
What do citation screening for evidence-based medicine
and generating land-cover maps of the Earth have in
common? Both are real-world problems for which we

have applied machine-learning techniques to assist human
experts, and in each case doing so has motivated the develop-
ment of novel machine-learning methods. Our research group
works closely with domain experts from other disciplines to
solve practical problems. For many tasks, off-the-shelf methods
work wonderfully, and when asked for a collaboration we sim-
ply point the domain experts to the myriad available open-
source machine-learning and data-mining tools. In other cases,
however, we discover that the task presents unique challenges
that render traditional machine-learning methods inadequate,
necessitating the development of novel techniques. 

In this article we describe two of our collaborative efforts,
both of which have addressed the same question: if you do not
initially obtain the classification performance that you are look-
ing for, what is the reason and what can you do about it? The
point we would like to make is that much of the research in
machine learning focuses on improvements to existing tech-
niques, as measured over benchmark data sets. However, in our
experience, when applying machine learning, we have found
that the choice of learning algorithm (for example, logistic
regression, SVM, decision tree, and so on) usually has only a
small effect on performance, and for most real-world problems
it’s easy to try some large subset of methods (for example, using
cross-validation) until one finds the best method for the task at
hand. In our view, the truly interesting questions arise when
none of the available machine-learning algorithms performs
adequately. 
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� Machine-learning research is often conduct-
ed in vitro, divorced from motivating practical
applications. A researcher might develop a new
method for the general task of classification,
then assess its utility by comparing its perform-
ance (for example, accuracy or AUC) to that of
existing classification models on publicly avail-
able data sets. In terms of advancing machine
learning as an academic discipline, this
approach has thus far proven quite fruitful.
However, it is our view that the most interesting
open problems in machine learning are those
that arise during its application to real-world
problems. We illustrate this point by reviewing
two of our interdisciplinary collaborations, both
of which have posed unique machine-learning
problems, providing fertile ground for novel
research. 



In such cases, one needs to address three ques-
tions: (1) why is the performance poor? (2) can it
be improved? and (3) if so, how? Over the past 15
years, our research group has worked on over 14
domains (Draper, Brodley, and Utgoff 1994; Moss
et al. 1997; Brodley and Smyth 1997; Brodley et al.
1999; Shyu et al. 1999; Lane and Brodley 1999;
Kapadia, Fortes, and Brodley 1999; Friedl, Brodley,
and Stahler 1999; Stough and Brodley 2001;
MacArthur, Brodley, and Broderick 2002; Dy et al.
2003; Early, Brodley, and Rosenberg 2003; Aisen et
al. 2003; Pusara and Brodley 2004; Fern, Brodley,
and Friedl 2005; Lomasky et al. 2007; Preston et al.
2010; Rebbapragada et al. 2009; 2008b; 2008a),
with an emphasis on effectively collaborating with
domain experts. In the majority of these, poor per-
formance was due not to the choice of learning
algorithm, but rather was a problem with the train-
ing data. In particular, we find that poor classifier
performance is usually attributable to one or more
of the following three problems. First, insufficient
training data was collected — either the training
data set is too small to learn a generalizable model
or the data are a skewed sample that does not
reflect the true underlying population distribution.
Second, the data are noisy; either the feature values
have random or systematic noise, or the labels pro-
vided by the domain expert are noisy. Third, the
features describing the data are not sufficient for
making the desired discriminations. For example, a
person’s shoe size will not help in diagnosing what
type of pulmonary disease he or she has.1

The unifying theme of this work is that applica-
tion-driven research begets novel machine-learn-
ing methods. The reason for this is twofold: first, in
the process of fielding machine learning, one dis-
covers the boundaries and limitations of existing
methods, spurring new research. Second, when
one is actively working with domain experts, it is
natural to ask how one might better exploit their
time and expertise to improve the performance of
the machine-learning system. This has motivated
our research into interactive protocols for acquir-
ing more training data (for example, active learn-
ing and variants), cleaning existing labeled data,
and exploiting additional expert annotation
beyond instance labels (that is, alternative forms of
supervision). 

Active Learning without 
Simplifying Assumptions 

When confronted with inadequate classifier per-
formance, perhaps the most natural strategy for
improving performance is to acquire more labeled
training data. Unfortunately, this requires that the
domain expert spend valuable time manually cat-
egorizing instances (for example, biomedical cita-
tions or land-surface images) into their respective

classes. It is critical to judiciously use expert time
and minimize the expert’s overall effort. 

In an ongoing collaboration that investigates
methods to semiautomate biomedical citation
screening for systematic reviews, we have devel-
oped novel strategies that better exploit experts by
using their annotation time wisely and providing
a framework that incorporates their domain
knowledge into the underlying machine-learning
model. In this section we review this collaboration,
illustrating how working closely with domain
experts can motivate new directions in machine-
learning research by exposing inadequacies in con-
ventional techniques. 

