarce resources and COVID-19 disruptions in low-income and middle-income countries: a mathematical modelling analysis
Author: Élodie Bénard, Mélanie Drolet, Jean-François Laprise, Mark Jit, Kiesha Prem, Marie-Claude Boily, Marc Brisson Publication date: 1 January 2023 Publication info: The Lancet Global Health, VOLUME 11, ISSUE 1, E48-E58, JANUARY 2023 Cited by: David Price 8:34 PM 26 November 2023 GMT Citerank: (1) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0 URL: DOI: https://doi.org/10.1016/S2214-109X(22)00475-2
| Excerpt / Summary [The Lancet Global Health, January 2023]
Background: The WHO Strategic Advisory Group of Experts recommended that an extended interval of 3–5 years between the two doses of the human papillomavirus (HPV) vaccine could be considered to alleviate vaccine supply shortages. However, three concerns have limited the introduction of extended schedules: girls could be infected between the two doses, the vaccination coverage for the second dose could be lower at ages 13–14 years than at ages 9–10 years, and identifying girls vaccinated with a first dose to give them the second dose could be difficult. Using mathematical modelling, we examined the potential effect of these concerns on the population-level impact and efficiency of extended dose HPV vaccination schedules.
Methods: We used HPV-ADVISE, an individual-based, transmission-dynamic model of multitype HPV infection and disease, calibrated to country-specific data for four low-income and middle-income countries (India, Viet Nam, Uganda, and Nigeria). For the extended dose scenarios, we varied the vaccination coverage of the second dose among girls previously vaccinated, the one-dose vaccine efficacy, and the one-dose vaccine duration of protection. We also examined a strategy in which girls aged 14 years were vaccinated irrespective of their previous vaccination status. We used a scenario of girls-only two-dose vaccination at age 9 years (vaccine=9 valent, vaccine-type efficacy=100%, duration of protection=lifetime, and coverage=80%) as our comparator. We estimated two outcomes: the relative reduction in the age-standardised cervical cancer incidence (population-level impact) and the number of cervical cancers averted per 100 000 doses (efficiency).
Findings: Our model projected substantial reductions in cervical cancer incidence over 100 years with the two-dose schedule (79–86% depending on the country), compared with no vaccination. Projections for the 5-year extended schedule, in which the second dose is given only to girls previously vaccinated at age 9 years, were similar to the current two-dose schedule, unless vaccination coverage of the second dose is very low (reductions in cervical cancer incidence of 71–78% assuming 30% coverage at age 14 years among girls vaccinated at age 9 years). However, when the dose at age 14 years is given to girls irrespective of vaccination status and assuming high vaccination coverage, the model projected a substantially greater reduction in cervical cancer incidence compared with the current two-dose schedule (reductions in cervical cancer incidence of 86–93% assuming 70% coverage at age 14 years, irrespective of vaccination status). Efficiency of the extended schedule was greater than the two-dose schedule, even with a drop in vaccination coverage.
Interpretation: The three concerns are unlikely to have a substantial effect on the population-level impact of extended dose schedules. Hence, extended dose schedules will likely provide similar cervical cancer reductions as two-dose schedules, while reducing the number of doses required in the short-term, providing a more efficient use of scarce resources, and offering a 5-year time window to reassess the necessity of the second dose.
Funding: WHO, Canadian Institute of Health Research Foundation, Fonds de recherche du Québec–Santé, Digital Research Alliance of Canada, and Bill & Melinda Gates Foundation. |
Link[3] Two-Dose Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Effectiveness With Mixed Schedules and Extended Dosing Intervals: Test-Negative Design Studies From British Columbia and Quebec, Canada
Author: Danuta M Skowronski, Yossi Febriani, Manale Ouakki, et al. - Solmaz Setayeshgar, Shiraz El Adam, Macy Zou, Denis Talbot, Natalie Prystajecky, John R Tyson, Rodica Gilca, Nicholas Brousseau, Geneviève Deceuninck, Eleni Galanis, Chris D Fjell, Hind Sbihi, Elise Fortin, Sapha Barkati, Chantal Sauvageau, Monika Naus, David M Patrick, Bonnie Henry, Linda M N Hoang, Philippe De Wals, Christophe Garenc, Alex Carignan, Mélanie Drolet, Agatha N Jassem, Manish Sadarangani, Marc Brisson, Mel Krajden, Gaston De Serres Publication date: 19 April 2022 Publication info: Clinical Infectious Diseases, Volume 75, Issue 11, 1 December 2022, Pages 1980–1992 Cited by: David Price 8:53 PM 26 November 2023 GMT Citerank: (3) 679854Natalie Anne PrystajeckyNatalie Prystajecky is the program head for the Environmental Microbiology program at the BCCDC Public Health Laboratory. She is also a clinical associate professor in the Department of Pathology & Laboratory Medicine at UBC.10019D3ABAB, 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1093/cid/ciac290
| Excerpt / Summary [Clinical Infectious Diseases, December 2022]
Background: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada’s larger provinces.
