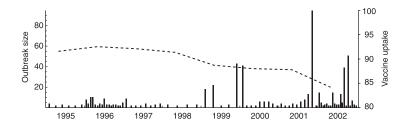
Modelling the influence of human behaviour on the spread of infectious diseases

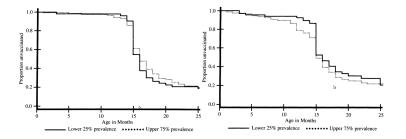
Sebastian Funk

Institute of Zoology, Zoological Society of London

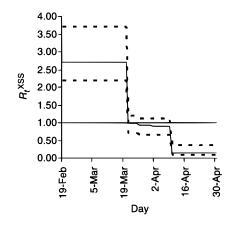

March 2011

Contents

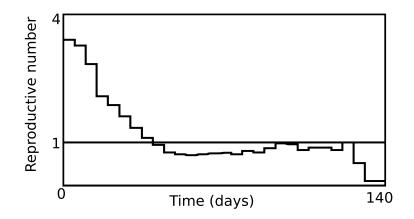
- 1. Why model behaviour?
- 2. What do we need to know to model behaviour?
- 3. How can we model behaviour?
- 4. What are the challenges?


Why model behaviour? Vaccination and measles in the UK

Jansen et al. (2003), Science 301, 804.


Why model behaviour?

Prevalence-elastic behaviour

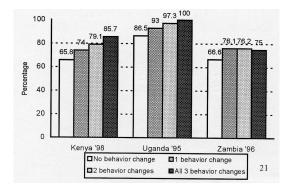

Philipson (1996), J Hum Resour, 31:611-630.

Why model behaviour? SARS in Hong Kong

Riley et al. (2003), Science, 300(5627): 1961-1966.

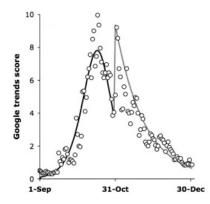
Why model behaviour? 1918 influenza in Germany

Nishiura et al. (2007), Theor Biol Med Mol, 4:20.


Why model behaviour?

Behaviour can

- 1. be a source of heterogeneity
- 2. change
- 3. affect and be affected by disease dynamics


What do we need to know to model behaviour?

What do we need to know to model behaviour? Causes of behavioural change

MacIntyre et al. (2001), AIDS Educ Prev, 13:160-174.

What do we need to know to model behaviour? Global vs local influence

Bentley and Ormerod (2009), Soc Sci Med, 71(3):482-485.

What do we need to know to model behaviour? Impacts on epidemiology

Social distancing

- ► Vaccination
- ► Face masks, hygiene
- Use of medication
- ► Fleeing

What do we need to know to model behaviour?

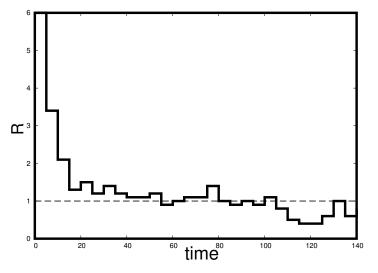
- 1. What causes people to act, and in which way?
- 2. What is the impact on disease dynamics?

How can we model behaviour?

1. What causes people to act, an in which way?

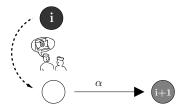
- Modelling decision process explicitly vs assuming behaviour
- Different sources of influence
 - Prevalence vs belief
 - Local vs global
- 2. What is the impact on disease dynamics?
 - Change in state $(S \rightarrow R)$
 - Change in transmission parameters (transmission rate β)
 - Change in contact network structure (rewiring)

How did we model behaviour?



1. What causes people to act, an in which way?

- Modelling decision process explicitly vs assuming behaviour (reduced susceptibility)
- Different sources of influence
 - Prevalence vs belief
 - Local vs global (Disease vs influence network)
- 2. What is the impact on disease dynamics?
 - Change in state $(S \rightarrow R)$
 - Change in transmission parameters (transmission rate β)
 - Change in contact network structure (rewiring)


The model

$\begin{array}{l} \mathsf{Measuring} \ \mathsf{R} \\ \text{(in simulations)} \end{array}$

Awareness dynamics

Spread of awareness

i: distance of information from source / age of information

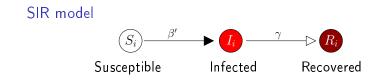
Awareness dynamics

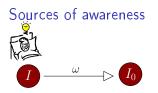
i: distance of information from source / age of information

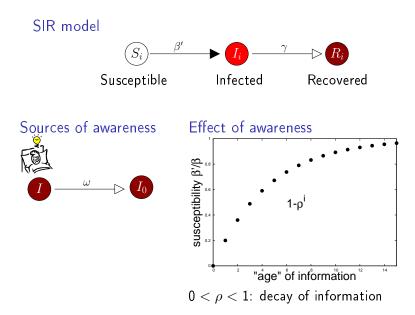
Awareness dynamics

i: distance of information from source / age of information

$$\frac{dN_i}{dt} = -\alpha \frac{N_i}{N} N_{$$

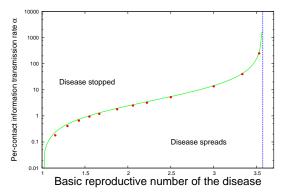

 $N_{< i} = \sum_{0}^{i-1} N_j$ are those having better than *i*-th hand information.

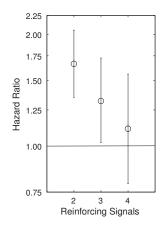

SIR model $(\overline{S_i}) \xrightarrow{\beta'} I_i$


Susceptible Infected Recovered

 γ

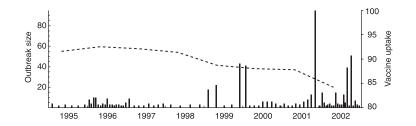
 R_i




On a network

Local approximation (next-generation approach)

 $R_0^{\mathrm{crit}}(\rho,\omega)$


Influence of peers Adoption of health behaviour

Centola et al. (2010), Science, 329, 1194-1197

What are the challenges?

What are the challenges?

Acknowledgements

Thank you for listening!

Engineering and Physical Sciences Research Council

Vincent Jansen, Erez Gilad, Chris Watkins, Marcel Salathé

SF, Salathé M. and Jansen V.A.A. "Modelling the influence of human behaviour on the spread of infectious diseases: a review." J R Soc Interface, 7(50):1247-1256, 2010.

SF, Gilad E., Watkins C. and Jansen V.A.A. "The spread of awareness and its impact on epidemic outbreaks." *Proc Natl Acad Sci U S A*, 106(16):6872-6877, 2009.

Summary

- 1. Why model behaviour? Behaviour can
 - be a source of heterogeneity
 - change
 - affect disease dynamics
- 2. What do we need to know to model behaviour?
 - What is the impact on disease dynamics?
 - What causes people to act, and in which way?
- 3. How can we model behaviour?
 - Various options for modifying an SIR model
- 4. What are the challenges?
 - Behaviour models to explain observed data
 - Others?