Systematic Reviews 
Over the past few decades, evidence-based medi-
cine (EBM) (Sackett et al. 1996) has become
increasingly important in guiding health-care best
practices. Systematic reviews, in which a specific
clinical question is addressed by an exhaustive
assessment of pertinent published scientific
research, are a core component of EBM. Citation
screening is the process in which expert reviewers
(clinical researchers, who are typically doctors)
evaluate biomedical document abstracts to assess
whether they are germane to the review at hand
(that is, whether they meet the prespecified clini-
cal criteria). This is an expensive and laborious, but
critical, step in conducting systematic reviews. A
systematic review typically begins with a PubMed2

query to retrieve candidate abstracts. The team of
clinicians must then identify the relevant subset of
this retrieved set. The next step is to review the full
text of all “relevant” articles to select those that
ultimately will be included in the systematic
review. Figure 1 illustrates the systematic review
process. Shown in log scale are three piles contain-
ing the total number of papers in PubMed in 2011
(left), potentially relevant papers (middle), and
papers deemed relevant and requiring full-text
screening (right). Here we focus on the process
between the middle and right piles, known as cita-
tion screening. 

The torrential volume of published biomedical
literature means reviewers must evaluate many
thousands of abstracts for a given systematic
review. Indeed, for one such review concerning dis-
ability in infants and children, researchers at the
Tufts Evidence-Based Practice Center screened
more than 30,000 citations. This process is per-
formed for every systematic review. The number of
citations examined per review is increasing as EBM
becomes more integral to the identification of best
practices. Figure 2 illustrates the magnitude of this
task. In general, an experienced reviewer can
screen (that is, label) an abstract in approximately
30 seconds. For the aforementioned review in
which more than 30,000 citations were screened,
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this translates to more than 250 (tedious) hours of
uninterrupted work. Moreover, because doctors
usually perform this task, citation screening is
incredibly expensive. 

Addressing the Limitations of 
Off-the-Shelf Machine Learning 
In collaboration with the evidence-based practice
center, our group is developing machine-learning
methods to semiautomate citation screening. We
begin by framing the task as a binary text classifi-
cation problem; each citation is either relevant or
irrelevant to the current systematic review. The
aim then is to induce a classifier capable of making
this distinction automatically, allowing the review-
ers to safely ignore citations screened out (that is,
labeled irrelevant) by the classifier. The combina-
tion of expensive annotation time and the require-
ment that a new classifier must be learned for each
systematic review has motivated our interest in the
active learning framework (Settles 2009), which
attempts to mitigate the amount of labeled data
required to induce a sufficiently performing classi-
fier by training the model interactively. The intu-
ition is that by selecting examples cleverly, rather
than at random, less labeled data will be required
to induce a good model, thereby saving the expert
valuable time. 

Active learning has been shown to work quite
well empirically for in vitro settings (for example,
Mccallum and Nigam [1998], Tong and Koller
[2000]). In particular, uncertainty sampling, in
which at each step in active learning the unlabeled
instance about whose predicted label the model is
least confident is selected for labeling, has become
an immensely popular technique. We were there-
fore disappointed when uncertainty sampling
failed to outperform random sampling for our sys-
tematic review data sets with respect to the recall-
focused evaluation metric of interest for this appli-
cation. 

This last statement raises an important point: If
evaluating uncertainty sampling as if these were
“benchmark” data sets about which we knew noth-
ing aside from the feature vectors and their labels,
the results using active learning were quite good in
terms of accuracy. Figure 3 illustrates this point.
Shown are two comparisons of querying strategies:
random sampling, in which the instances to be
labeled and used as training data are selected ran-
domly, and the active learning strategy known as
SIMPLE (Tong and Koller 2000), an uncertainty-
sampling technique. The results shown are aver-
ages taken over 10 runs. As a base learner for both
querying strategies, we used support vector
machines (SVMs). On the left side of the figure, we
have plotted overall accuracy (assessed over a hold-
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Figure 1. The Systematic Review Screening Process. 



out set) against the number of labels provided by
the domain expert. Note that, as one might hope,
the active learning curve dominates that of ran-
dom sampling. One might conclude that active
learning ought then to be used for this task, as it
produces a higher accuracy classifier using fewer
labels (that is, less human effort). However, con-
sider the right side of the figure, which substitutes
sensitivity for accuracy as the metric of perform-
ance. Sensitivity is the proportion of positive
instances (in our case, relevant citations) that were
correctly classified by the model. 