Methods: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22–47) 2021.
Results: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7–8-week versus manufacturer-specified 3–4-week intervals between mRNA doses.
Conclusions: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7–8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children. |
Link[4] Estimated Protection of Prior SARS-CoV-2 Infection Against Reinfection With the Omicron Variant Among Messenger RNA–Vaccinated and Nonvaccinated Individuals in Quebec, Canada
Author: Sara Carazo, Danuta M. Skowronski, Marc Brisson, et al. Publication date: 14 October 2022 Publication info: JAMA Netw Open. 2022;5(10):e2236670. Cited by: David Price 10:54 PM 27 November 2023 GMT Citerank: (2) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1001/jamanetworkopen.2022.36670
| Excerpt / Summary [JAMA Network Open, 14 October 2022]
Importance: The Omicron variant is phylogenetically and antigenically distinct from earlier SARS-CoV-2 variants and the original vaccine strain. Protection conferred by prior SARS-CoV-2 infection against Omicron reinfection, with and without vaccination, requires quantification.
Objective: To estimate the protection against Omicron reinfection and hospitalization conferred by prior heterologous non-Omicron SARS-CoV-2 infection and/or up to 3 doses of an ancestral, Wuhan-like messenger RNA (mRNA) vaccine.
Design, Setting, and Participants: This test-negative, population-based case-control study was conducted between December 26, 2021, and March 12, 2022, and included community-dwelling individuals aged 12 years or older who were tested for SARS-CoV-2 infection in the province of Quebec, Canada.
Exposures: Prior laboratory-confirmed SARS-CoV-2 infection with or without mRNA vaccination.
Main Outcomes and Measures: The main outcome was laboratory-confirmed SARS-CoV-2 reinfection and associated hospitalization, presumed to be associated with the Omicron variant according to genomic surveillance. The odds of prior infection with or without vaccination were compared for case participants with Omicron infection and associated hospitalizations vs test-negative control participants. Estimated protection was derived as 1 − the odds ratio, adjusted for age, sex, testing indication, and epidemiologic week. Analyses were stratified by severity and time since last non-Omicron infection or vaccine dose.
Results: This study included 696 439 individuals (224 007 case participants and 472 432 control participants); 62.2% and 63.9% were female and 87.4% and 75.5% were aged 18 to 69 years, respectively. Prior non-Omicron SARS-CoV-2 infection was detected for 9505 case participants (4.2%) and 29 712 control participants (6.3%). Among nonvaccinated individuals, prior non-Omicron infection was associated with a 44% reduction (95% CI, 38%-48%) in Omicron reinfection risk, which decreased from 66% (95% CI, 57%-73%) at 3 to 5 months to 35% (95% CI, 21%-47%) at 9 to 11 months postinfection and was below 30% thereafter. The more severe the prior infection, the greater the risk reduction. Estimated protection (95% CI) against Omicron infection was consistently significantly higher among vaccinated individuals with prior infection compared with vaccinated infection-naive individuals, with 65% (63%-67%) vs 20% (16%-24%) for 1 dose, 68% (67%-70%) vs 42% (41%-44%) for 2 doses, and 83% (81%-84%) vs 73% (72%-73%) for 3 doses. For individuals with prior infection, estimated protection (95% CI) against Omicron-associated hospitalization was 81% (66%-89%) and increased to 86% (77%-99%) with 1, 94% (91%-96%) with 2, and 97% (94%-99%) with 3 mRNA vaccine doses, without signs of waning.
Conclusions and Relevance: The findings of this study suggest that vaccination with 2 or 3 mRNA vaccine doses among individuals with prior heterologous SARS-CoV-2 infection provided the greatest protection against Omicron-associated hospitalization. In the context of program goals to prevent severe outcomes and preserve health care system capacity, a third mRNA vaccine dose may add limited protection in twice-vaccinated individuals with prior SARS-CoV-2 infection. |
Link[5] Protection against omicron (B.1.1.529) BA.2 reinfection conferred by primary omicron BA.1 or pre-omicron SARS-CoV-2 infection among health-care workers with and without mRNA vaccination: a test-negative case-control study
Author: Sara Carazo, Danuta M Skowronski, Marc Brisson, et al. Publication date: 21 September 2022 Publication info: The Lancet Infectious Diseases, VOLUME 23, ISSUE 1, P45-55, JANUARY 2023 Cited by: David Price 11:13 PM 27 November 2023 GMT Citerank: (2) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1016/S1473-3099(22)00578-3
| Excerpt / Summary [The Lancet Infectious Diseases, 21 September 2022]
Background: There is a paucity of data on vaccine-induced or infection-induced (hybrid or natural) immunity against omicron (B.1.1.529) subvariant BA.2, particularly in comparing the effects of previous SARS-CoV-2 infection with the same or different genetic lineage. We aimed to estimate the protection against omicron BA.2 associated with previous primary infection with omicron BA.1 or pre-omicron SARS-CoV-2, among health-care workers with and without mRNA vaccination.