In the citation screening task, we care more
about sensitivity than we do about the standard
metric of accuracy for two reasons. First, of the
thousands of citations retrieved through an initial
search, only about 5 percent, on average, are rele-
vant. This is a phenomenon known as class imbal-
ance. Second, for a given systematic review, it is

imperative that all relevant published literature be
included, or else the scientific validity of the
review may be compromised. In the nomenclature
of classification, this means we have highly asym-
metric costs. In particular, false negatives (relevant
citations the classifier designates as irrelevant) are
much costlier than false positives (irrelevant cita-
tions the classifier designates as relevant); false
negatives may jeopardize the integrity of the entire
review while false positives incur additional labor
for the reviewers (in the form of reviewing the arti-
cle in full text to determine its relevance).
Although it has previously been recognized that
class imbalance and cost-sensitive classification are
important for real-world problems (Drummond,
Holte, et al. 2005; Provost 2000; He and Garcia
2009), many new studies still use accuracy or AUC
to evaluate new learning methods. It is thus impor-
tant to reiterate our point: without understanding
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Figure 2. Abstracts to Be Screened.

These stacks of paper (printed abstracts) represent only a portion of the roughly 33,000 abstracts screened for a systematic review concern-
ing disability in infants and children. This task required approximately 250 hours of effort by researchers at Tufts Medical Center. 



the data one is working with, it is easy to draw mis-
leading conclusions by considering the wrong met-
ric. It is impossible to conclude that one learning
algorithm is better than another without reference
to a classification task with associated misclassifi-
cation costs. 

Fortunately, researchers are beginning to
acknowledge the shortcomings of existing learning
techniques when they are deployed for real-world
tasks. For example, Attenberg and Provost’s (2010)
recent call-to-arms paper addresses class imbalance,
nonuniform misclassification costs, and several
other factors that can lead to poor performance of
fielded active learning. In our own work, the obser-
vation that traditional uncertainty sampling per-
formed poorly in our application led to two devel-
opments. First, in light of the above discussion
regarding appropriate evaluation metrics, we adapt-
ed a method from the field of medical decision
making that has been used for diagnostic test
assessment (Vickers and Elkin 2006) to elicit a met-
ric from the domain expert reflecting the implicit
relative costs they assign to false negatives and false
positives. This metric can then be used to compare
classifiers in a task-specific way. Second, we devel-
oped a novel active learning algorithm that works
well under class imbalance by exploiting domain
knowledge in the form of labeled terms to guide the
active learning process (Wallace et al. 2010). 

The strategy of exploiting labeled terms was

motivated by our interaction with the reviewers
during an ongoing systematic review. When ini-
tially experimenting with uncertainty sampling,
we would show reviewers citations for which the
model was least certain. The reviewers would
often remark that the model was being confused
by certain things. For example, in one case the
model was consistently confounded by published
trials that were otherwise relevant to the review,
but in which the subjects were mice rather than
humans. Unfortunately, there was no way for
them to impart this information directly to the
model. We therefore developed an algorithm that
exploits labeled terms (for example, words like
mice that indicate a document containing them is
likely to be irrelevant) to guide the active learning
process. Figure 4 shows the labeled terms for a sys-
tematic review of proton beam radiation therapy. 

In particular, we build a simple, intuitive mod-
el over the labeled phrases in tandem with a lin-
ear-kernel support vector machine (Vapnik 1995)
over a standard bag-of-words (BOW) representa-
tion of the corpus.3 For the former, we use an
odds-ratio based on term counts (that is, the ratio
of positive to negative terms in a document).
Specifically, suppose we have a set of positive fea-
tures (that is, n-grams indicative of relevance), PF,
and a set of negative features NF. Then, given a
document d to classify, we can generate a crude
prediction model for d being relevant, stated as:
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Figure 3. The Performance of Two Different Querying Strategies on a Systematic Review Data Set. 

(1) Random sampling, in which labels are requested for instances at random, and (2) the popular active learning technique SIMPLE (Tong
and Koller 2000), wherein the learner requests labels for instances about whose label it is most uncertain. On the left, learners are compared
as to accuracy (that is, total proportion of correctly classified instances); on the right, sensitivity (accuracy with respect to the minority class
of relevant citations). Due to the imbalance in the data set, the two metrics tell very different stories about the relative performance of the
respective querying strategies.



where Id(w) is an indicator function that is 1 if w is
in d and 0 otherwise. Note that we add pseudo-
counts to both the negative and positive sums, to
avoid division by zero. The value of this ratio rela-
tive to 1 gives a class prediction and the magnitude
of the ratio gives a confidence.4 For example, if d
contains 10 times as many positive terms as it does
negative terms, the class prediction is + and a
proxy for our confidence is 10 (note that because
we’re using an odds-ratio, the confidence can be an
arbitrarily large scalar). 

Our active learning strategy then makes use of
both this simple, semantic or white-box labeled
terms model and the black-box SVM model during
active learning using a framework known as “co-
testing” (Muslea, Minton, and Knoblock 2006),
which works as follows. Suppose we have two
models, M1 and M2. Define contention points as
those unlabeled examples about whose labels M1
and M2 disagree. Now request the label for one of
these points. Because at least one of these models
is incorrect, such points are likely highly informa-
tive. In our particular case, these points are those
about whose labels the black-box SVM model dis-
agrees with what the domain expert has explicitly
communicated to us. Intuitively, it is desirable to
teach the SVM to make classifications that tend to
agree with the information the expert has provid-
ed. This approach improves the performance of the
system substantially; experts have to label fewer
citations to identify the relevant ones than they do
using the uncertainty sampling approach. The key
point here is that actually working with the
domain experts motivated a new method that ulti-
mately reduced workload. Had we been working
with only benchmark data sets, we would not have

Id
w+�P F
� (w+)+1

Id
w��N F
� (w�)+1

had the labeled terms, and thus could not have
developed this approach. This methodology is now
used for each new systematic review, with the
potential to dramatically reduce workload. 

Note that recently, several other researchers in
machine learning also recognized the potential
benefit of exploiting labeled features in addition to
labeled instances for classifier induction. This type
of learning scenario is often referred to as dual-
supervision. For recent developments, see Atten-
berg, Melville, and Provost (2010). 

Addressing Other 
Simplifying Assumptions 
More recently, we have addressed several other
simplifying assumptions that are not valid when
applying active learning in a real-world setting.
One such assumption is that there is a single, infal-
lible expert who can provide labels at a fixed cost.
In our case, however, there is often a group of
annotators (for example, medical experts partici-
pating in a systematic review) who can provide
labels of varying quality and cost: some are experi-
enced reviewers whose time is costly, others are
novices whose time is comparatively cheap. 

We call this multiple expert active learning (Wal-
lace et al. 2011). The task is, given a panel of
experts, a set of unlabeled examples, and a budget,
who should label which examples? Although
recent work has explored somewhat similar sce-
narios, such as crowd sourcing with Mechanical
Turk (Sheng, Provost, and Ipeirotis 2008), our
domain differs in an important way — we have a
setting in which all annotators must posses a req-
uisite minimum aptitude for annotating instances,
precluding the use of low-cost, untrained annota-
tors through crowd sourcing. 

A similar problem was explored by Donmez and
Carbonell (2008). They proposed a decision-theo-
retic approach to the task, wherein the instance to
be labeled and the expert to do the labeling is
picked at each step in active learning in order to
maximize local utility (that is, the estimated value
of acquiring a label for the selected instance nor-
malized by the cost of the chosen expert). This
strategy is intuitively appealing, but has a few
drawbacks for our domain. In particular, we found
it quite difficult to produce a reasonable value of
information for each unlabeled instance. More
problematically, we found that, on our data, this
greedy strategy tended repeatedly to select cheap-
er labelers, accruing a noisy training set. This in
turn gave rise to comparatively inaccurate models.
We had no way to take into account the negative
utility of incorrectly labeled instances, particularly
because predicting which instances novices would
mislabel proved a difficult task (see Wallace et al.
[2011] for a more detailed discussion). 

While conducting our experiments with real
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Figure 4. An Example of Labeled Terms for the Proton Beam Data.

The left side shows the terms that if present indicate that the document is rel-
evant, and the right side shows terms likely to be present in irrelevant
abstracts. 



experts, we noticed that novice labelers (reviewers)
appeared capable of gauging the reliability of the
labels they provided (that is, they knew when they
knew). Motivated by this observation, we set out
to exploit the metacognitive abilities of the
“novice” experts. Specifically, in addition to sim-
ply labeling an example, we ask experts to indicate
if they are uncertain about their classification. If
they are, we pass the example on to a more experi-
enced expert (in our domain, as presumably in
most, cost monotonically increases with expertise).
In Wallace et al. (2011) we demonstrated that this
approach outperforms all other strategies pro-
posed, in terms of cost versus classifier perform-
ance. Moreover, we presented empirical evidence
that novice labelers are indeed conscious of which
examples they are likely to mislabel, and we also
argued that automatically identifying difficult
instances before labeling is not feasible. Thus we
are relying on relatively cheap human computa-
tion rather than automated methods, as described
in Rebbapragada (2010). 

Summary 
In summary, while developing a fielded machine-
learning system for semiautomating citation
screening for systematic reviews we ran into prob-
lems when applying off-the-shelf machine-learning
technologies. These issues spurred new research
questions, that we addressed by working closely
with domain experts. Thus far, the Tufts Evidence-
Based Practice Center has used our machine-learn-
ing methods prospectively to prioritize work when
conducting two systematic reviews (that is, we used
the model to select the documents that the experts
should screen, and also to inform them when they
had likely identified all of the relevant citations). At
this point in both of the aforementioned reviews,
the remaining citations (which the model labeled
as irrelevant) were screened by a less costly human
(that is, not a doctor). In both cases, our model was
correct in its designation of the remaining citations
as irrelevant. As we further validate our model
empirically, our goal is for experts to trust its deci-
sions enough to eliminate the human screening of
irrelevant citations. 