Methods: We conducted a test-negative case-control study among health-care workers aged 18 years or older who were tested for SARS-CoV-2 in Quebec, Canada, between March 27 and June 4, 2022, when BA.2 was the predominant variant and was presumptively diagnosed with a positive test result. We identified cases (positive test during study period) and controls (negative test during study period) using the provincial laboratory database that records all nucleic acid amplification testing for SARS-CoV-2 in Quebec, and used the provincial immunisation registry to determine vaccination status. Logistic regression models compared the likelihood of BA.2 infection or reinfection (second positive test ≥30 days after primary infection) among health-care workers who had previous primary infection and none to three mRNA vaccine doses versus unvaccinated health-care workers with no primary infection.
Findings: 258 007 SARS-CoV-2 tests were done during the study period. Among those with a valid result and that met the inclusion criteria, there were 37 732 presumed BA.2 cases (2521 [6·7%] reinfections following pre-omicron primary infection and 659 [1·7%] reinfections following BA.1 primary infection) and 73 507 controls (7360 [10·0%] had pre-omicron primary infection and 12 315 [16·8%] had BA.1 primary infection). Pre-omicron primary infection was associated with a 38% (95% CI 19–53) reduction in BA.2 infection risk, with higher BA.2 protection among those who had also received one (56%, 95% CI 47–63), two (69%, 64–73), or three (70%, 66–74) mRNA vaccine doses. Omicron BA.1 primary infection was associated with greater protection against BA.2 infection (risk reduction of 72%, 95% CI 65–78), and protection was increased further among those who had received two doses of mRNA vaccine (96%, 95–96), but was not improved with a third dose (96%, 95–97).
Interpretation: Health-care workers who had received two doses of mRNA vaccine and had previous BA.1 infection were subsequently well protected for a prolonged period against BA.2 reinfection, with a third vaccine dose conferring no improvement to that hybrid protection. If this protection also pertains to future variants, there might be limited benefit from additional vaccine doses for people with hybrid immunity, depending on timing and variant. |
Link[6] Single-Dose Messenger RNA Vaccine Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2 in Healthcare Workers Extending 16 Weeks Postvaccination: A Test-Negative Design From Québec, Canada
Author: Sara Carazo, Denis Talbot, Nicole Boulianne, Marc Brisson, Rodica Gilca, Geneviève Deceuninck, Nicholas Brousseau, Mélanie Drolet, Manale Ouakki, Chantal Sauvageau, Sapha Barkati, Élise Fortin, Alex Carignan, Philippe De Wals, Danuta M Skowronski, Gaston De Serres Publication date: 1 July 2022 Publication info: Clinical Infectious Diseases, Volume 75, Issue 1, 1 July 2022, Pages e805–e813, Cited by: David Price 11:43 PM 27 November 2023 GMT Citerank: (2) 701020CANMOD – PublicationsPublications by CANMOD Members144B5ACA0, 704041Vaccination859FDEF6 URL: DOI: https://doi.org/10.1093/cid/ciab739
| Excerpt / Summary [Clinical Infectious Diseases, 1 July 2022]
Background: In Canada, first and second doses of messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were uniquely spaced 16 weeks apart. We estimated 1- and 2-dose mRNA vaccine effectiveness (VE) among healthcare workers (HCWs) in Québec, Canada, including protection against varying outcome severity, variants of concern (VOCs), and the stability of single-dose protection up to 16 weeks postvaccination.
Methods: A test-negative design compared vaccination among SARS-CoV-2 test–positive and weekly matched (10:1), randomly sampled, test-negative HCWs using linked surveillance and immunization databases. Vaccine status was defined by 1 dose ≥14 days or 2 doses ≥7 days before illness onset or specimen collection. Adjusted VE was estimated by conditional logistic regression.
Results: Primary analysis included 5316 cases and 53 160 controls. Single-dose VE was 70% (95% confidence interval [CI], 68%–73%) against SARS-CoV-2 infection; 73% (95% CI, 71%–75%) against illness; and 97% (95% CI, 92%–99%) against hospitalization. Two-dose VE was 86% (95% CI, 81%–90%) and 93% (95% CI, 89%–95%), respectively, with no hospitalizations. VE was higher for non-VOCs than VOCs (73% Alpha) among single-dose recipients but not 2-dose recipients. Across 16 weeks, no decline in single-dose VE was observed, with appropriate stratification based upon prioritized vaccination determined by higher vs lower likelihood of direct patient contact.
Conclusions: One mRNA vaccine dose provided substantial and sustained protection to HCWs extending at least 4 months postvaccination. In circumstances of vaccine shortage, delaying the second dose may be a pertinent public health strategy. |
|
|