We are working on an online tool for citation
screening that integrates our methods (active
learning, labeling task allocation, and the auto-
matic exclusion of irrelevant citations). We are cur-
rently conducting a larger scale empirical evalua-
tion and plan to make our system available to
evidence-based practice centers outside of Tufts in
Summer 2012. 

Cleaning Up after Noisy Labelers 
In the preceding section we considered the strate-
gy of collecting additional training data to improve

classifier performance. We now turn our attention
to a second common cause of poor model general-
ization accuracy: noisy data. In particular, labeling
errors in training data negatively affect classifier
accuracy. Experts make errors because of inade-
quate time spent per example, annotator fatigue,
inconsistent labeling criteria, poor data quality,
ambiguity among classes, and shifts in decision cri-
teria. For example, when using multispectral satel-
lite imagery data to create maps of global land cov-
er, there are two potential sources of labeling
errors: poor image quality and ambiguity between
multimodal classes (Friedl et al. 2010). The “Open
Shrubland” class in the International Geosphere-
Biosphere Programme (IGBP) is bimodal. Both
high-latitude tundra and desert cacti qualify for
this label. However, high-latitude tundra is spec-
trally similar to the “Grassland” class and thus
“Grassland” and “Open Shrubland” are often con-
fused. In this domain, the experts can consult aux-
iliary data sources where possible to make a high
confidence decision, but this incurs significant
additional cost; many of the original labels were
assigned prior to the availability of high-quality
data sources (for example, Google Earth), whose
review could resolve previously ambiguous cases. 

In the case of labeling medical abstracts for sys-
tematic reviews, as mentioned earlier, experts
spend an average of 30 seconds per abstract, often
skimming the text to make a decision. To under-
stand why labeling errors are made in this domain,
we examined the error rate of a particular expert
on a systematic review investigating proton beam
cancer therapy. When we asked the expert to per-
form a second review of certain examples, he dis-
covered that had he read some abstracts more thor-
oughly, he would have assigned them a different
label. This expert admitted feeling fatigue and
boredom during the original labeling process,
which caused him to relax his criteria on assigning
articles to the relevant class. He also noted that
because his decision criteria evolved over time, he
would have assigned different labels to earlier
examples had he gone back and relabeled them.
Our physician in this case was an expert, thus
demonstrating that even experienced labelers are
not immune from making errors in this domain. 

Involving Experts to Correct Label Errors 
Existing fully automated approaches for mitigating
label noise generally look to improve the resulting
classifier by avoiding overfitting to the noise in the
data. Operationally, such methods often have the
goal of removing label noise as a preprocessing step
for the training data prior to applying the super-
vised machine-learning method. Preprocessing
methods attempt to detect noisy examples in a sin-
gle pass of the training data set. Methods differ in
how they handle suspected mislabelings. Some dis-
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card suspected examples (Zeng and Martinez 2003;
Valizadegan and Tan 2007; Gamberger, Lavrac, and
Dzeroski 1996; Gamberger, Lavraselj, and Groselj
1999; Brodley and Friedl 1996; 1999; Venkatara-
man et al. 2004; Verbaeten 2002; Verbaeten and
Assche 2003; Zhu, Wu, and Chen 2003), a few
attempt to correct them (Zeng and Martinez 2001;
Wagstaff et al. 2010), and a few perform a hybrid of
the two actions (Lallich, Muhlenbach, and Zighed
2002; Muhlenbach, Lallich, and Zighed 2004; Reb-
bapragada and Brodley 2007). The primary draw-
back of “single pass” approaches is that they intro-
duce Type I and II errors. They may eliminate or flip
the labels on clean examples, while leaving truly
mislabeled examples unchanged. 

For both the land-cover and the citation-screen-
ing domains, after recognizing that we have label-
ing errors, we asked the question: how can we
involve our expert in this process? Our idea was to
leverage the strength of fully automated tech-
niques but outsource the task of relabeling to a
domain expert. Our approach, called active label
correction (ALC), assumes the availability of addi-
tional data sources that the original annotator or a
second annotator can consult to improve their
decision. Fortunately, this is a realistic scenario,
even in domains when expert time comes at a pre-
mium. For example, in the domain of citation
screening, one can retrieve the full text if the
abstract has not provided sufficient information to
choose a label, and for land-cover classification,
there are different procedures for labeling data,
some of which take considerably more time and
effort than others. For such domains, if the expert
is presented a small, focused set of examples that
are likely mislabeled, he or she can justify spending
the additional time necessary to ensure those
examples are properly labeled. 

By highlighting the difficult cases for rereview,
ALC ensures quality labels for examples that are
ambiguous, and potentially more informative for
classification. Note that this scenario is different
than the one described above in multiple-expert
active learning, in which one has several experts
and a single pool of unlabeled data. Here we have
one expert, either the original or a more qualified
alternate, who is prepared to spend the necessary
time analyzing select instances that were already
labeled using a cheaper procedure suspected of
introducing errors. 

Cleaning Up the 
Land-Cover Training Data 
In Rebbapragada (2010) we explore many instanti-
ations of ALC, run several experiments on real-
world data both within scenarios for which we do
and do not know the amount of noise, and apply
it to a database of known land-cover types used to
train a global land-cover classifier provided by the

Department of Geography and Environment at
Boston University. The source of the data is the sys-
tem for terrestrial ecosystem parameterization
(STEP) database (Muchoney et al. 1999), which is a
collection of polygons drawn over known land-
cover types. The database was created from data
collected by the moderate resolution imaging spec-
troradiometer (MODIS). Each observation in this
database measures surface reflectance from seven
spectral bands, one land-surface temperature band,
and one vegetation index (a transformation of the
spectral bands that is sensitive to the amount of
vegetation present in the pixel). The data has been
aggregated by month and includes the mean, max-
imum, and minimum surface reflectance measure-
ments for one year. The number of MODIS pixels
in a site ranges from 1 to 70; each site is given a
single class label. The size of the site depends on
the landscape homogeneity and is constrained to
have an area between 2 and 25 square kilometers. 

The labeling scheme is determined by the Inter-
national Geosphere-Biosphere Programme
(Muchoney et al. 1999), which is the consensus
standard for the Earth-science modeling commu-
nity. The IGBP legend contains 17 land-cover class-
es. Ideally, the land-cover classes should be mutu-
ally exclusive and distinct with respect to both
space and time. By these criteria, the IGBP scheme
is not ideal because it tries to characterize land cov-
er, land use, and surface hydrology, which may
overlap in certain areas (in the next section we dis-
cuss efforts in how to rethink this classification
scheme for the geography community using
machine-learning methods). The version of STEP
used to produce the MODIS Collection 5 Land
Cover product was initially labeled at Boston Uni-
versity during 1998–2007 using various informa-
tion sources such as Landsat imagery. Since then
new information sources have become available
such as high-resolution Google Earth imagery,
independently produced maps of agriculture,
MODIS-derived vegetation indices, and ecoregion
maps (Friedl et al. 2010). These new sources of
information make it an ideal candidate for ALC. 

We partnered with our domain experts to evalu-
ate ALC’s ability to find all instances that might be
mislabeled. We ran six rounds of ALC; for each
round we asked the domain expert to examine the
10 sites for which our method had the lowest con-
fidence on their assigned class labels as computed
from using the calibrated probabilities from an
SVM.5 At each round, a new SVM was computed
including the (possibly) corrected training data of
the last round. Thus our expert examined 60
unique sites in the evaluation. 

Our expert analyzed each of the selected sites
and provided his personal primary and secondary
labeling for each site, the confidence on the com-
position of the site itself, and some detailed com-
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ments. Prior to our involvement, the domain
experts had revisited some of the labels on this
data set. Thus, some sites had two labels: the “orig-
inal” label and a “corrected” label. Out of the 60
that our method chose for rereview (using the orig-
inal labels), 19 were sites that the geographers had
already identified as potentially mislabeled. Of
those 19, our expert agreed with 12 labels in the
“corrected” data. Of the remaining 7, he decided
to relabel 4 of them. For 2, although he disagreed
with the “corrected” label, he was not confident of
the true label. On the last he determined that the
“orginal” label was more accurate. Thus in 18 of 19
cases, the expert confirmed that those examples
were truly mislabeled. Of the 41 sites that had con-
sistent labels between original and corrected, the
expert verified that 16 of these sites were truly mis-
labeled. Of the other 25 sites, he did make adjust-
ments to 3 in which he found other errors and
wanted to revisit later, either for deletion or to
regroup the site with other observations. Thus, for
this data set ALC was successful in isolating the dif-
ficult cases that require more human attention.
Informally, the expert told us that “[ALC] is both
useful and important to the maintenance of the
database. (1) It identifies sites that are very hetero-
geneous and mixtures of more than one land-cov-
er class. (2) It identifies sites that are mislabeled or
of poor quality. I would like to see this analysis on
some of the other STEP labels besides the IGBP
class since the IGBP classification has a number of
problems with class ambiguity.” 

Summary 
In summary, when trying automatically to classify
regions of Earth’s surface, we needed to address the
issue that the available training data had labeling
errors. Through discussions with our domain
experts we ascertained that more costly, labor-
intensive processes were available and that they
were willing to reexamine some labels to correct
for errors that if left untouched would decrease the
ultimate performance of an automated classifica-
tion scheme. Indeed, experiments illustrated that
this was a better use of their time than labeling
new data with the less costly procedure (Rebbapra-
gada 2010). Because we were working closely with
our domain experts, we developed a new way in
which to use human expertise, which we named
active label correction. We plan to apply these
ideas more extensively to both the citation screen-
ing and the land-cover classification domain. 

Rethinking Class Definitions 
In working with the geographers on trying to cor-
rect label noise in their training data, we sat back
and brainstormed about the causes of the errors.
Even with the ability to use auxiliary information

sources, for some sites it is impossible to come up
with a single correct label despite significant addi-
tional effort. Our conjecture was that the features
were not sufficient to make the class discrimina-
tions required in the IGBP classification scheme.
For this domain, our ability to gather more data is
limited by the physical properties of MODIS, thus
the avenue of collecting additional data in the
form of more features is closed. Indeed, for any
real-world domain, before applying a supervised
learning method, we must identify the set of class-
es whose distinction might be useful for the
domain expert, and then determine whether these
classifications can actually be distinguished by the
available data. 

Where do class definitions originate? For many
data sets, they are provided by human experts as
the categories or concepts that people find useful.
For others, one can apply clustering methods to
find automatically the homogeneous groups in the
data. Both approaches have drawbacks. The cate-
gories and concepts that people find useful may
not be supported by the features (that is, the fea-
tures may be inadequate for making the class dis-
tinctions of interest). Applying clustering to find
the homogeneous groups in the data may find a
class structure that is not of use to the human. For
example, applying clustering to high-resolution
CT scans of the lung (Aisen et al. 2003) in order to
find the classes of pulmonary diseases may group
together in one cluster two pulmonary diseases
that have radically different treatments or, con-
versely, it may split one disease class into multiple
clusters that have no meaning with respect to diag-
nosis or treatment of the disease. 

Combining Clustering 
and Human Expertise 
To address this issue, we developed a method for
redefining class definitions that leverages both the
class definitions found useful by the human
experts and the structure found in the data
through clustering. Our approach is based on the
observation that for supervised training data sets,
significant effort went into defining the class labels
of the training data, but that these distinctions
may not be supported by the features. Our
method, named class-level penalized probabilistic
clustering (CPPC) (Preston et al. 2010), is designed
to find the natural number of clusters in a data set,
when given constraints in the form of class labels.
We require a domain expert to specify an L � L
matrix of pairwise probabilistic constraints, where
L is the number of classes in the data. This matrix
makes use of the idea that the expert will have dif-
ferent levels of confidence for each class definition,
and preferences as to which class labels may be
similar. Thus, each element of the matrix defines
the expert’s belief that a pair of classes should be
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kept separate or should be merged. Elements on
the diagonal reflect the expert’s opinion of
whether a particular class is multimodal. Using the
instances’ class labels and the probabilities in the
matrix provides us with pairwise probabilistic
instance-level constraints. 

Our framework for discovering the natural clus-
tering of the data given this prior knowledge uses
a method based primarily on the penalized proba-
bility clustering (PPC) algorithm (Lu and Leen
2007). Penalized probability clustering is a con-
straint-based clustering algorithm, in which Lu
and Leen defined a generative model to capture the
constraints of the domain and the clustering objec-
tive. The model allows the user to provide probab-
listic must- and cannot-link constraints; a must-
link constraint between a pair of instances tells
PPC to try to put the instances in the same cluster
and a cannot-link contraint indicates they should
not be in the same cluster. The probability helps
the algorithm determine how much weight to
place on the constraint. To make the constraint-
based clustering tractable they use a mean field
approximation (Lu and Leen 2007).6 In Preston et
al. (2010) we provide the details of this work and
we provide a framework to evaluate a class cluster-
ing model using a modification of the Bayesian
information criterion that measures the fit of a
clustering solution to both the data and to the
specified constraints while adding a term to penal-
ize for model complexity. 

Redefining the Land-Cover 
Classification Scheme 
Before we applied CPPC to the land-cover data set,
the geographers speculated that (1) large, complex
classes such as agriculture may contain several dis-
tinguishable subclasses and (2) geographic regions
classified as one of the mixed classes, such as
“mixed forest” should most likely be merged with
either of its two subclasses: “deciduous broadleaf
forest” or “evergreen broadleaf forest.” In the latter
case, some sensors cannot distinguish well
between these types of forest. To evaluate CPPC’s
ability to uncover meaningful class structure, we
presented the geographers with two maps built
using a land-cover data set for North America. One
map was generated using CPPC, the other with
expectation maximization (EM) clustering. They
were not told which was the new solution. They
determined that the map generated using the
CPPC clusters defined far more meaningful class
structure than the map generated from the EM
clusters, and further that the map was better than
the map generated by applying supervised learn-
ing to the original labeled data. The results showed
that CPPC finds areas of confusion where classes
should be merged or where separation within a

class provides additional useful information, such
as corn and wheat clusters within the agriculture
class (see figure 5 for an illustrative example of the
results). 

Based on these results, our geographers are inter-
ested in using this tool to redesign the land-cover
hierarchy. By observing the results of the con-
straints, one can better assess what types of actual
divisions exist in the data and whether or not our
desired class descriptions are feasible distinctions
(that is, can actually be distinguished by the fea-
tures). 

Summary 
Our work in redefining the labeling scheme for
land-cover classification arises from an observation
that even when the experts tried to correct for
labeling errors in their data set, it was not possible
to create an accurate classifier from the data. The
reason is that the features do not support the class-
es defined by the IGBP classification scheme. This
led to research on how to redefine this scheme
using the best of both worlds: the work already
done on examining each training data point to
come up with a land-cover label and the ability of
unsupervised learning to uncover structure in the
data. Thus our ideas resulted from working on an
application for which off-the-shelf machine-learn-
ing methods failed to give the acceptable perform-
ance and by considering novel ways in which to
use our domain expertise. We have begun to work
with two groups of doctors to apply some of these
same ideas to develop a classification scheme for
grouping clinical trials and for developing a classi-
fication scheme for chronic obstructive pulmonary
disease (COPD). 

Conclusions 
A primary objective in our research is to consider
how we can best utilize domain expertise to
improve the performance of machine-learning and
data-mining algorithms. This article describes two
such collaborations, which led to methods for uti-
lizing human input in the form of imparting addi-
tional domain knowledge (that is, terms indicative
of class membership), correction of labeling errors,
and the use of training labels and expert knowl-
edge to guide the redefinition of class boundaries.
Some of our previous research efforts led to the
ideas of human-guided feature selection for unsu-
pervised learning (Dy and Brodley 2000) as applied
to content-based image retrieval for diagnosing
high-resolution CT images of the lung; determin-
ing what experiments should be run next when
the process of generating the data cannot be sepa-
rated from the process of labeling the data
(Lomasky et al. 2007) for the generation of training
data for an artificial nose; and user-feedback meth-
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Figure 5. Maps Using Original IGBP Classification (left), CPPC Clustering (middle), and EM Clustering (right). 

The top row shows a map tile centered on the the agricultural oasis just south of the Salton Sea in southern California. It represents a region
with very sparse desert shrub cover (darker gray) and some agriculture (light gray) and denser forest/grassland (medium gray). The original
IGBP classification contains a barren or sparsely vegetated class that is similar (spectrally) to the open shrubland class and is preserved in
the clustering with constraints but not the EM clustering. In this case, CPPC preserves the class structure of interest. The middle row shows
an area centered on Montreal. It represents a transition between southern hardwoods (deciduous broadleaf) and boreal conifers (evergreen
needleleaf) forests. It is also an area of transition between forest and the agricultural region along the river. The original IGBP classification
has two “mixture” classes that mostly disappear after clustering: mixed forest and agriculture/natural mosaic (mixture of trees and agricul-
ture). In this case CPPC correctly decides to merge classes. The bottom row shows an area on the border of North and South Dakota in the
west with Minnesota to the east. It is almost completely covered with agriculture with a small patch of natural prairie to the southwest of
the image. The original IGBP classification has one single agriculture class (light gray). As we see with the two clustering results there are
actually three distinct agricultural signals within this area, which indicate different types of crops, different harvesting times, or the pres-
ence/absence of irrigation. In this case, CPPC is able to find subclasses withing a single class long thought to be multimodal. 



ods for anomaly detection of astrophysics data to
find anomalous sky objects. 

Clearly theory and algorithm development are
both crucial for the advancement of machine learn-
ing, but we would argue strongly that being
involved in an application can highlight shortcom-
ings of existing methodologies and lead to new
insights into previously unaddressed research issues.
To conclude, we are motivated by the belief that
contact with real problems, real data, real experts,
and real users can generate the creative friction that
leads to new directions in machine learning. 
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Notes 
1. The exception is cystic fibrosis, which affects mostly
the young. 

2. PubMed is a repository of published biomedical papers.
Sometimes other databases are used in addition to, or
instead of, PubMed. 

3. Bag-of-Words is a featurespace encoding for textual
data in which documents are mapped to vectors whose
entries are functions over word counts. The simplest such
representation is binary BOW, in which each column rep-
resents a particular word and the value of this column for
a given document is set to 1 or 0, indicating that the
word is present or not, respectively. 

4. In order to ensure that the magnitude is symmetric in
the respective directions, one may either flip the ratio so
that the numerator is always larger than the denomina-
tor, or one may take the log of the ratio. 

5. The SVM used a polynomial kernel (order 2) where the
C parameter was set to 1.0. 

6. A straightforward implementation of the PPC algo-
rithm using mean field approximation (Jaakkola 2000)
results in O(N2) computational complexity due to the
number of constraints (that is, one constraint for each
pair of instances), where N is the total number of
instances. In CPPC, we reduce this time complexity to
O(NL) by taking advantage of the repetitions in the set of
instance pairwise constraints that are induced from the
class pairwise constraints. In general, L << N, as the num-

ber of classes is generally much smaller than the number
of instances. 
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